MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference
Corresponding Author: Yihua Gao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 34
Abstract
Self-powered devices are widely used in the detection and sensing fields. Asymmetric metal contacts provide an effective way to obtain self-powered devices. Finding two stable metallic electrode materials with large work function differences is the key to obtain highly efficient asymmetric metal contacts structures. However, common metal electrode materials have similar and high work functions, making it difficult to form an asymmetric contacts structure with a large work function difference. Herein, Mo2C crystals with low work function (3.8 eV) was obtained by chemical vapor deposition (CVD) method. The large work function difference between Mo2C and Au allowed us to synthesize an efficient Mo2C/MoS2/Au photodetector with asymmetric metal contact structure, which enables light detection without external electric power. We believe that this novel device provides a new direction for the design of miniature self-powered photodetectors. These results also highlight the great potential of ultrathin Mo2C prepared by CVD in heterojunction device applications.
Highlights:
1 2D Mo2C was produced by a modified chemical vapor deposition method, and 2D Mo2C-Au was formed as an asymmetric contact structure with a large work function difference.
2 Mo2C/MoS2/Au photodetectors powered by asymmetric contact structure can work under self-powered condition with a responsivity of 10−1 mA W−1. The detection performance of the photodetectors can be stable for at least 110 days.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.M. Li, L. Tao, Z.F. Chen, H. Fang, X.S. Li, X.R. Wang, J.B. Xu, H.W. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017). https://doi.org/10.1063/1.4983646
- X. Zhou, X.Z. Hu, J. Yu, S.Y. Liu, Z.W. Shu et al., 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater. 28(14), 1706587 (2018). https://doi.org/10.1002/adfm.201706587
- H. Jang, K.P. Dhakal, K. Joo, W.S. Yun, S.M. Shinde et al., Transient SHG imaging on ultrafast carrier dynamics of MoS2 nanosheets. Adv. Mater. 30(14), 1705190 (2018). https://doi.org/10.1002/adma.201705190
- C.B. Liu, J.Q. Chen, Y. Zhu, X.J. Gong, R.Q. Zheng et al., Highly sensitive MoS2–indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano-Micro Lett. 10, 48 (2018). https://doi.org/10.1007/s40820-018-0202-8
- F. Zhang, C.W. Lu, M. Wang, X.S. Yu, W.L. Wei, Z.N. Xia, A chiral sensor array for peptidoglycan biosynthesis monitoring based on MoS2 nanosheet-supported host–guest recognitions. ACS Sens. 3(2), 304–312 (2018). https://doi.org/10.1021/acssensors.7b00676
- Y.M. Wang, Y. Chen, W.Q. Zhao, L.W. Ding, L. Wen et al., A self-powered fast-response ultraviolet detector of p–n homojunction assembled from two ZnO-based nanowires. Nano-Micro Lett. 9, 11 (2017). https://doi.org/10.1007/s40820-016-0112-6
- M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu et al., A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric schottky junction. ACS Nano 12(8), 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931
- C.L. Li, Q. Cao, F. Wang, Y.Q. Xiao, Y.B. Li, J.J. Delaunay, H.W. Zhu, Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018). https://doi.org/10.1039/C8CS00067K
- J. Li, Z. Wang, Y. Wen, J. Chu, L. Yin et al., High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 28(10), 1706437 (2018). https://doi.org/10.1002/adfm.201706437
