Comprehensive Understanding of Closed Pores in Hard Carbon Anode for High-Energy Sodium-Ion Batteries
Corresponding Author: Hongshuai Hou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 325
Abstract
Hard carbon (HC) is considered the most promising anode material for sodium-ion batteries (SIBs) due to its high cost-effectiveness and outstanding overall performance. However, the amorphous and intricate microstructure of HC poses significant challenges in elucidating the structure–performance relationship, which has led to persistent misinterpretations regarding the intrinsic characteristics of closed pores. An irrational construction methodology of closed pores inevitably results in diminished plateau capacity, which severely restricts the practical application of HC in high-energy-density scenarios. This review provides a systematic exposition of the conceptual framework and origination mechanisms of closed pores, offering critical insights into their structural characteristics and formation pathways. Subsequently, by correlating lattice parameters with defect configurations, the structure–performance relationships governing desolvation kinetics and sodium storage behavior are rigorously established. Furthermore, pioneering advancements in structural engineering are critically synthesized to establish fundamental design principles for the rational modulation of closed pores in HC. It is imperative to emphasize that adopting a molecular-level perspective, coupled with a synergistic kinetic/thermodynamic approach, is critical for understanding and controlling the transformation process from open pores to closed pores. These innovative perspectives are strategically designed to accelerate the commercialization of HC, thereby catalyzing the sustainable and high-efficiency development of SIBs.
Highlights:
1 This review summarizes the latest advances in closed pore structures within hard carbon anodes for sodium-ion batteries, establishing a conceptual framework and origination mechanisms under a unified perspective of active sites.
2 The influence of closed pore characteristics on sodium storage behavior is systematically explored, with design principles proposed for directional regulation of pore structures.
3 Future research directions are highlighted, integrating advanced modification strategies with molecular-level design and dynamic/thermodynamic hybrid analyses for performance optimization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Eftekhari, D.-W. Kim, Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power. Sour. 395, 336–348 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.089
- Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- J. Lu, Y. Chen, Y. Lei, P. Jaumaux, H. Tian et al., Quasi-solid gel electrolytes for alkali metal battery applications. Nano-Micro Lett. 17(1), 194 (2025). https://doi.org/10.1007/s40820-024-01632-w
- L. Li, Q. Chen, M. Jiang, T. Ning, L. Tan et al., Uncovering mechanism behind tungsten bulk/grain-boundary modification of Ni-rich cathode. Energy Storage Materials 75104016 (2025). https://doi.org/10.1016/j.ensm.2025.104016
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- Y. Wang, M. Li, Y. Zhang, N. Zhang, Hard carbon for sodium storage: mechanism and performance optimization. Nano Res. 17(7), 6038–6057 (2024). https://doi.org/10.1007/s12274-024-6546-0
- D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271 (2000). https://doi.org/10.1149/1.1393348
- B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- N. Hong, S. Zhang, J. Li, H. Wang, J. Huang et al., Full-scale regulation enabled high-performance sodium O3-Type layered cathodes. Angew. Chem. Int. Ed. 64(17), e202423479 (2025). https://doi.org/10.1002/anie.202423479
- N. Wu, L.N. University, J. Shen, L.N. University, et al., Synergistic bimetallic interaction and regulated void size in isocubanite CuFe2S3 enables UltraFast and durable sodium storage. ACS Sustainable Chem. Eng. 13(15), 5546–5556 (2025). https://doi.org/10.1021/acssuschemeng.4c10328
- N. Hong, J. Li, H. Wang, X. Hu, B. Zhao et al., Regulating phase transition and restraining Fe distortion at high potential window via rare earth metal incorporation on O3-Type layered cathodes. Adv. Funct. Mater. 34(37), 2402398 (2024). https://doi.org/10.1002/adfm.202402398
- H. He, D. Sun, Y. Tang, H. Wang, M. Shao, Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 23, 233–251 (2019). https://doi.org/10.1016/j.ensm.2019.05.008
- Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao et al., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013). https://doi.org/10.1038/ncomms3365
- D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803 (2001). https://doi.org/10.1149/1.1379565
- Y. Liu, B.V. Merinov, W.A. Goddard 3rd., Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. U.S.A. 113(14), 3735–3739 (2016). https://doi.org/10.1073/pnas.1602473113
- Y. Li, Y. Lu, P. Adelhelm, M.-M. Titirici, Y.-S. Hu, Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48(17), 4655–4687 (2019). https://doi.org/10.1039/c9cs00162j
- Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35(31), e2212186 (2023). https://doi.org/10.1002/adma.202212186
- H. Au, H. Alptekin, A.C.S. Jensen, E. Olsson, C.A. O’Keefe et al., A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 13(10), 3469–3479 (2020). https://doi.org/10.1039/D0EE01363C
- D. Sun, B. Luo, H. Wang, Y. Tang, X. Ji et al., Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy 64, 103937 (2019). https://doi.org/10.1016/j.nanoen.2019.103937
- L. Xiao, H. Lu, Y. Fang, M.L. Sushko, Y. Cao et al., Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8(20), 1703238 (2018). https://doi.org/10.1002/aenm.201703238
- Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
- J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004–11015 (2013). https://doi.org/10.1021/nn404640c
- K. Wang, Y. Xu, Y. Li, V. Dravid, J. Wu et al., Sodium storage in hard carbon with curved graphene platelets as the basic structural units. J. Mater. Chem. A 7(7), 3327–3335 (2019). https://doi.org/10.1039/C8TA11510A
- S. Alvin, H.S. Cahyadi, J. Hwang, W. Chang, S.K. Kwak et al., Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10(20), 2000283 (2020). https://doi.org/10.1002/aenm.202000283
- S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
- P.-C. Tsai, S.-C. Chung, S.-K. Lin, A. Yamada, Ab initio study of sodium intercalation into disordered carbon. J. Mater. Chem. A 3(18), 9763–9768 (2015). https://doi.org/10.1039/c5ta01443c
- N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9(32), 1901351 (2019). https://doi.org/10.1002/aenm.201901351
- Y. Zeng, J. Yang, H. Yang, Y. Yang, J. Zhao, Bridging microstructure and sodium-ion storage mechanism in hard carbon for sodium ion batteries. ACS Energy Lett. 9(3), 1184–1191 (2024). https://doi.org/10.1021/acsenergylett.3c02751
- Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu et al., Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027
- Y. Aniskevich, J.H. Yu, J.-Y. Kim, S. Komaba, S.-T. Myung, Tracking sodium cluster dynamics in hard carbon with a low specific surface area for sodium-ion batteries. Adv. Energy Mater. 14(18), 2304300 (2024). https://doi.org/10.1002/aenm.202304300
- Z.L. Xu, G. Yoon, K.Y. Park, H. Park, O. Tamwattana et al., Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat. Commun. 10(1), 2598 (2019). https://doi.org/10.1038/s41467-019-10551-z
- G. Åvall, G.A. Ferrero, K.A. Janßen, M. Exner, Y. Son et al., In situ pore formation in graphite through solvent co-intercalation: a new model for the formation of ternary graphite intercalation compounds bridging batteries and supercapacitors. Adv. Energy Mater. 13(38), 2301944 (2023). https://doi.org/10.1002/aenm.202301944
- T. Tang, W. Zhu, P. Lan, X. Lan, H. Xie et al., Macro-micro structure engineering of bio-spore-derived hard carbon as an efficient anode in sodium ion batteries. Chem. Eng. J. 475, 146212 (2023). https://doi.org/10.1016/j.cej.2023.146212
- D. Igarashi, Y. Tanaka, K. Kubota, R. Tatara, H. Maejima et al., New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries. Adv. Energy Mater. 13(47), 2302647 (2023). https://doi.org/10.1002/aenm.202302647
- J. Peng, H. Wang, X. Shi, H.J. Fan, Ultrahigh Plateau-capacity sodium storage by plugging open pores. Adv. Mater. (2024). https://doi.org/10.1002/adma.202410326
- X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong et al., Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 4(6), 1133–1150 (2022). https://doi.org/10.1002/cey2.196
- N. Sun, J. Qiu, B. Xu, Understanding of sodium storage mechanism in hard carbons: ongoing development under debate. Adv. Energy Mater. 12(27), 2200715 (2022). https://doi.org/10.1002/aenm.202200715
- D.A. Stevens, J.R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 147(12), 4428 (2000). https://doi.org/10.1149/1.1394081
- R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. A 209(1097), 196–218 (1951). https://doi.org/10.1098/rspa.1951.0197
- X. Feng, Y. Li, Y. Li, M. Liu, L. Zheng et al., Unlocking the local structure of hard carbon to grasp sodium-ion diffusion behavior for advanced sodium-ion batteries. Energy Environ. Sci. 17(4), 1387–1396 (2024). https://doi.org/10.1039/d3ee03347c
- E. Olsson, J. Cottom, H. Au, Z. Guo, A.C.S. Jensen et al., Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 30(17), 1908209 (2020). https://doi.org/10.1002/adfm.201908209
- E. Olsson, J. Cottom, Q. Cai, Defects in hard carbon: where are they located and how does the location affect alkaline metal storage? Small 17(18), 2007652 (2021). https://doi.org/10.1002/smll.202007652
- C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet et al., Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018). https://doi.org/10.1016/j.nanoen.2017.12.013
- X. Wu, B. Song, P.-H. Chien, S.M. Everett, K. Zhao et al., Structural evolution and transition dynamics in lithium ion battery under fast charging: an operando neutron diffraction investigation. Adv. Sci. 8(21), 2102318 (2021). https://doi.org/10.1002/advs.202102318