- H. Li, X.M. Li, J.H. Park, L. Tao, K.K. Kim, Y.H. Lee, J.B. Xu, Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 57, 214–221 (2019). https://doi.org/10.1016/j.nanoen.2018.12.004
- X.M. Li, M. Zhu, M.D. Du, Z. Lv, L. Zhang et al., High detectivity graphene-silicon heterojunction photodetector. Small 12(5), 595–601 (2016). https://doi.org/10.1002/smll.201502336
- W. Zheng, W. Feng, X. Zhang, X. Chen, G. Liu, Y. Qiu, T. Hasan, P. Tan, P.A. Hu, Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26(16), 2648–2654 (2016). https://doi.org/10.1002/adfm.201504775
- W. Feng, W. Zheng, W. Cao, P.A. Hu, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26(38), 6587–6593 (2014). https://doi.org/10.1002/adma.201402427
- P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6(7), 5988–5994 (2012). https://doi.org/10.1021/nn300889c
- T. Gao, Q. Zhang, L. Li, X. Zhou, L.G. Li, H.Q. Li, Tianyou Zhai, 2D ternary chalcogenides. Adv. Opt. Mater. 6(14), 1800058 (2018). https://doi.org/10.1002/adom.201800058
- G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90(2), 021001 (2018). https://doi.org/10.1103/RevModPhys.90.021001
- MathSciNet
- Z.F. Chen, X.M. Li, J.Q. Wang, L. Tao, M.Z. Long et al., Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11(1), 430–437 (2017). https://doi.org/10.1021/acsnano.6b06172
- Y. Huang, F.W. Zhuge, J.X. Hou, L. Lv, P. Luo, N. Zhou, L. Gan, T.Y. Zhai, Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 12(4), 4062–4073 (2018). https://doi.org/10.1021/acsnano.8b02380
- J.W. Xiao, Y. Zhang, H.J. Chen, N.S. Xu, S.Z. Deng, Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Lett. 10, 60 (2018). https://doi.org/10.1007/s40820-018-0212-6
- P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng et al., Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 13(4), 1649–1654 (2013). https://doi.org/10.1021/nl400107k
- X. Chen, H. Yang, G. Liu, F. Gao, M. Dai et al., Hollow spherical nanoshell arrays of 2D layered semiconductor for high-performance photodetector device. Adv. Funct. Mater. 28(8), 1705153 (2018). https://doi.org/10.1002/adfm.201705153
- A.K. Paul, M. Kuiri, D. Saha, B. Chakraborty, S. Mahapatra, A.K. Sood, A. Das, Photo-tunable transfer characteristics in MoTe2–MoS2 vertical heterostructure. npj 2D Mater. Appl. 1(1), 17 (2017). https://doi.org/10.1038/s41699-017-0017-3
- C. Lee, G. Lee, A. Zande, W. Chen, Y. Li et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150
- R.S. Singh, V. Nalla, W. Chen, W. Ji, A.T.S. Wee, Photoresponse in epitaxial graphene with asymmetric metal contacts. Appl. Phys. Lett. 100, 093116 (2012). https://doi.org/10.1063/1.3692107
- C.G. Lu, L. An, Q. Fu, J. Liu, H. Zhang, J. Murduck, Schottky diodes from asymmetric metal-nanotube contacts. Appl. Phys. Lett. 88, 133501 (2006). https://doi.org/10.1063/1.2190707
- H. Chen, K. Liu, X. Chen, Z. Zhang, M. Fan, M. Jiang, X. Xie, H. Zhao, D.Z. Shen, Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. J. Mater. Chem. C 2(45), 9689–9694 (2014). https://doi.org/10.1039/C4TC01839G
- T.J. Yoo, Y.J. Kim, S.K. Lee, C.G. Kang, K.E. Chang, H.J. Hwang, N. Revannath, B.H. Lee, Zero-bias operation of CVD graphene photodetector with asymmetric metal contacts. ACS Photonics 5(2), 365–370 (2018). https://doi.org/10.1021/acsphotonics.7b01405
- A.D. Bartolomeo, A. Grillo, F. Urban, L. Iemmo, F. Giubileo et al., Asymmetric Schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 28(28), 1800657 (2018). https://doi.org/10.1002/adfm.201800657
- Z. Kang, Y.N. Ma, X.Y. Tan, M. Zhu, Z. Zheng et al., MXene–silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3(9), 1700165 (2017). https://doi.org/10.1002/aelm.201700165
- K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
- J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. (2019). https://doi.org/10.1039/C8CS00324F
- Z.W. Wang, H. Kim, H.N. Alshareef, Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30(15), 1706656 (2018). https://doi.org/10.1002/adma.201706656
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
- C. Xu, L.B. Wang, Z.B. Liu, L. Chen, J.K. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/NMAT4374
- D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large-area 2D Mo2C on In Situ Grown Graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
- J.B. Qiao, Y. Gong, W.J. Zuo, Y.C. Wei, D.L. Ma et al., One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys. Rev. B 95(20), 201403(R) (2017). https://doi.org/10.1103/PhysRevB.95.201403
- M.Q. Zeng, Y.X. Chen, J.X. Lia, H.F. Xue, R.G. Mendes, J.X. Liu, T. Zhang, M.H. Rümmeli, L. Fu, 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy 33, 356–362 (2017). https://doi.org/10.1016/j.nanoen.2017.01.057
- Z.X. Wang, V. Kochat, P. Pandey, S. Kashyap, S. Chattopadhyay et al., Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29(29), 1700364 (2017). https://doi.org/10.1002/adma.201700364
- J. Jeon, Y. Park, S. Choi, J. Lee, S. Lim et al., Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide. ACS Nano 12(1), 338–346 (2018). https://doi.org/10.1021/acsnano.7b06417
- A.A. Rouse, J.B. Bernhard, E.D. Sosa, D.E. Golden, Field emission from molybdenum carbide. Appl. Phys. Lett. 76, 2583 (2000). https://doi.org/10.1063/1.126415
- M. Bagge-Hansen, R.A. Outlaw, P. Miraldo, M.Y. Zhu, K. Hou, N.D. Theodore, X. Zhao, D.M. Manos, Field emission from Mo2C coated carbon nanosheets. J. Appl. Phys. 103, 014311 (2008). https://doi.org/10.1063/1.2829810
- C. Xu, S. Song, Z.B. Liu, L. Chen, L.B. Wang et al., Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11(6), 5906–5914 (2017). https://doi.org/10.1021/acsnano.7b01638
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Krist. Cryst. Mater. 220(5), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
- Y.F. Cheng, R.S. Meng, C.J. Tan, X.Q. Chen, J. Xiao, Selective gas adsorption and I-V response of monolayer boron phosphide introduced by dopants: a first-principle study. Appl. Surf. Sci. 427, 176–188 (2017). https://doi.org/10.1016/j.apsusc.2017.08.187
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- D.C. Sorescu, B.M. Rice, Theoretical predictions of energetic molecular crystals at ambient and hydrostatic compression conditions using dispersion corrections to conventional density functionals (DFT-D). J. Phys. Chem. C 114(14), 6734–6748 (2010). https://doi.org/10.1021/jp100379a
- D. Saha, S. Mahapatra, Atomistic modeling of the metallic-to-semiconducting phase boundaries in monolayer MoS2. Appl. Phys. Lett. 108, 253106 (2016). https://doi.org/10.1063/1.4954257
- D. Geng, X. Zhao, L. Li, P. Song, B. Tian et al., Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 4, 011012 (2016). https://doi.org/10.1088/2053-1583/aa51b7
- C.G. Lee, H.G. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
- O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B.K. Bussmann, J. Maultzsch, M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2. Beilstein J. Nanotechnol. 5, 291–297 (2014). https://doi.org/10.3762/bjnano.5.32