- J. Xue, H. Zhang, J. Chen, K. Fang, Y. Chen et al., Unlocking the Na-storage behavior in hard carbon anode by mass spectrometry. Nano Lett. 24(32), 9839–9845 (2024). https://doi.org/10.1021/acs.nanolett.4c01620
- J. Liu, Y. You, L. Huang, Q. Zheng, Z. Sun et al., Precisely tunable instantaneous carbon rearrangement enables low-working-potential hard carbon toward sodium-ion batteries with enhanced energy density. Adv. Mater. 36(44), 2407369 (2024). https://doi.org/10.1002/adma.202407369
- B. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.-M. Tarascon, Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6(1), 1501588 (2016). https://doi.org/10.1002/aenm.201501588
- P. Bai, Y. He, X. Zou, X. Zhao, P. Xiong et al., Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 8(15), 1703217 (2018). https://doi.org/10.1002/aenm.201703217
- Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6(18), 1600659 (2016). https://doi.org/10.1002/aenm.201600659
- G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi et al., Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power. Sour. 318, 41–48 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.013
- Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9(48), 1902852 (2019). https://doi.org/10.1002/aenm.201902852
- R. Morita, K. Gotoh, M. Fukunishi, K. Kubota, S. Komaba et al., Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. J. Mater. Chem. A 4(34), 13183–13193 (2016). https://doi.org/10.1039/c6ta04273b
- K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba et al., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power. Sources 225, 137–140 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.025
- J.M. Stratford, P.K. Allan, O. Pecher, P.A. Chater, C.P. Grey, Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52(84), 12430–12433 (2016). https://doi.org/10.1039/C6CC06990H
- Z. Wang, X. Feng, Y. Bai, H. Yang, R. Dong et al., Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 11(11), 2003854 (2021). https://doi.org/10.1002/aenm.202003854
- Y. Morikawa, S.-I. Nishimura, R.-I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10(3), 1903176 (2020). https://doi.org/10.1002/aenm.201903176
- S. Alvin, D. Yoon, C. Chandra, H.S. Cahyadi, J.-H. Park et al., Revealing sodium ion storage mechanism in hard carbon. Carbon 145, 67–81 (2019). https://doi.org/10.1016/j.carbon.2018.12.112
- K.-Y. Zhang, H.-H. Liu, J.-M. Cao, J.-L. Yang, M.-Y. Su et al., Microstructure reconstruction via confined carbonization achieves highly available sodium ion diffusion channels in hard carbon. Energy Storage Mater. 73, 103839 (2024). https://doi.org/10.1016/j.ensm.2024.103839
- X. Chen, J. Tian, P. Li, Y. Fang, Y. Fang et al., An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 12(24), 2200886 (2022). https://doi.org/10.1002/aenm.202200886
- J. Zhao, X.-X. He, W.-H. Lai, Z. Yang, X.-H. Liu et al., Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy Mater. 13(18), 2300444 (2023). https://doi.org/10.1002/aenm.202300444
- Q. Li, X. Liu, Y. Tao, J. Huang, J. Zhang et al., Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 9(8), nwac084 (2022). https://doi.org/10.1093/nsr/nwac084
- K.-J. Chen, D.G. Madden, T. Pham, K.A. Forrest, A. Kumar et al., Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angew. Chem. Int. Ed. 55(35), 10268–10272 (2016). https://doi.org/10.1002/anie.201603934
- Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang et al., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15(3), 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
- Z. Lu, C. Geng, H. Yang, P. He, S. Wu et al., Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. U.S.A. 119(40), e2210203119 (2022). https://doi.org/10.1073/pnas.2210203119
- J. Zheng, C. Guan, H. Li, D. Wang, Y. Lai et al., Unveiling the microscopic origin of irreversible capacity loss of hard carbon for sodium-ion batteries. Adv. Energy Mater. 14(15), 2303584 (2024). https://doi.org/10.1002/aenm.202303584
- B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4(17), 6472–6478 (2016). https://doi.org/10.1039/c6ta00950f
- A. Kamiyama, K. Kubota, T. Nakano, S. Fujimura, S. Shiraishi et al., High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery. ACS Appl. Energy Mater. 3(1), 135–140 (2020). https://doi.org/10.1021/acsaem.9b01972
- A. Kamiyama, K. Kubota, D. Igarashi, Y. Youn, Y. Tateyama et al., MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 60(10), 5114–5120 (2021). https://doi.org/10.1002/anie.202013951
- S. You, Q. Zhang, J. Liu, Q. Deng, Z. Sun et al., Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy Environ. Sci. 17(21), 8189–8197 (2024). https://doi.org/10.1039/D4EE02519A
- C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015). https://doi.org/10.1021/acs.nanolett.5b01969
- Y. Jin, S. Sun, M. Ou, Y. Liu, C. Fan et al., High-performance hard carbon anode: tunable local structures and sodium storage mechanism. ACS Appl. Energy Mater. 1(5), 2295–2305 (2018). https://doi.org/10.1021/acsaem.8b00354
- Y. Huang, X. Zhong, X. Hu, Y. Li, K. Wang et al., Rationally designing closed pore structure by carbon dots to evoke sodium storage sites of hard carbon in low-potential region. Adv. Funct. Mater. 34(4), 2308392 (2024). https://doi.org/10.1002/adfm.202308392
- C. Bommier, X. Ji, P.A. Greaney, Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations. Chem. Mater. 31(3), 658–677 (2019). https://doi.org/10.1021/acs.chemmater.8b01390
- A. Wang, W. Hong, L. Li, R. Guo, Y. Xiang et al., Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Mater. 44, 145–155 (2022). https://doi.org/10.1016/j.ensm.2021.10.019
- J.M. Stratford, A.K. Kleppe, D.S. Keeble, P.A. Chater, S.S. Meysami et al., Correlating local structure and sodium storage in hard carbon anodes: insights from pair distribution function analysis and solid-state NMR. J. Am. Chem. Soc. 143(35), 14274–14286 (2021). https://doi.org/10.1021/jacs.1c06058
- H. Zhang, S. Zhao, F. Huang, A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. J. Mater. Chem. A 9(48), 27140–27169 (2021). https://doi.org/10.1039/d1ta07962j
- D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li et al., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8(17), 1703268 (2018). https://doi.org/10.1002/aenm.201703268
- K.J. Putman, M.R. Rowles, N.A. Marks, C. de Tomas, J.W. Martin et al., Defining graphenic crystallites in disordered carbon: Moving beyond the platelet model. Carbon 209, 117965 (2023). https://doi.org/10.1016/j.carbon.2023.03.040
- X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu et al., Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040
- F.G. Emmerich, Evolution with heat treatment of crystallinity in carbons. Carbon 33(12), 1709–1715 (1995). https://doi.org/10.1016/0008-6223(95)00127-8
- A.W. Zia, S. Rasul, M. Asim, Y.A. Samad, R.A. Shakoor et al., The potential of plasma-derived hard carbon for sodium-ion batteries. J. Energy Storage 84, 110844 (2024). https://doi.org/10.1016/j.est.2024.110844
- J. Li, C. Liu, X. Hu, J. Cai, H. Lian et al., Local oxygen reconstruction enables dual-ion active sites in carbon cathode for high energy density sodium-ion capacitors. Adv. Funct. Mater. 35(11), 2417059 (2025). https://doi.org/10.1002/adfm.202417059
- Y. Ding, Z.-A. Qiao, Carbon surface chemistry: new insight into the old story. Adv. Mater. 34(42), 2206025 (2022). https://doi.org/10.1002/adma.202206025
- J. Zhu, S. Mu, Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
- V.L. Deringer, C. Merlet, Y. Hu, T.H. Lee, J.A. Kattirtzi et al., Towards an atomistic understanding of disordered carbon electrode materials. Chem. Commun. 54(47), 5988–5991 (2018). https://doi.org/10.1039/c8cc01388h
- J. Choi, M.E. Lee, S. Lee, H.-J. Jin, Y.S. Yun, Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries. ACS Appl. Energy Mater. 2(2), 1185–1191 (2019). https://doi.org/10.1021/acsaem.8b01734
- X.-X. He, W.-H. Lai, Y. Liang, J.-H. Zhao, Z. Yang et al., Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon. Adv. Mater. 35(40), e2302613 (2023). https://doi.org/10.1002/adma.202302613
- Q. Hu, L. Xu, G. Liu, J. Hu, X. Ji et al., Understanding the sodium storage behavior of closed pores/carbonyl groups in hard carbon. ACS Nano 18(32), 21491–21503 (2024). https://doi.org/10.1021/acsnano.4c06281
- E.R. Buiel, A.E. George, J.R. Dahn, Model of micropore closure in hard carbon prepared from sucrose. Carbon 37(9), 1399–1407 (1999). https://doi.org/10.1016/S0008-6223(98)00335-2
- Y. Zhang, S.-W. Zhang, Y. Chu, J. Zhang, H. Xue et al., Redefining closed pores in carbons by solvation structures for enhanced sodium storage. Nat. Commun. 16(1), 3634 (2025). https://doi.org/10.1038/s41467-025-59022-8
- N. Lan, Y. Shen, J. Li, H. He, C. Zhang, Cell-shearing chemistry directed closed-pore regeneration in biomass-derived hard carbons for ultrafast sodium storage. Adv. Mater. 37(22), 2412989 (2025). https://doi.org/10.1002/adma.202412989
- N. LeGe, X.-X. He, Y.-X. Wang, Y. Lei, Y.-X. Yang et al., Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 16(12), 5688–5720 (2023). https://doi.org/10.1039/d3ee02202a
- A. Mehmood, G. Ali, B. Koyutürk, J. Pampel, K.Y. Chung et al., Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes. Energy Storage Mater. 28, 101–111 (2020). https://doi.org/10.1016/j.ensm.2020.02.023
- M. Yuan, B. Cao, H. Liu, C. Meng, J. Wu et al., Sodium storage mechanism of nongraphitic carbons: a general model and the function of accessible closed pores. Chem. Mater. 34(7), 3489–3500 (2022). https://doi.org/10.1021/acs.chemmater.2c00405
- L. Kitsu Iglesias, E.N. Antonio, T.D. Martinez, L. Zhang, Z. Zhuo et al., Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 13(44), 2302171 (2023). https://doi.org/10.1002/aenm.202302171
- H.G.T. Nguyen, J.C. Horn, M. Bleakney, D.W. Siderius, L. Espinal, Understanding material characteristics through signature traits from helium pycnometry. Langmuir 35(6), 2115–2122 (2019). https://doi.org/10.1021/acs.langmuir.8b03731
- T. Cai, Y. Wang, F. Zhao, Z. Ma, P. Kumar et al., Graphic, quantitation, visualization, standardization, digitization, and intelligence of electrolyte and electrolyte-electrode interface. Adv. Energy Mater. 14(25), 2400569 (2024). https://doi.org/10.1002/aenm.202400569
- Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), e2201207 (2022). https://doi.org/10.1002/advs.202201207
- S.-W. Zhang, W. Lv, C. Luo, C.-H. You, J. Zhang et al., Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 3, 18–23 (2016). https://doi.org/10.1016/j.ensm.2015.12.004
- J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/ low-temperature sodium-ion storage. Nano-Micro Lett. 13(1), 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
- J.-L. Xia, D. Yan, L.-P. Guo, X.-L. Dong, W.-C. Li et al., Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 32(21), 2000447 (2020). https://doi.org/10.1002/adma.202000447
- S. Wu, H. Peng, J. Xu, L. Huang, Y. Liu et al., Nitrogen/phosphorus Co-doped ultramicropores hard carbon spheres for rapid sodium storage. Carbon 218, 118756 (2024). https://doi.org/10.1016/j.carbon.2023.118756
- Z. Song, M. Di, X. Zhang, Z. Wang, S. Chen et al., Nanoconfined strategy optimizing hard carbon for robust sodium storage. Adv. Energy Mater. 14(43), 2401763 (2024). https://doi.org/10.1002/aenm.202401763
- Z. Lu, H. Yang, Y. Guo, H. Lin, P. Shan et al., Consummating ion desolvation in hard carbon anodes for reversible sodium storage. Nat. Commun. 15(1), 3497 (2024). https://doi.org/10.1038/s41467-024-47522-y
- K. Cui, R. Hou, H. Zhou, S. Guo, Electrolyte engineering of hard carbon for sodium-ion batteries: from mechanism analysis to design strategies. Adv. Funct. Mater. 35(16), 2419275 (2025). https://doi.org/10.1002/adfm.202419275
- X. Liu, Z. Liang, Y. Xiang, M. Lin, Q. Li et al., Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization. Adv. Mater. 33(50), 2005878 (2021). https://doi.org/10.1002/adma.202005878
- R. Alcántara, P. Lavela, G.F. Ortiz, J.L. Tirado, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-Stat. Lett. 8(4), A222 (2005). https://doi.org/10.1149/1.1870612
- K. Gotoh, 23Na solid-state NMR analyses for Na-ion batteries and materials. Batter. Supercaps 4(8), 1267–1278 (2021). https://doi.org/10.1002/batt.202000295
- R. Morita, K. Gotoh, K. Kubota, S. Komaba, K. Hashi et al., Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using 23Na nuclear magnetic resonance. Carbon 145, 712–715 (2019). https://doi.org/10.1016/j.carbon.2019.01.080
- A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013). https://doi.org/10.1038/nnano.2013.46
- L.J. Hardwick, P.W. Ruch, M. Hahn, W. Scheifele, R. Kötz et al., In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J. Phys. Chem. Solids 69(5–6), 1232–1237 (2008). https://doi.org/10.1016/j.jpcs.2007.10.017
- S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki et al., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
- F. Malz, H. Jancke, Validation of quantitative NMR. J. Pharm. Biomed. Anal. 38(5), 813–823 (2005). https://doi.org/10.1016/j.jpba.2005.01.043
- Y. Youn, B. Gao, A. Kamiyama, K. Kubota, S. Komaba et al., Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. NPJ Comput. Mater. 7, 48 (2021). https://doi.org/10.1038/s41524-021-00515-7
- H. Alptekin, H. Au, A.C. Jensen, E. Olsson, M. Goktas et al., Sodium storage mechanism investigations through structural changes in hard carbons. ACS Appl. Energy Mater. 3(10), 9918–9927 (2020). https://doi.org/10.1021/acsaem.0c01614
- Z. Liang, X. Fan, W. Zheng, D.J. Singh, Adsorption and formation of small Na clusters on pristine and double-vacancy graphene for anodes of Na-ion batteries. ACS Appl. Mater. Interfaces 9(20), 17076–17084 (2017). https://doi.org/10.1021/acsami.7b02972
- M. Gabrijelčič, B. Tratnik, G. Kapun, E. Tchernychova, N. Zabukovec Logar et al., Probing sodium structures and dynamics in hard carbon for Na-ion batteries using 23Na operando solid-state NMR spectroscopy. J. Mater. Chem. A 13(2), 1042–1056 (2025). https://doi.org/10.1039/D4TA07135B
- Y. Fan, Z. Zhang, Z. Wang, H. Yu, X. Kong et al., Radical footprinting and regularity revealing during the pyrolysis of technical lignins. Bioresour. Technol. 360, 127648 (2022). https://doi.org/10.1016/j.biortech.2022.127648
- Y. Chen, Y. Wang, S. Zhu, K. Fu, X. Han et al., Nanomanufacturing of graphene nanosheets through nano-hole opening and closing. Mater. Today 24, 26–32 (2019). https://doi.org/10.1016/j.mattod.2018.09.001
- J.R. Dahn, W. Xing, Y. Gao, The “falling cards model” for the structure of microporous carbons. Carbon 35(6), 825–830 (1997). https://doi.org/10.1016/S0008-6223(97)00037-7
- K. Kubota, S. Shimadzu, N. Yabuuchi, S. Tominaka, S. Shiraishi et al., Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 32(7), 2961–2977 (2020). https://doi.org/10.1021/acs.chemmater.9b05235
- Q. Meng, B. Chen, W. Jian, X. Zhang, S. Sun et al., Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin. J. Power. Sour. 581, 233475 (2023). https://doi.org/10.1016/j.jpowsour.2023.233475
- J. Liu, L. Huang, H. Wang, L. Sha, M. Liu et al., The origin, characterization, and precise design and regulation of diverse hard carbon structures for targeted applications in lithium-/ sodium-/ potassium-ion batteries. Electrochem. Energy Rev. 7(1), 34 (2024). https://doi.org/10.1007/s41918-024-00234-9
- W. Xing, J.S. Xue, T. Zheng, A. Gibaud, J.R. Dahn, Correlation between lithium intercalation capacity and microstructure in hard carbons. J. Electrochem. Soc. 143(11), 3482–3491 (1996). https://doi.org/10.1149/1.1837241
- D. Alvira, D. Antorán, J.J. Manyà, Plant-derived hard carbon as anode for sodium-ion batteries: a comprehensive review to guide interdisciplinary research. Chem. Eng. J. 447, 137468 (2022). https://doi.org/10.1016/j.cej.2022.137468
- F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu et al., Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6(14), 1600377 (2016). https://doi.org/10.1002/aenm.201600377
- B. Chen, Q. Meng, T. Wang, W. Zhang, X. Qiu, Cross-linking matters: Building hard carbons with enhanced sodium-ion storage plateau capacities. J. Power. Sour. 624, 235566 (2024). https://doi.org/10.1016/j.jpowsour.2024.235566
- L.-Q. Xu, B. Feng, Y. Su, Q. Hu, G.-G. Liu et al., Self-supporting, low-tortuosity hard carbon for superior sodium-ion batteries. Rare Met. 43(12), 6362–6372 (2024). https://doi.org/10.1007/s12598-024-02763-0
- S. Reiche, R. Blume, X.C. Zhao, D. Su, E. Kunkes et al., Reactivity of mesoporous carbon against water—an in situ XPS study. Carbon 77, 175–183 (2014). https://doi.org/10.1016/j.carbon.2014.05.019
- Y. Qian, J. Tian, L. Pan, N. Lin, O-targeted carbon hybrid orbital conversion to produce sp2-rich closed pores for sodium-storage hard carbon. Small Methods 9(3), e2401072 (2025). https://doi.org/10.1002/smtd.202401072
- R. Ma, Y. Chen, Q. Li, B. Zhang, F. Chen et al., Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage. Chem. Eng. J. 493, 152389 (2024). https://doi.org/10.1016/j.cej.2024.152389
- B. Wang, Y. Yao, W. Wang, Y. Xu, Y. Wan et al., Resolution of the reciprocity between radical species from precursor and closed pore formation in hard carbon for sodium storage. J. Colloid Interface Sci. 664, 681–690 (2024). https://doi.org/10.1016/j.jcis.2024.03.068
- Y. Chen, H. Sun, X.-X. He, Q. Chen, J.-H. Zhao et al., Pre-oxidation strategy transforming waste foam to hard carbon anodes for boosting sodium storage performance. Small 20(12), e2307132 (2024). https://doi.org/10.1002/smll.202307132
- B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti et al., Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7), 813–828 (2010). https://doi.org/10.1002/adma.200902812
- A. Nagmani, S. Tyagi, Puravankara, Insights into the diverse precursor-based micro-spherical hard carbons as anode materials for sodium–ion and potassium–ion batteries. Mater. Adv. 3(2), 810–836 (2022). https://doi.org/10.1039/D1MA00731A
- S. Sharma, V. Manchala, R. Gopalan, T.N. Rao, B. Das, Quasi-diffusion controlled high rate sodium-ion storage performance of flame pyrolysis derived spherical hard carbon. Carbon 226, 119158 (2024). https://doi.org/10.1016/j.carbon.2024.119158
- L. Guo, C. Qiu, R. Yuan, X. Li, X. Li et al., Boosting molecular cross-linking in a phenolic resin for spherical hard carbon with enriched closed pores toward enhanced sodium storage ability. ACS Appl. Mater. Interfaces 16(21), 27419–27428 (2024). https://doi.org/10.1021/acsami.4c04101
- Z. Xu, J. Wang, Z. Guo, F. Xie, H. Liu et al., The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy Mater. 12(18), 2200208 (2022). https://doi.org/10.1002/aenm.202200208
- M.-X. Song, L.-J. Xie, J.-Y. Cheng, Z.-L. Yi, G. Song et al., Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries. J. Energy Chem. 66, 448–458 (2022). https://doi.org/10.1016/j.jechem.2021.08.050
- Y. Sun, T. Shen, Z. He, S. Wang, Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. J. Colloid Interface Sci. 678, 1142–1150 (2025). https://doi.org/10.1016/j.jcis.2024.09.191
- H. Zhou, N. Sun, J. Yu, R. Ali Soomro, S. Zhang et al., Microstructure regulation of resin-based hard carbons via esterification cross-linking for high-performance sodium-ion batteries. Inorg. Chem. Front. 10(8), 2404–2413 (2023). https://doi.org/10.1039/D3QI00052D
- Y. Qiu, G. Jiang, Y. Su, X. Zhang, Y. Du et al., Hybrid hard carbon framework derived from polystyrene bearing distinct molecular crosslinking for enhanced sodium storage. Carbon Energy 6(7), e479 (2024). https://doi.org/10.1002/cey2.479
- J. Lin, Q. Zhou, Z. Liao, Y. Chen, Y. Liu et al., Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 63(39), e202409906 (2024). https://doi.org/10.1002/anie.202409906
- C. Nita, B. Zhang, J. Dentzer, C. Matei Ghimbeu, Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. J. Energy Chem. 58, 207–218 (2021). https://doi.org/10.1016/j.jechem.2020.08.065
- L. Shang, R. Yuan, H. Liu, X. Li, B. Zhao et al., Precursor screening of fruit shell derived hard carbons for low-potential sodium storage: a low lignin content supports the formation of closed pores. Carbon 223, 119038 (2024). https://doi.org/10.1016/j.carbon.2024.119038
- X. Dou, I. Hasa, M. Hekmatfar, T. Diemant, R.J. Behm et al., Pectin, hemicellulose, or lignin? impact of the biowaste source on the performance of hard carbons for sodium-ion batteries. Chemsuschem 10(12), 2668–2676 (2017). https://doi.org/10.1002/cssc.201700628