- W. Jing, N. Ding, L. Li, F. Jiang, X. Xiong, N. Liu, T. Zhai, Y. Gao, Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity. Opt. Express 25(13), 14565–14574 (2017). https://doi.org/10.1364/OE.25.014565
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2011). https://doi.org/10.1021/nn2024557
References
X.M. Li, L. Tao, Z.F. Chen, H. Fang, X.S. Li, X.R. Wang, J.B. Xu, H.W. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017). https://doi.org/10.1063/1.4983646
X. Zhou, X.Z. Hu, J. Yu, S.Y. Liu, Z.W. Shu et al., 2D layered material-based van der Waals heterostructures for optoelectronics. Adv. Funct. Mater. 28(14), 1706587 (2018). https://doi.org/10.1002/adfm.201706587
H. Jang, K.P. Dhakal, K. Joo, W.S. Yun, S.M. Shinde et al., Transient SHG imaging on ultrafast carrier dynamics of MoS2 nanosheets. Adv. Mater. 30(14), 1705190 (2018). https://doi.org/10.1002/adma.201705190
C.B. Liu, J.Q. Chen, Y. Zhu, X.J. Gong, R.Q. Zheng et al., Highly sensitive MoS2–indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano-Micro Lett. 10, 48 (2018). https://doi.org/10.1007/s40820-018-0202-8
F. Zhang, C.W. Lu, M. Wang, X.S. Yu, W.L. Wei, Z.N. Xia, A chiral sensor array for peptidoglycan biosynthesis monitoring based on MoS2 nanosheet-supported host–guest recognitions. ACS Sens. 3(2), 304–312 (2018). https://doi.org/10.1021/acssensors.7b00676
Y.M. Wang, Y. Chen, W.Q. Zhao, L.W. Ding, L. Wen et al., A self-powered fast-response ultraviolet detector of p–n homojunction assembled from two ZnO-based nanowires. Nano-Micro Lett. 9, 11 (2017). https://doi.org/10.1007/s40820-016-0112-6
M. Dai, H. Chen, R. Feng, W. Feng, Y. Hu et al., A dual-band multilayer InSe self-powered photodetector with high performance induced by surface plasmon resonance and asymmetric schottky junction. ACS Nano 12(8), 8739–8747 (2018). https://doi.org/10.1021/acsnano.8b04931
C.L. Li, Q. Cao, F. Wang, Y.Q. Xiao, Y.B. Li, J.J. Delaunay, H.W. Zhu, Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018). https://doi.org/10.1039/C8CS00067K
J. Li, Z. Wang, Y. Wen, J. Chu, L. Yin et al., High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 28(10), 1706437 (2018). https://doi.org/10.1002/adfm.201706437
H. Li, X.M. Li, J.H. Park, L. Tao, K.K. Kim, Y.H. Lee, J.B. Xu, Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. Nano Energy 57, 214–221 (2019). https://doi.org/10.1016/j.nanoen.2018.12.004
X.M. Li, M. Zhu, M.D. Du, Z. Lv, L. Zhang et al., High detectivity graphene-silicon heterojunction photodetector. Small 12(5), 595–601 (2016). https://doi.org/10.1002/smll.201502336
W. Zheng, W. Feng, X. Zhang, X. Chen, G. Liu, Y. Qiu, T. Hasan, P. Tan, P.A. Hu, Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 26(16), 2648–2654 (2016). https://doi.org/10.1002/adfm.201504775
W. Feng, W. Zheng, W. Cao, P.A. Hu, Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv. Mater. 26(38), 6587–6593 (2014). https://doi.org/10.1002/adma.201402427
P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6(7), 5988–5994 (2012). https://doi.org/10.1021/nn300889c
T. Gao, Q. Zhang, L. Li, X. Zhou, L.G. Li, H.Q. Li, Tianyou Zhai, 2D ternary chalcogenides. Adv. Opt. Mater. 6(14), 1800058 (2018). https://doi.org/10.1002/adom.201800058
G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90(2), 021001 (2018). https://doi.org/10.1103/RevModPhys.90.021001
MathSciNet