- J. Conder, C. Vaulot, C. Marino, C. Villevieille, C.M. Ghimbeu, Chitin and chitosan: structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Appl. Energy Mater. 2(7), 4841–4852 (2019). https://doi.org/10.1021/acsaem.9b00545
- M. Dahbi, M. Kiso, K. Kubota, T. Horiba, T. Chafik et al., Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A 5(20), 9917–9928 (2017). https://doi.org/10.1039/c7ta01394a
- C. Wu, Y. Yang, Y. Zhang, H. Xu, W. Huang et al., Industrial-scale hard carbon designed to regulate electrochemical polarization for fast sodium storage. Angew. Chem. Int. Ed. 63(31), e202406889 (2024). https://doi.org/10.1002/anie.202406889
- A. Beda, J.-M. Le Meins, P.-L. Taberna, P. Simon, C. Matei Ghimbeu, Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries. Sustain. Mater. Technol. 26, e00227 (2020). https://doi.org/10.1016/j.susmat.2020.e00227
- X. Zhao, H. Chen, F. Kong, Y. Zhang, S. Wang et al., Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem. Eng. J. 364, 226–243 (2019). https://doi.org/10.1016/j.cej.2019.01.159
- B.-H. Hou, Y.-Y. Wang, Q.-L. Ning, W.-H. Li, X.-T. Xi et al., Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 31(40), e1903125 (2019). https://doi.org/10.1002/adma.201903125
- D.J. Cosgrove, Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 25(5), 340–358 (2024). https://doi.org/10.1038/s41580-023-00691-y
- Y. Feng, L. Tao, Y. He, Q. Jin, C. Kuai et al., Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. J. Mater. Chem. A 7(47), 26954–26965 (2019). https://doi.org/10.1039/c9ta09124f
- Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14(1), 6024 (2023). https://doi.org/10.1038/s41467-023-39637-5
- Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji et al., Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Adv. Mater. 36(26), 2401249 (2024). https://doi.org/10.1002/adma.202401249
- T.K. Kumaresan, S.A. Masilamani, K. Raman, S.Z. Karazhanov, R. Subashchandrabose, High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites. Electrochim. Acta 368, 137574 (2021). https://doi.org/10.1016/j.electacta.2020.137574
- Z. Zheng, S. Hu, W. Yin, J. Peng, R. Wang et al., CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 14(3), 2303064 (2024). https://doi.org/10.1002/aenm.202303064
- W. Li, J. Li, B.W. Biney, Y. Yan, X. Lu et al., Innovative synthesis and sodium storage enhancement of closed-pore hard carbon for sodium-ion batteries. Energy Storage Mater. 74, 103867 (2025). https://doi.org/10.1016/j.ensm.2024.103867
- H. Wang, H. Niu, K. Shu, L. Sun, Y. Wang et al., Regulating the “core-shell” microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode. J. Mater. Sci. Technol. 209, 161–170 (2025). https://doi.org/10.1016/j.jmst.2024.05.009
- N. LeGe, Y.-H. Zhang, W.-H. Lai, X.-X. He, Y.-X. Wang et al., Potassium escaping balances the degree of graphitization and pore channel structure in hard carbon to boost plateau sodium storage capacity. Chem. Sci. 16(3), 1179–1188 (2025). https://doi.org/10.1039/D4SC04584J
- K. Wang, F. Sun, H. Wang, D. Wu, Y. Chao et al., Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 32(34), 2203725 (2022). https://doi.org/10.1002/adfm.202203725
- W.-J. Ji, Z.-L. Yi, M.-X. Song, X.-Q. Guo, Y.-L. Wang et al., Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity. J. Energy Chem. 94, 551–559 (2024). https://doi.org/10.1016/j.jechem.2024.02.048
- Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali et al., Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18(2), 393–415 (2020). https://doi.org/10.1007/s10311-019-00955-0
- C. Wu, W. Huang, Y. Zhang, Q. Chen, L. Li et al., Revisiting the critical role of metallic ash elements in the development of hard carbon for advancing sodium-ion battery applications. eScience 5(3), 100371 (2025). https://doi.org/10.1016/j.esci.2025.100371
- R.D. Hunter, J. Ramírez-Rico, Z. Schnepp, Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 10(9), 4489–4516 (2022). https://doi.org/10.1039/d1ta09654k
- Z.-L. Yu, S. Xin, Y. You, L. Yu, Y. Lin et al., Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 138(45), 14915–14922 (2016). https://doi.org/10.1021/jacs.6b06673
- L. Ji, Y. Zhao, X. Qi, Y. Li, Z. Wei et al., Metal chloride-induced hydrogen transfer enables efficient conversion of aromatic hydrocarbons for sodium storage. Adv. Funct. Mater. 34(48), 2408242 (2024). https://doi.org/10.1002/adfm.202408242
- Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng et al., Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 35(26), 2211461 (2023). https://doi.org/10.1002/adma.202211461
- D. Qiu, W. Zhao, B. Zhang, M.T. Ahsan, Y. Wang et al., Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy Mater. 14(20), 2400002 (2024). https://doi.org/10.1002/aenm.202400002
- C. Qiu, A. Li, D. Qiu, Y. Wu, Z. Jiang et al., One-step construction of closed pores enabling high plateau capacity hard carbon anodes for sodium-ion batteries: closed-pore formation and energy storage mechanisms. ACS Nano 18(18), 11941–11954 (2024). https://doi.org/10.1021/acsnano.4c02046
- X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34(13), 2109282 (2022). https://doi.org/10.1002/adma.202109282
- M.-G. Cheng, L.-J. Xie, Z.-L. Yi, Y.-X. Mao, F.-Y. Su et al., Preparation of enriched closed-pores hard carbon for high-performance sodium-ion batteries by the poly(vinyl butyral) template method. ACS Appl. Energy Mater. 7(8), 3452–3461 (2024). https://doi.org/10.1021/acsaem.4c00331
- Q. Meng, Y. Lu, F. Ding, Q. Zhang, L. Chen et al., Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4(11), 2608–2612 (2019). https://doi.org/10.1021/acsenergylett.9b01900
- Q. Ren, Z. Shi, L. Yan, F. Zhang, L. Fan et al., High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. J. Mater. Chem. A 8(38), 19898–19907 (2020). https://doi.org/10.1039/d0ta04841k
- R. Guo, L. Li, B. Wang, Y. Xiang, G. Zou et al., Functionalized carbon dots for advanced batteries. Energy Storage Mater. 37, 8–39 (2021). https://doi.org/10.1016/j.ensm.2021.01.020
- L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
- Y. Zhang, Y. Ye, G. Zhang, J. Wang, K. Li et al., Oxidation anchoring strategy for the retention of nanostructures in high temperature carbonization process to enhance hard carbon sodium storage performance. Chem. Eng. J. 503, 158395 (2025). https://doi.org/10.1016/j.cej.2024.158395
- S. Li, Z. Luo, H. Tu, H. Zhang, W. Deng et al., N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 42, 679–686 (2021). https://doi.org/10.1016/j.ensm.2021.08.008
- H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12(26), 2200665 (2022). https://doi.org/10.1002/aenm.202200665
- Z. Ge, L. Xu, Y. Xu, J. Wu, Z. Geng et al., Multifunctional fluorinated carbon dots artificial interface layer coupled with in situ generated Zn2+ conductor interlayer enable ultra-stable Zn anode. Nano Energy 119, 109053 (2024). https://doi.org/10.1016/j.nanoen.2023.109053
- Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/ sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14(1), 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
- D. Sun, L. Zhao, P. Sun, K. Zhao, Y. Sun et al., Rationally regulating closed pore structures by pitch coating to boost sodium storage performance of hard carbon in low-voltage platforms. Adv. Funct. Mater. 34(40), 2403642 (2024). https://doi.org/10.1002/adfm.202403642
- S. Zhang, N. Sun, X. Li, R. Ali Soomro, B. Xu, Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage. Energy Storage Mater. 66, 103183 (2024). https://doi.org/10.1016/j.ensm.2024.103183
- Y. Kawabuchi, M. Kishino, S. Kawano, D.D. Whitehurst, I. Mochida, Carbon deposition from benzene and cyclohexane onto active carbon fiber to control its pore size. Langmuir 12(17), 4281–4285 (1996). https://doi.org/10.1021/la960292a
- J. Zheng, W. Liu, S. Li, Y. Lai, J. Li et al., Spatial confinement strategy modulated by kinetic diameters of gaseous molecules for sodium storage. Energy Storage Mater. 73, 103835 (2024). https://doi.org/10.1016/j.ensm.2024.103835
- X. Chen, N. Sawut, K. Chen, H. Li, J. Zhang et al., Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ. Sci. 16(9), 4041–4053 (2023). https://doi.org/10.1039/d3ee01154b
- L. Zhou, Y. Cui, P. Niu, L. Ge, R. Zheng et al., Biomass-derived hard carbon material for high-capacity sodium-ion battery anode through structure regulation. Carbon 231, 119733 (2025). https://doi.org/10.1016/j.carbon.2024.119733
- T. Gao, Y. Zhou, Y. Jiang, Z. Xue, Y. Ding, Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries. Diam. Relat. Mater. 150, 111737 (2024). https://doi.org/10.1016/j.diamond.2024.111737
- S. Alvin, D. Yoon, C. Chandra, R.F. Susanti, W. Chang et al., Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. J. Power Sour. 430, 157–168 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.013
- B. Wang, S. Zhang, X. Jia, F. Yuan, H. Sun et al., Tailoring closed pore structure in phenolic resin derived hard carbon enables excellent sodium ion storage. Chem. Eng. J. 499, 156126 (2024). https://doi.org/10.1016/j.cej.2024.156126
- Y. Yan, G. Chen, W. Liu, M. Qu, Z. Xie et al., Pre-carbonization for regulating sucrose-based hard carbon pore structure as high plateau capacity sodium-ion battery anode. J. Energy Storage 104, 114590 (2024). https://doi.org/10.1016/j.est.2024.114590
- J. Peng, H. Tan, Y. Tang, J. Yang, P. Liu et al., The induced formation and regulation of closed-pore structure for biomass hard carbon as anode in sodium-ion batteries. J. Energy Storage 101, 113864 (2024). https://doi.org/10.1016/j.est.2024.113864
- W. Deng, Y. Cao, G. Yuan, G. Liu, X. Zhang et al., Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode. ACS Appl. Mater. Interfaces 13(40), 47728–47739 (2021). https://doi.org/10.1021/acsami.1c15884
- L. Chen, L. Zhang, Y. Jiang, J. Zhao, F. Xu et al., Regulation of surface oxygen functional groups in starch-derived hard carbon via pre-oxidation: a strategy for enhanced sodium storage performance. Mater. Today Chem. 41, 102314 (2024). https://doi.org/10.1016/j.mtchem.2024.102314
- X. Li, S. Zhang, J. Tang, J. Yang, K. Wen et al., Structural design of biomass-derived hard carbon anode materials for superior sodium storage via increasing crystalline cellulose and closing the open pores. J. Mater. Chem. A 12(32), 21176–21189 (2024). https://doi.org/10.1039/d4ta03284e
- L. Lai, J. Li, Y. Deng, Z. Yu, L. Wei et al., Carbon and carbon/metal hybrid structures enabled by ultrafast heating methods. Small Struct. 3(11), 2200112 (2022). https://doi.org/10.1002/sstr.202200112
- Z. Song, Q. Du, J. Chen, J. Huang, Y. Chen et al., Joule heating for structure reconstruction of hard carbon with superior sodium ion storage performance. Chem. Eng. J. 496, 154103 (2024). https://doi.org/10.1016/j.cej.2024.154103
- M. Yuan, S. Yu, K. Wang, C. Mi, L. Shen, Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating. Solid State Ion. 414, 116622 (2024). https://doi.org/10.1016/j.ssi.2024.116622
- H. Xu, H. Song, M. Sun, Y. Zhang, X. Feng et al., Molecular-level precursor regulation strategy aids fast-charging hard carbon anodes for sodium-ion batteries. Nano Energy 137, 110824 (2025). https://doi.org/10.1016/j.nanoen.2025.110824
- Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink et al., Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30(14), 4536–4542 (2018). https://doi.org/10.1021/acs.chemmater.8b00645
- G. Ryoo, J. Shin, B.G. Kim, D.G. Lee, J.T. Han et al., Sub-minute carbonization of polymer/carbon nanotube films by microwave induction heating for ultrafast preparation of hard carbon anodes for sodium-ion batteries. Chem. Eng. J. 496, 154081 (2024). https://doi.org/10.1016/j.cej.2024.154081
- S. Nagmani, S. Manna, Puravankara, Hierarchically porous closed-pore hard carbon as a plateau-dominated high-performance anode for sodium-ion batteries. Chem. Commun. 60(22), 3071–3074 (2024). https://doi.org/10.1039/D4CC00025K
- P. Nagmani, S. Verma, Puravankara, Jute-fiber precursor-derived low-cost sustainable hard carbon with varying micro/mesoporosity and distinct storage mechanisms for sodium-ion and potassium-ion batteries. Langmuir 38(50), 15703–15713 (2022). https://doi.org/10.1021/acs.langmuir.2c02575
- H.-M. Xiao, H. Zheng, P. Yuan, J.-H. Luo, L.-L. Shen et al., Structural engineering of hard carbon through spark plasma sintering for enhanced sodium-ion storage. Rare Met. 43(9), 4274–4285 (2024). https://doi.org/10.1007/s12598-024-02716-7
- H.-S. Yang, M.-W. Park, K.-H. Kim, O.L. Li, T.-I. Jeon et al., Facile in situ synthesis of dual-heteroatom-doped high-rate capability carbon anode for rechargeable seawater-batteries. Carbon 189, 251–264 (2022). https://doi.org/10.1016/j.carbon.2021.12.066
- Y. Zhen, Y. Chen, F. Li, Z. Guo, Z. Hong et al., Ultrafast synthesis of hard carbon anodes for sodium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 118(42), e2111119118 (2021). https://doi.org/10.1073/pnas.2111119118
- C. Shen, C. Wang, T. Jin, X. Zhang, L. Jiao et al., Tailoring the surface chemistry of hard carbon towards high-efficiency sodium ion storage. Nanoscale 14(25), 8959–8966 (2022). https://doi.org/10.1039/D2NR00172A
- X. Wu, S. Wu, C. Wu, X. Zhang, Z. Jiang et al., Plasma-promoted surface regulation of a novel integrative carbon network for boosting the long-cycle capability of sodium-ion storage. Carbon 191, 112–121 (2022). https://doi.org/10.1016/j.carbon.2022.01.025
References
A. Eftekhari, D.-W. Kim, Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power. Sour. 395, 336–348 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.089
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi et al., Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
J. Lu, Y. Chen, Y. Lei, P. Jaumaux, H. Tian et al., Quasi-solid gel electrolytes for alkali metal battery applications. Nano-Micro Lett. 17(1), 194 (2025). https://doi.org/10.1007/s40820-024-01632-w
L. Li, Q. Chen, M. Jiang, T. Ning, L. Tan et al., Uncovering mechanism behind tungsten bulk/grain-boundary modification of Ni-rich cathode. Energy Storage Materials 75104016 (2025). https://doi.org/10.1016/j.ensm.2025.104016
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
Y. Wang, M. Li, Y. Zhang, N. Zhang, Hard carbon for sodium storage: mechanism and performance optimization. Nano Res. 17(7), 6038–6057 (2024). https://doi.org/10.1007/s12274-024-6546-0
D.A. Stevens, J.R. Dahn, High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 147(4), 1271 (2000). https://doi.org/10.1149/1.1393348
B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
N. Hong, S. Zhang, J. Li, H. Wang, J. Huang et al., Full-scale regulation enabled high-performance sodium O3-Type layered cathodes. Angew. Chem. Int. Ed. 64(17), e202423479 (2025). https://doi.org/10.1002/anie.202423479
N. Wu, L.N. University, J. Shen, L.N. University, et al., Synergistic bimetallic interaction and regulated void size in isocubanite CuFe2S3 enables UltraFast and durable sodium storage. ACS Sustainable Chem. Eng. 13(15), 5546–5556 (2025). https://doi.org/10.1021/acssuschemeng.4c10328
N. Hong, J. Li, H. Wang, X. Hu, B. Zhao et al., Regulating phase transition and restraining Fe distortion at high potential window via rare earth metal incorporation on O3-Type layered cathodes. Adv. Funct. Mater. 34(37), 2402398 (2024). https://doi.org/10.1002/adfm.202402398
H. He, D. Sun, Y. Tang, H. Wang, M. Shao, Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 23, 233–251 (2019). https://doi.org/10.1016/j.ensm.2019.05.008
Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao et al., A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 4, 2365 (2013). https://doi.org/10.1038/ncomms3365
D.A. Stevens, J.R. Dahn, The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 148(8), A803 (2001). https://doi.org/10.1149/1.1379565
Y. Liu, B.V. Merinov, W.A. Goddard 3rd., Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals. Proc. Natl. Acad. Sci. U.S.A. 113(14), 3735–3739 (2016). https://doi.org/10.1073/pnas.1602473113
Y. Li, Y. Lu, P. Adelhelm, M.-M. Titirici, Y.-S. Hu, Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48(17), 4655–4687 (2019). https://doi.org/10.1039/c9cs00162j
Y. Chu, J. Zhang, Y. Zhang, Q. Li, Y. Jia et al., Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 35(31), e2212186 (2023). https://doi.org/10.1002/adma.202212186
H. Au, H. Alptekin, A.C.S. Jensen, E. Olsson, C.A. O’Keefe et al., A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 13(10), 3469–3479 (2020). https://doi.org/10.1039/D0EE01363C
D. Sun, B. Luo, H. Wang, Y. Tang, X. Ji et al., Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy 64, 103937 (2019). https://doi.org/10.1016/j.nanoen.2019.103937
L. Xiao, H. Lu, Y. Fang, M.L. Sushko, Y. Cao et al., Low-defect and low-porosity hard carbon with high coulombic efficiency and high capacity for practical sodium ion battery anode. Adv. Energy Mater. 8(20), 1703238 (2018). https://doi.org/10.1002/aenm.201703238
Y. Cao, L. Xiao, M.L. Sushko, W. Wang, B. Schwenzer et al., Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 12(7), 3783–3787 (2012). https://doi.org/10.1021/nl3016957
J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004–11015 (2013). https://doi.org/10.1021/nn404640c
K. Wang, Y. Xu, Y. Li, V. Dravid, J. Wu et al., Sodium storage in hard carbon with curved graphene platelets as the basic structural units. J. Mater. Chem. A 7(7), 3327–3335 (2019). https://doi.org/10.1039/C8TA11510A
S. Alvin, H.S. Cahyadi, J. Hwang, W. Chang, S.K. Kwak et al., Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon. Adv. Energy Mater. 10(20), 2000283 (2020). https://doi.org/10.1002/aenm.202000283
S. Qiu, L. Xiao, M.L. Sushko, K.S. Han, Y. Shao et al., Manipulating adsorption–insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 7(17), 1700403 (2017). https://doi.org/10.1002/aenm.201700403
P.-C. Tsai, S.-C. Chung, S.-K. Lin, A. Yamada, Ab initio study of sodium intercalation into disordered carbon. J. Mater. Chem. A 3(18), 9763–9768 (2015). https://doi.org/10.1039/c5ta01443c
N. Sun, Z. Guan, Y. Liu, Y. Cao, Q. Zhu et al., Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy Mater. 9(32), 1901351 (2019). https://doi.org/10.1002/aenm.201901351
Y. Zeng, J. Yang, H. Yang, Y. Yang, J. Zhao, Bridging microstructure and sodium-ion storage mechanism in hard carbon for sodium ion batteries. ACS Energy Lett. 9(3), 1184–1191 (2024). https://doi.org/10.1021/acsenergylett.3c02751
Y. Yuan, Z. Chen, H. Yu, X. Zhang, T. Liu et al., Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Mater. 32, 65–90 (2020). https://doi.org/10.1016/j.ensm.2020.07.027
Y. Aniskevich, J.H. Yu, J.-Y. Kim, S. Komaba, S.-T. Myung, Tracking sodium cluster dynamics in hard carbon with a low specific surface area for sodium-ion batteries. Adv. Energy Mater. 14(18), 2304300 (2024). https://doi.org/10.1002/aenm.202304300
Z.L. Xu, G. Yoon, K.Y. Park, H. Park, O. Tamwattana et al., Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat. Commun. 10(1), 2598 (2019). https://doi.org/10.1038/s41467-019-10551-z
G. Åvall, G.A. Ferrero, K.A. Janßen, M. Exner, Y. Son et al., In situ pore formation in graphite through solvent co-intercalation: a new model for the formation of ternary graphite intercalation compounds bridging batteries and supercapacitors. Adv. Energy Mater. 13(38), 2301944 (2023). https://doi.org/10.1002/aenm.202301944
T. Tang, W. Zhu, P. Lan, X. Lan, H. Xie et al., Macro-micro structure engineering of bio-spore-derived hard carbon as an efficient anode in sodium ion batteries. Chem. Eng. J. 475, 146212 (2023). https://doi.org/10.1016/j.cej.2023.146212
D. Igarashi, Y. Tanaka, K. Kubota, R. Tatara, H. Maejima et al., New template synthesis of anomalously large capacity hard carbon for Na- and K-ion batteries. Adv. Energy Mater. 13(47), 2302647 (2023). https://doi.org/10.1002/aenm.202302647
J. Peng, H. Wang, X. Shi, H.J. Fan, Ultrahigh Plateau-capacity sodium storage by plugging open pores. Adv. Mater. (2024). https://doi.org/10.1002/adma.202410326
X. Chen, C. Liu, Y. Fang, X. Ai, F. Zhong et al., Understanding of the sodium storage mechanism in hard carbon anodes. Carbon Energy 4(6), 1133–1150 (2022). https://doi.org/10.1002/cey2.196