Z.F. Chen, X.M. Li, J.Q. Wang, L. Tao, M.Z. Long et al., Synergistic effects of plasmonics and electron trapping in graphene short-wave infrared photodetectors with ultrahigh responsivity. ACS Nano 11(1), 430–437 (2017). https://doi.org/10.1021/acsnano.6b06172
Y. Huang, F.W. Zhuge, J.X. Hou, L. Lv, P. Luo, N. Zhou, L. Gan, T.Y. Zhai, Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 12(4), 4062–4073 (2018). https://doi.org/10.1021/acsnano.8b02380
J.W. Xiao, Y. Zhang, H.J. Chen, N.S. Xu, S.Z. Deng, Enhanced performance of a monolayer MoS2/WSe2 heterojunction as a photoelectrochemical cathode. Nano-Micro Lett. 10, 60 (2018). https://doi.org/10.1007/s40820-018-0212-6
P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng et al., Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 13(4), 1649–1654 (2013). https://doi.org/10.1021/nl400107k
X. Chen, H. Yang, G. Liu, F. Gao, M. Dai et al., Hollow spherical nanoshell arrays of 2D layered semiconductor for high-performance photodetector device. Adv. Funct. Mater. 28(8), 1705153 (2018). https://doi.org/10.1002/adfm.201705153
A.K. Paul, M. Kuiri, D. Saha, B. Chakraborty, S. Mahapatra, A.K. Sood, A. Das, Photo-tunable transfer characteristics in MoTe2–MoS2 vertical heterostructure. npj 2D Mater. Appl. 1(1), 17 (2017). https://doi.org/10.1038/s41699-017-0017-3
C. Lee, G. Lee, A. Zande, W. Chen, Y. Li et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9(9), 676–681 (2014). https://doi.org/10.1038/nnano.2014.150
R.S. Singh, V. Nalla, W. Chen, W. Ji, A.T.S. Wee, Photoresponse in epitaxial graphene with asymmetric metal contacts. Appl. Phys. Lett. 100, 093116 (2012). https://doi.org/10.1063/1.3692107
C.G. Lu, L. An, Q. Fu, J. Liu, H. Zhang, J. Murduck, Schottky diodes from asymmetric metal-nanotube contacts. Appl. Phys. Lett. 88, 133501 (2006). https://doi.org/10.1063/1.2190707
H. Chen, K. Liu, X. Chen, Z. Zhang, M. Fan, M. Jiang, X. Xie, H. Zhao, D.Z. Shen, Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. J. Mater. Chem. C 2(45), 9689–9694 (2014). https://doi.org/10.1039/C4TC01839G
T.J. Yoo, Y.J. Kim, S.K. Lee, C.G. Kang, K.E. Chang, H.J. Hwang, N. Revannath, B.H. Lee, Zero-bias operation of CVD graphene photodetector with asymmetric metal contacts. ACS Photonics 5(2), 365–370 (2018). https://doi.org/10.1021/acsphotonics.7b01405
A.D. Bartolomeo, A. Grillo, F. Urban, L. Iemmo, F. Giubileo et al., Asymmetric Schottky contacts in bilayer MoS2 field effect transistors. Adv. Funct. Mater. 28(28), 1800657 (2018). https://doi.org/10.1002/adfm.201800657
Z. Kang, Y.N. Ma, X.Y. Tan, M. Zhu, Z. Zheng et al., MXene–silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3(9), 1700165 (2017). https://doi.org/10.1002/aelm.201700165
K. Hantanasirisakul, Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv. Mater. 30(52), 1804779 (2018). https://doi.org/10.1002/adma.201804779
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. Rummeli, Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. (2019). https://doi.org/10.1039/C8CS00324F
Z.W. Wang, H. Kim, H.N. Alshareef, Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 30(15), 1706656 (2018). https://doi.org/10.1002/adma.201706656
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem. Mater. 27(15), 5314–5323 (2015). https://doi.org/10.1021/acs.chemmater.5b01623
C. Xu, L.B. Wang, Z.B. Liu, L. Chen, J.K. Guo et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015). https://doi.org/10.1038/NMAT4374