N. Sun, J. Qiu, B. Xu, Understanding of sodium storage mechanism in hard carbons: ongoing development under debate. Adv. Energy Mater. 12(27), 2200715 (2022). https://doi.org/10.1002/aenm.202200715
D.A. Stevens, J.R. Dahn, An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 147(12), 4428 (2000). https://doi.org/10.1149/1.1394081
R.E. Franklin, Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. A 209(1097), 196–218 (1951). https://doi.org/10.1098/rspa.1951.0197
X. Feng, Y. Li, Y. Li, M. Liu, L. Zheng et al., Unlocking the local structure of hard carbon to grasp sodium-ion diffusion behavior for advanced sodium-ion batteries. Energy Environ. Sci. 17(4), 1387–1396 (2024). https://doi.org/10.1039/d3ee03347c
E. Olsson, J. Cottom, H. Au, Z. Guo, A.C.S. Jensen et al., Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 30(17), 1908209 (2020). https://doi.org/10.1002/adfm.201908209
E. Olsson, J. Cottom, Q. Cai, Defects in hard carbon: where are they located and how does the location affect alkaline metal storage? Small 17(18), 2007652 (2021). https://doi.org/10.1002/smll.202007652
C. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet et al., Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects. Nano Energy 44, 327–335 (2018). https://doi.org/10.1016/j.nanoen.2017.12.013
X. Wu, B. Song, P.-H. Chien, S.M. Everett, K. Zhao et al., Structural evolution and transition dynamics in lithium ion battery under fast charging: an operando neutron diffraction investigation. Adv. Sci. 8(21), 2102318 (2021). https://doi.org/10.1002/advs.202102318
J. Xue, H. Zhang, J. Chen, K. Fang, Y. Chen et al., Unlocking the Na-storage behavior in hard carbon anode by mass spectrometry. Nano Lett. 24(32), 9839–9845 (2024). https://doi.org/10.1021/acs.nanolett.4c01620
J. Liu, Y. You, L. Huang, Q. Zheng, Z. Sun et al., Precisely tunable instantaneous carbon rearrangement enables low-working-potential hard carbon toward sodium-ion batteries with enhanced energy density. Adv. Mater. 36(44), 2407369 (2024). https://doi.org/10.1002/adma.202407369
B. Zhang, C.M. Ghimbeu, C. Laberty, C. Vix-Guterl, J.-M. Tarascon, Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy Mater. 6(1), 1501588 (2016). https://doi.org/10.1002/aenm.201501588
P. Bai, Y. He, X. Zou, X. Zhao, P. Xiong et al., Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 8(15), 1703217 (2018). https://doi.org/10.1002/aenm.201703217
Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6(18), 1600659 (2016). https://doi.org/10.1002/aenm.201600659
G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi et al., Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power. Sour. 318, 41–48 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.013
Y. Li, Y. Lu, Q. Meng, A.C.S. Jensen, Q. Zhang et al., Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 9(48), 1902852 (2019). https://doi.org/10.1002/aenm.201902852
R. Morita, K. Gotoh, M. Fukunishi, K. Kubota, S. Komaba et al., Combination of solid state NMR and DFT calculation to elucidate the state of sodium in hard carbon electrodes. J. Mater. Chem. A 4(34), 13183–13193 (2016). https://doi.org/10.1039/c6ta04273b
K. Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba et al., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J. Power. Sources 225, 137–140 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.025
J.M. Stratford, P.K. Allan, O. Pecher, P.A. Chater, C.P. Grey, Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem. Commun. 52(84), 12430–12433 (2016). https://doi.org/10.1039/C6CC06990H
Z. Wang, X. Feng, Y. Bai, H. Yang, R. Dong et al., Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 11(11), 2003854 (2021). https://doi.org/10.1002/aenm.202003854
Y. Morikawa, S.-I. Nishimura, R.-I. Hashimoto, M. Ohnuma, A. Yamada, Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy Mater. 10(3), 1903176 (2020). https://doi.org/10.1002/aenm.201903176
S. Alvin, D. Yoon, C. Chandra, H.S. Cahyadi, J.-H. Park et al., Revealing sodium ion storage mechanism in hard carbon. Carbon 145, 67–81 (2019). https://doi.org/10.1016/j.carbon.2018.12.112
K.-Y. Zhang, H.-H. Liu, J.-M. Cao, J.-L. Yang, M.-Y. Su et al., Microstructure reconstruction via confined carbonization achieves highly available sodium ion diffusion channels in hard carbon. Energy Storage Mater. 73, 103839 (2024). https://doi.org/10.1016/j.ensm.2024.103839
X. Chen, J. Tian, P. Li, Y. Fang, Y. Fang et al., An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy Mater. 12(24), 2200886 (2022). https://doi.org/10.1002/aenm.202200886
J. Zhao, X.-X. He, W.-H. Lai, Z. Yang, X.-H. Liu et al., Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy Mater. 13(18), 2300444 (2023). https://doi.org/10.1002/aenm.202300444
Q. Li, X. Liu, Y. Tao, J. Huang, J. Zhang et al., Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 9(8), nwac084 (2022). https://doi.org/10.1093/nsr/nwac084
K.-J. Chen, D.G. Madden, T. Pham, K.A. Forrest, A. Kumar et al., Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2. Angew. Chem. Int. Ed. 55(35), 10268–10272 (2016). https://doi.org/10.1002/anie.201603934
Y. Zhou, M. Su, X. Yu, Y. Zhang, J.-G. Wang et al., Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 15(3), 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
Z. Lu, C. Geng, H. Yang, P. He, S. Wu et al., Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proc. Natl. Acad. Sci. U.S.A. 119(40), e2210203119 (2022). https://doi.org/10.1073/pnas.2210203119
J. Zheng, C. Guan, H. Li, D. Wang, Y. Lai et al., Unveiling the microscopic origin of irreversible capacity loss of hard carbon for sodium-ion batteries. Adv. Energy Mater. 14(15), 2303584 (2024). https://doi.org/10.1002/aenm.202303584
B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen et al., Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. J. Mater. Chem. A 4(17), 6472–6478 (2016). https://doi.org/10.1039/c6ta00950f
A. Kamiyama, K. Kubota, T. Nakano, S. Fujimura, S. Shiraishi et al., High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery. ACS Appl. Energy Mater. 3(1), 135–140 (2020). https://doi.org/10.1021/acsaem.9b01972
A. Kamiyama, K. Kubota, D. Igarashi, Y. Youn, Y. Tateyama et al., MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 60(10), 5114–5120 (2021). https://doi.org/10.1002/anie.202013951
S. You, Q. Zhang, J. Liu, Q. Deng, Z. Sun et al., Hard carbon with an opened pore structure for enhanced sodium storage performance. Energy Environ. Sci. 17(21), 8189–8197 (2024). https://doi.org/10.1039/D4EE02519A
C. Bommier, T.W. Surta, M. Dolgos, X. Ji, New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 15(9), 5888–5892 (2015). https://doi.org/10.1021/acs.nanolett.5b01969
Y. Jin, S. Sun, M. Ou, Y. Liu, C. Fan et al., High-performance hard carbon anode: tunable local structures and sodium storage mechanism. ACS Appl. Energy Mater. 1(5), 2295–2305 (2018). https://doi.org/10.1021/acsaem.8b00354
Y. Huang, X. Zhong, X. Hu, Y. Li, K. Wang et al., Rationally designing closed pore structure by carbon dots to evoke sodium storage sites of hard carbon in low-potential region. Adv. Funct. Mater. 34(4), 2308392 (2024). https://doi.org/10.1002/adfm.202308392
C. Bommier, X. Ji, P.A. Greaney, Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations. Chem. Mater. 31(3), 658–677 (2019). https://doi.org/10.1021/acs.chemmater.8b01390
A. Wang, W. Hong, L. Li, R. Guo, Y. Xiang et al., Hierarchical bismuth composite for fast lithium storage: Carbon dots tuned interfacial interaction. Energy Storage Mater. 44, 145–155 (2022). https://doi.org/10.1016/j.ensm.2021.10.019
J.M. Stratford, A.K. Kleppe, D.S. Keeble, P.A. Chater, S.S. Meysami et al., Correlating local structure and sodium storage in hard carbon anodes: insights from pair distribution function analysis and solid-state NMR. J. Am. Chem. Soc. 143(35), 14274–14286 (2021). https://doi.org/10.1021/jacs.1c06058
H. Zhang, S. Zhao, F. Huang, A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. J. Mater. Chem. A 9(48), 27140–27169 (2021). https://doi.org/10.1039/d1ta07962j
D. Saurel, B. Orayech, B. Xiao, D. Carriazo, X. Li et al., From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 8(17), 1703268 (2018). https://doi.org/10.1002/aenm.201703268
K.J. Putman, M.R. Rowles, N.A. Marks, C. de Tomas, J.W. Martin et al., Defining graphenic crystallites in disordered carbon: Moving beyond the platelet model. Carbon 209, 117965 (2023). https://doi.org/10.1016/j.carbon.2023.03.040
X. Dou, I. Hasa, D. Saurel, C. Vaalma, L. Wu et al., Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today 23, 87–104 (2019). https://doi.org/10.1016/j.mattod.2018.12.040
F.G. Emmerich, Evolution with heat treatment of crystallinity in carbons. Carbon 33(12), 1709–1715 (1995). https://doi.org/10.1016/0008-6223(95)00127-8
A.W. Zia, S. Rasul, M. Asim, Y.A. Samad, R.A. Shakoor et al., The potential of plasma-derived hard carbon for sodium-ion batteries. J. Energy Storage 84, 110844 (2024). https://doi.org/10.1016/j.est.2024.110844
J. Li, C. Liu, X. Hu, J. Cai, H. Lian et al., Local oxygen reconstruction enables dual-ion active sites in carbon cathode for high energy density sodium-ion capacitors. Adv. Funct. Mater. 35(11), 2417059 (2025). https://doi.org/10.1002/adfm.202417059
Y. Ding, Z.-A. Qiao, Carbon surface chemistry: new insight into the old story. Adv. Mater. 34(42), 2206025 (2022). https://doi.org/10.1002/adma.202206025
J. Zhu, S. Mu, Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
V.L. Deringer, C. Merlet, Y. Hu, T.H. Lee, J.A. Kattirtzi et al., Towards an atomistic understanding of disordered carbon electrode materials. Chem. Commun. 54(47), 5988–5991 (2018). https://doi.org/10.1039/c8cc01388h
J. Choi, M.E. Lee, S. Lee, H.-J. Jin, Y.S. Yun, Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries. ACS Appl. Energy Mater. 2(2), 1185–1191 (2019). https://doi.org/10.1021/acsaem.8b01734
X.-X. He, W.-H. Lai, Y. Liang, J.-H. Zhao, Z. Yang et al., Achieving all-plateau and high-capacity sodium insertion in topological graphitized carbon. Adv. Mater. 35(40), e2302613 (2023). https://doi.org/10.1002/adma.202302613
Q. Hu, L. Xu, G. Liu, J. Hu, X. Ji et al., Understanding the sodium storage behavior of closed pores/carbonyl groups in hard carbon. ACS Nano 18(32), 21491–21503 (2024). https://doi.org/10.1021/acsnano.4c06281
E.R. Buiel, A.E. George, J.R. Dahn, Model of micropore closure in hard carbon prepared from sucrose. Carbon 37(9), 1399–1407 (1999). https://doi.org/10.1016/S0008-6223(98)00335-2
Y. Zhang, S.-W. Zhang, Y. Chu, J. Zhang, H. Xue et al., Redefining closed pores in carbons by solvation structures for enhanced sodium storage. Nat. Commun. 16(1), 3634 (2025). https://doi.org/10.1038/s41467-025-59022-8
N. Lan, Y. Shen, J. Li, H. He, C. Zhang, Cell-shearing chemistry directed closed-pore regeneration in biomass-derived hard carbons for ultrafast sodium storage. Adv. Mater. 37(22), 2412989 (2025). https://doi.org/10.1002/adma.202412989
N. LeGe, X.-X. He, Y.-X. Wang, Y. Lei, Y.-X. Yang et al., Reappraisal of hard carbon anodes for practical lithium/sodium-ion batteries from the perspective of full-cell matters. Energy Environ. Sci. 16(12), 5688–5720 (2023). https://doi.org/10.1039/d3ee02202a
A. Mehmood, G. Ali, B. Koyutürk, J. Pampel, K.Y. Chung et al., Nanoporous nitrogen doped carbons with enhanced capacity for sodium ion battery anodes. Energy Storage Mater. 28, 101–111 (2020). https://doi.org/10.1016/j.ensm.2020.02.023
M. Yuan, B. Cao, H. Liu, C. Meng, J. Wu et al., Sodium storage mechanism of nongraphitic carbons: a general model and the function of accessible closed pores. Chem. Mater. 34(7), 3489–3500 (2022). https://doi.org/10.1021/acs.chemmater.2c00405
L. Kitsu Iglesias, E.N. Antonio, T.D. Martinez, L. Zhang, Z. Zhuo et al., Revealing the sodium storage mechanisms in hard carbon pores. Adv. Energy Mater. 13(44), 2302171 (2023). https://doi.org/10.1002/aenm.202302171
H.G.T. Nguyen, J.C. Horn, M. Bleakney, D.W. Siderius, L. Espinal, Understanding material characteristics through signature traits from helium pycnometry. Langmuir 35(6), 2115–2122 (2019). https://doi.org/10.1021/acs.langmuir.8b03731
T. Cai, Y. Wang, F. Zhao, Z. Ma, P. Kumar et al., Graphic, quantitation, visualization, standardization, digitization, and intelligence of electrolyte and electrolyte-electrode interface. Adv. Energy Mater. 14(25), 2400569 (2024). https://doi.org/10.1002/aenm.202400569
Z. Tian, Y. Zou, G. Liu, Y. Wang, J. Yin et al., Electrolyte solvation structure design for sodium ion batteries. Adv. Sci. 9(22), e2201207 (2022). https://doi.org/10.1002/advs.202201207
S.-W. Zhang, W. Lv, C. Luo, C.-H. You, J. Zhang et al., Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater. 3, 18–23 (2016). https://doi.org/10.1016/j.ensm.2015.12.004
J. Yang, X. Wang, W. Dai, X. Lian, X. Cui et al., From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/ low-temperature sodium-ion storage. Nano-Micro Lett. 13(1), 98 (2021). https://doi.org/10.1007/s40820-020-00587-y
J.-L. Xia, D. Yan, L.-P. Guo, X.-L. Dong, W.-C. Li et al., Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 32(21), 2000447 (2020). https://doi.org/10.1002/adma.202000447
S. Wu, H. Peng, J. Xu, L. Huang, Y. Liu et al., Nitrogen/phosphorus Co-doped ultramicropores hard carbon spheres for rapid sodium storage. Carbon 218, 118756 (2024). https://doi.org/10.1016/j.carbon.2023.118756
Z. Song, M. Di, X. Zhang, Z. Wang, S. Chen et al., Nanoconfined strategy optimizing hard carbon for robust sodium storage. Adv. Energy Mater. 14(43), 2401763 (2024). https://doi.org/10.1002/aenm.202401763
Z. Lu, H. Yang, Y. Guo, H. Lin, P. Shan et al., Consummating ion desolvation in hard carbon anodes for reversible sodium storage. Nat. Commun. 15(1), 3497 (2024). https://doi.org/10.1038/s41467-024-47522-y
K. Cui, R. Hou, H. Zhou, S. Guo, Electrolyte engineering of hard carbon for sodium-ion batteries: from mechanism analysis to design strategies. Adv. Funct. Mater. 35(16), 2419275 (2025). https://doi.org/10.1002/adfm.202419275
X. Liu, Z. Liang, Y. Xiang, M. Lin, Q. Li et al., Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization. Adv. Mater. 33(50), 2005878 (2021). https://doi.org/10.1002/adma.202005878
R. Alcántara, P. Lavela, G.F. Ortiz, J.L. Tirado, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid-Stat. Lett. 8(4), A222 (2005). https://doi.org/10.1149/1.1870612
K. Gotoh, 23Na solid-state NMR analyses for Na-ion batteries and materials. Batter. Supercaps 4(8), 1267–1278 (2021). https://doi.org/10.1002/batt.202000295
R. Morita, K. Gotoh, K. Kubota, S. Komaba, K. Hashi et al., Correlation of carbonization condition with metallic property of sodium clusters formed in hard carbon studied using 23Na nuclear magnetic resonance. Carbon 145, 712–715 (2019). https://doi.org/10.1016/j.carbon.2019.01.080
A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013). https://doi.org/10.1038/nnano.2013.46
L.J. Hardwick, P.W. Ruch, M. Hahn, W. Scheifele, R. Kötz et al., In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J. Phys. Chem. Solids 69(5–6), 1232–1237 (2008). https://doi.org/10.1016/j.jpcs.2007.10.017
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki et al., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
F. Malz, H. Jancke, Validation of quantitative NMR. J. Pharm. Biomed. Anal. 38(5), 813–823 (2005). https://doi.org/10.1016/j.jpba.2005.01.043
Y. Youn, B. Gao, A. Kamiyama, K. Kubota, S. Komaba et al., Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. NPJ Comput. Mater. 7, 48 (2021). https://doi.org/10.1038/s41524-021-00515-7
H. Alptekin, H. Au, A.C. Jensen, E. Olsson, M. Goktas et al., Sodium storage mechanism investigations through structural changes in hard carbons. ACS Appl. Energy Mater. 3(10), 9918–9927 (2020). https://doi.org/10.1021/acsaem.0c01614
Z. Liang, X. Fan, W. Zheng, D.J. Singh, Adsorption and formation of small Na clusters on pristine and double-vacancy graphene for anodes of Na-ion batteries. ACS Appl. Mater. Interfaces 9(20), 17076–17084 (2017). https://doi.org/10.1021/acsami.7b02972
M. Gabrijelčič, B. Tratnik, G. Kapun, E. Tchernychova, N. Zabukovec Logar et al., Probing sodium structures and dynamics in hard carbon for Na-ion batteries using 23Na operando solid-state NMR spectroscopy. J. Mater. Chem. A 13(2), 1042–1056 (2025). https://doi.org/10.1039/D4TA07135B
Y. Fan, Z. Zhang, Z. Wang, H. Yu, X. Kong et al., Radical footprinting and regularity revealing during the pyrolysis of technical lignins. Bioresour. Technol. 360, 127648 (2022). https://doi.org/10.1016/j.biortech.2022.127648
Y. Chen, Y. Wang, S. Zhu, K. Fu, X. Han et al., Nanomanufacturing of graphene nanosheets through nano-hole opening and closing. Mater. Today 24, 26–32 (2019). https://doi.org/10.1016/j.mattod.2018.09.001
J.R. Dahn, W. Xing, Y. Gao, The “falling cards model” for the structure of microporous carbons. Carbon 35(6), 825–830 (1997). https://doi.org/10.1016/S0008-6223(97)00037-7
K. Kubota, S. Shimadzu, N. Yabuuchi, S. Tominaka, S. Shiraishi et al., Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 32(7), 2961–2977 (2020). https://doi.org/10.1021/acs.chemmater.9b05235
Q. Meng, B. Chen, W. Jian, X. Zhang, S. Sun et al., Hard carbon anodes for sodium-ion batteries: Dependence of the microstructure and performance on the molecular structure of lignin. J. Power. Sour. 581, 233475 (2023). https://doi.org/10.1016/j.jpowsour.2023.233475
J. Liu, L. Huang, H. Wang, L. Sha, M. Liu et al., The origin, characterization, and precise design and regulation of diverse hard carbon structures for targeted applications in lithium-/ sodium-/ potassium-ion batteries. Electrochem. Energy Rev. 7(1), 34 (2024). https://doi.org/10.1007/s41918-024-00234-9
W. Xing, J.S. Xue, T. Zheng, A. Gibaud, J.R. Dahn, Correlation between lithium intercalation capacity and microstructure in hard carbons. J. Electrochem. Soc. 143(11), 3482–3491 (1996). https://doi.org/10.1149/1.1837241
D. Alvira, D. Antorán, J.J. Manyà, Plant-derived hard carbon as anode for sodium-ion batteries: a comprehensive review to guide interdisciplinary research. Chem. Eng. J. 447, 137468 (2022). https://doi.org/10.1016/j.cej.2022.137468
F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu et al., Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy Mater. 6(14), 1600377 (2016). https://doi.org/10.1002/aenm.201600377
B. Chen, Q. Meng, T. Wang, W. Zhang, X. Qiu, Cross-linking matters: Building hard carbons with enhanced sodium-ion storage plateau capacities. J. Power. Sour. 624, 235566 (2024). https://doi.org/10.1016/j.jpowsour.2024.235566
L.-Q. Xu, B. Feng, Y. Su, Q. Hu, G.-G. Liu et al., Self-supporting, low-tortuosity hard carbon for superior sodium-ion batteries. Rare Met. 43(12), 6362–6372 (2024). https://doi.org/10.1007/s12598-024-02763-0
S. Reiche, R. Blume, X.C. Zhao, D. Su, E. Kunkes et al., Reactivity of mesoporous carbon against water—an in situ XPS study. Carbon 77, 175–183 (2014). https://doi.org/10.1016/j.carbon.2014.05.019
Y. Qian, J. Tian, L. Pan, N. Lin, O-targeted carbon hybrid orbital conversion to produce sp2-rich closed pores for sodium-storage hard carbon. Small Methods 9(3), e2401072 (2025). https://doi.org/10.1002/smtd.202401072
R. Ma, Y. Chen, Q. Li, B. Zhang, F. Chen et al., Oxygen-driven closing pore formation in coal-based hard carbon for low-voltage rapid sodium storage. Chem. Eng. J. 493, 152389 (2024). https://doi.org/10.1016/j.cej.2024.152389
B. Wang, Y. Yao, W. Wang, Y. Xu, Y. Wan et al., Resolution of the reciprocity between radical species from precursor and closed pore formation in hard carbon for sodium storage. J. Colloid Interface Sci. 664, 681–690 (2024). https://doi.org/10.1016/j.jcis.2024.03.068
Y. Chen, H. Sun, X.-X. He, Q. Chen, J.-H. Zhao et al., Pre-oxidation strategy transforming waste foam to hard carbon anodes for boosting sodium storage performance. Small 20(12), e2307132 (2024). https://doi.org/10.1002/smll.202307132
B. Hu, K. Wang, L. Wu, S.-H. Yu, M. Antonietti et al., Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7), 813–828 (2010). https://doi.org/10.1002/adma.200902812
A. Nagmani, S. Tyagi, Puravankara, Insights into the diverse precursor-based micro-spherical hard carbons as anode materials for sodium–ion and potassium–ion batteries. Mater. Adv. 3(2), 810–836 (2022). https://doi.org/10.1039/D1MA00731A