D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. Loh, Direct synthesis of large-area 2D Mo2C on In Situ Grown Graphene. Adv. Mater. 29(35), 1700072 (2017). https://doi.org/10.1002/adma.201700072
J.B. Qiao, Y. Gong, W.J. Zuo, Y.C. Wei, D.L. Ma et al., One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys. Rev. B 95(20), 201403(R) (2017). https://doi.org/10.1103/PhysRevB.95.201403
M.Q. Zeng, Y.X. Chen, J.X. Lia, H.F. Xue, R.G. Mendes, J.X. Liu, T. Zhang, M.H. Rümmeli, L. Fu, 2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy 33, 356–362 (2017). https://doi.org/10.1016/j.nanoen.2017.01.057
Z.X. Wang, V. Kochat, P. Pandey, S. Kashyap, S. Chattopadhyay et al., Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv. Mater. 29(29), 1700364 (2017). https://doi.org/10.1002/adma.201700364
J. Jeon, Y. Park, S. Choi, J. Lee, S. Lim et al., Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide. ACS Nano 12(1), 338–346 (2018). https://doi.org/10.1021/acsnano.7b06417
A.A. Rouse, J.B. Bernhard, E.D. Sosa, D.E. Golden, Field emission from molybdenum carbide. Appl. Phys. Lett. 76, 2583 (2000). https://doi.org/10.1063/1.126415
M. Bagge-Hansen, R.A. Outlaw, P. Miraldo, M.Y. Zhu, K. Hou, N.D. Theodore, X. Zhao, D.M. Manos, Field emission from Mo2C coated carbon nanosheets. J. Appl. Phys. 103, 014311 (2008). https://doi.org/10.1063/1.2829810
C. Xu, S. Song, Z.B. Liu, L. Chen, L.B. Wang et al., Strongly coupled high-quality graphene/2D superconducting Mo2C vertical heterostructures with aligned orientation. ACS Nano 11(6), 5906–5914 (2017). https://doi.org/10.1021/acsnano.7b01638
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP. Z. Krist. Cryst. Mater. 220(5), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
Y.F. Cheng, R.S. Meng, C.J. Tan, X.Q. Chen, J. Xiao, Selective gas adsorption and I-V response of monolayer boron phosphide introduced by dopants: a first-principle study. Appl. Surf. Sci. 427, 176–188 (2017). https://doi.org/10.1016/j.apsusc.2017.08.187
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput. Chem. 27(15), 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
D.C. Sorescu, B.M. Rice, Theoretical predictions of energetic molecular crystals at ambient and hydrostatic compression conditions using dispersion corrections to conventional density functionals (DFT-D). J. Phys. Chem. C 114(14), 6734–6748 (2010). https://doi.org/10.1021/jp100379a
D. Saha, S. Mahapatra, Atomistic modeling of the metallic-to-semiconducting phase boundaries in monolayer MoS2. Appl. Phys. Lett. 108, 253106 (2016). https://doi.org/10.1063/1.4954257
D. Geng, X. Zhao, L. Li, P. Song, B. Tian et al., Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 4, 011012 (2016). https://doi.org/10.1088/2053-1583/aa51b7
C.G. Lee, H.G. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010). https://doi.org/10.1021/nn1003937
O. Ochedowski, K. Marinov, N. Scheuschner, A. Poloczek, B.K. Bussmann, J. Maultzsch, M. Schleberger, Effect of contaminations and surface preparation on the work function of single layer MoS2. Beilstein J. Nanotechnol. 5, 291–297 (2014). https://doi.org/10.3762/bjnano.5.32
W. Jing, N. Ding, L. Li, F. Jiang, X. Xiong, N. Liu, T. Zhai, Y. Gao, Ag nanoparticles modified large area monolayer MoS2 phototransistors with high responsivity. Opt. Express 25(13), 14565–14574 (2017). https://doi.org/10.1364/OE.25.014565
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6(1), 74–80 (2011). https://doi.org/10.1021/nn2024557