S. Sharma, V. Manchala, R. Gopalan, T.N. Rao, B. Das, Quasi-diffusion controlled high rate sodium-ion storage performance of flame pyrolysis derived spherical hard carbon. Carbon 226, 119158 (2024). https://doi.org/10.1016/j.carbon.2024.119158
L. Guo, C. Qiu, R. Yuan, X. Li, X. Li et al., Boosting molecular cross-linking in a phenolic resin for spherical hard carbon with enriched closed pores toward enhanced sodium storage ability. ACS Appl. Mater. Interfaces 16(21), 27419–27428 (2024). https://doi.org/10.1021/acsami.4c04101
Z. Xu, J. Wang, Z. Guo, F. Xie, H. Liu et al., The role of hydrothermal carbonization in sustainable sodium-ion battery anodes. Adv. Energy Mater. 12(18), 2200208 (2022). https://doi.org/10.1002/aenm.202200208
M.-X. Song, L.-J. Xie, J.-Y. Cheng, Z.-L. Yi, G. Song et al., Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries. J. Energy Chem. 66, 448–458 (2022). https://doi.org/10.1016/j.jechem.2021.08.050
Y. Sun, T. Shen, Z. He, S. Wang, Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. J. Colloid Interface Sci. 678, 1142–1150 (2025). https://doi.org/10.1016/j.jcis.2024.09.191
H. Zhou, N. Sun, J. Yu, R. Ali Soomro, S. Zhang et al., Microstructure regulation of resin-based hard carbons via esterification cross-linking for high-performance sodium-ion batteries. Inorg. Chem. Front. 10(8), 2404–2413 (2023). https://doi.org/10.1039/D3QI00052D
Y. Qiu, G. Jiang, Y. Su, X. Zhang, Y. Du et al., Hybrid hard carbon framework derived from polystyrene bearing distinct molecular crosslinking for enhanced sodium storage. Carbon Energy 6(7), e479 (2024). https://doi.org/10.1002/cey2.479
J. Lin, Q. Zhou, Z. Liao, Y. Chen, Y. Liu et al., Steric hindrance engineering to modulate the closed pores formation of polymer-derived hard carbon for high-performance sodium-ion batteries. Angew. Chem. Int. Ed. 63(39), e202409906 (2024). https://doi.org/10.1002/anie.202409906
C. Nita, B. Zhang, J. Dentzer, C. Matei Ghimbeu, Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. J. Energy Chem. 58, 207–218 (2021). https://doi.org/10.1016/j.jechem.2020.08.065
L. Shang, R. Yuan, H. Liu, X. Li, B. Zhao et al., Precursor screening of fruit shell derived hard carbons for low-potential sodium storage: a low lignin content supports the formation of closed pores. Carbon 223, 119038 (2024). https://doi.org/10.1016/j.carbon.2024.119038
X. Dou, I. Hasa, M. Hekmatfar, T. Diemant, R.J. Behm et al., Pectin, hemicellulose, or lignin? impact of the biowaste source on the performance of hard carbons for sodium-ion batteries. Chemsuschem 10(12), 2668–2676 (2017). https://doi.org/10.1002/cssc.201700628
J. Conder, C. Vaulot, C. Marino, C. Villevieille, C.M. Ghimbeu, Chitin and chitosan: structurally related precursors of dissimilar hard carbons for Na-ion battery. ACS Appl. Energy Mater. 2(7), 4841–4852 (2019). https://doi.org/10.1021/acsaem.9b00545
M. Dahbi, M. Kiso, K. Kubota, T. Horiba, T. Chafik et al., Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A 5(20), 9917–9928 (2017). https://doi.org/10.1039/c7ta01394a
C. Wu, Y. Yang, Y. Zhang, H. Xu, W. Huang et al., Industrial-scale hard carbon designed to regulate electrochemical polarization for fast sodium storage. Angew. Chem. Int. Ed. 63(31), e202406889 (2024). https://doi.org/10.1002/anie.202406889
A. Beda, J.-M. Le Meins, P.-L. Taberna, P. Simon, C. Matei Ghimbeu, Impact of biomass inorganic impurities on hard carbon properties and performance in Na-ion batteries. Sustain. Mater. Technol. 26, e00227 (2020). https://doi.org/10.1016/j.susmat.2020.e00227
X. Zhao, H. Chen, F. Kong, Y. Zhang, S. Wang et al., Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem. Eng. J. 364, 226–243 (2019). https://doi.org/10.1016/j.cej.2019.01.159
B.-H. Hou, Y.-Y. Wang, Q.-L. Ning, W.-H. Li, X.-T. Xi et al., Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 31(40), e1903125 (2019). https://doi.org/10.1002/adma.201903125
D.J. Cosgrove, Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 25(5), 340–358 (2024). https://doi.org/10.1038/s41580-023-00691-y
Y. Feng, L. Tao, Y. He, Q. Jin, C. Kuai et al., Chemical-enzymatic fractionation to unlock the potential of biomass-derived carbon materials for sodium ion batteries. J. Mater. Chem. A 7(47), 26954–26965 (2019). https://doi.org/10.1039/c9ta09124f
Z. Tang, R. Zhang, H. Wang, S. Zhou, Z. Pan et al., Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 14(1), 6024 (2023). https://doi.org/10.1038/s41467-023-39637-5
Y. Wang, Z. Yi, L. Xie, Y. Mao, W. Ji et al., Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Adv. Mater. 36(26), 2401249 (2024). https://doi.org/10.1002/adma.202401249
T.K. Kumaresan, S.A. Masilamani, K. Raman, S.Z. Karazhanov, R. Subashchandrabose, High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites. Electrochim. Acta 368, 137574 (2021). https://doi.org/10.1016/j.electacta.2020.137574
Z. Zheng, S. Hu, W. Yin, J. Peng, R. Wang et al., CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy Mater. 14(3), 2303064 (2024). https://doi.org/10.1002/aenm.202303064
W. Li, J. Li, B.W. Biney, Y. Yan, X. Lu et al., Innovative synthesis and sodium storage enhancement of closed-pore hard carbon for sodium-ion batteries. Energy Storage Mater. 74, 103867 (2025). https://doi.org/10.1016/j.ensm.2024.103867
H. Wang, H. Niu, K. Shu, L. Sun, Y. Wang et al., Regulating the “core-shell” microstructure of hard carbon through sodium hydroxide activation for achieving high-capacity SIBs anode. J. Mater. Sci. Technol. 209, 161–170 (2025). https://doi.org/10.1016/j.jmst.2024.05.009
N. LeGe, Y.-H. Zhang, W.-H. Lai, X.-X. He, Y.-X. Wang et al., Potassium escaping balances the degree of graphitization and pore channel structure in hard carbon to boost plateau sodium storage capacity. Chem. Sci. 16(3), 1179–1188 (2025). https://doi.org/10.1039/D4SC04584J
K. Wang, F. Sun, H. Wang, D. Wu, Y. Chao et al., Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 32(34), 2203725 (2022). https://doi.org/10.1002/adfm.202203725
W.-J. Ji, Z.-L. Yi, M.-X. Song, X.-Q. Guo, Y.-L. Wang et al., Free radicals trigger the closure of open pores in lignin-derived hard carbons toward improved sodium-storage capacity. J. Energy Chem. 94, 551–559 (2024). https://doi.org/10.1016/j.jechem.2024.02.048
Z. Heidarinejad, M.H. Dehghani, M. Heidari, G. Javedan, I. Ali et al., Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18(2), 393–415 (2020). https://doi.org/10.1007/s10311-019-00955-0
C. Wu, W. Huang, Y. Zhang, Q. Chen, L. Li et al., Revisiting the critical role of metallic ash elements in the development of hard carbon for advancing sodium-ion battery applications. eScience 5(3), 100371 (2025). https://doi.org/10.1016/j.esci.2025.100371
R.D. Hunter, J. Ramírez-Rico, Z. Schnepp, Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons. J. Mater. Chem. A 10(9), 4489–4516 (2022). https://doi.org/10.1039/d1ta09654k
Z.-L. Yu, S. Xin, Y. You, L. Yu, Y. Lin et al., Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J. Am. Chem. Soc. 138(45), 14915–14922 (2016). https://doi.org/10.1021/jacs.6b06673
L. Ji, Y. Zhao, X. Qi, Y. Li, Z. Wei et al., Metal chloride-induced hydrogen transfer enables efficient conversion of aromatic hydrocarbons for sodium storage. Adv. Funct. Mater. 34(48), 2408242 (2024). https://doi.org/10.1002/adfm.202408242
Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng et al., Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries. Adv. Mater. 35(26), 2211461 (2023). https://doi.org/10.1002/adma.202211461
D. Qiu, W. Zhao, B. Zhang, M.T. Ahsan, Y. Wang et al., Ni-single atoms modification enabled kinetics enhanced and ultra-stable hard carbon anode for sodium-ion batteries. Adv. Energy Mater. 14(20), 2400002 (2024). https://doi.org/10.1002/aenm.202400002
C. Qiu, A. Li, D. Qiu, Y. Wu, Z. Jiang et al., One-step construction of closed pores enabling high plateau capacity hard carbon anodes for sodium-ion batteries: closed-pore formation and energy storage mechanisms. ACS Nano 18(18), 11941–11954 (2024). https://doi.org/10.1021/acsnano.4c02046
X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34(13), 2109282 (2022). https://doi.org/10.1002/adma.202109282
M.-G. Cheng, L.-J. Xie, Z.-L. Yi, Y.-X. Mao, F.-Y. Su et al., Preparation of enriched closed-pores hard carbon for high-performance sodium-ion batteries by the poly(vinyl butyral) template method. ACS Appl. Energy Mater. 7(8), 3452–3461 (2024). https://doi.org/10.1021/acsaem.4c00331
Q. Meng, Y. Lu, F. Ding, Q. Zhang, L. Chen et al., Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 4(11), 2608–2612 (2019). https://doi.org/10.1021/acsenergylett.9b01900
Q. Ren, Z. Shi, L. Yan, F. Zhang, L. Fan et al., High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. J. Mater. Chem. A 8(38), 19898–19907 (2020). https://doi.org/10.1039/d0ta04841k
R. Guo, L. Li, B. Wang, Y. Xiang, G. Zou et al., Functionalized carbon dots for advanced batteries. Energy Storage Mater. 37, 8–39 (2021). https://doi.org/10.1016/j.ensm.2021.01.020
L. Li, Y. Li, Y. Ye, R. Guo, A. Wang et al., Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage. ACS Nano 15(4), 6872–6885 (2021). https://doi.org/10.1021/acsnano.0c10624
Y. Zhang, Y. Ye, G. Zhang, J. Wang, K. Li et al., Oxidation anchoring strategy for the retention of nanostructures in high temperature carbonization process to enhance hard carbon sodium storage performance. Chem. Eng. J. 503, 158395 (2025). https://doi.org/10.1016/j.cej.2024.158395
S. Li, Z. Luo, H. Tu, H. Zhang, W. Deng et al., N, S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Mater. 42, 679–686 (2021). https://doi.org/10.1016/j.ensm.2021.08.008
H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12(26), 2200665 (2022). https://doi.org/10.1002/aenm.202200665
Z. Ge, L. Xu, Y. Xu, J. Wu, Z. Geng et al., Multifunctional fluorinated carbon dots artificial interface layer coupled with in situ generated Zn2+ conductor interlayer enable ultra-stable Zn anode. Nano Energy 119, 109053 (2024). https://doi.org/10.1016/j.nanoen.2023.109053
Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/ sodium-ion batteries: carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14(1), 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
D. Sun, L. Zhao, P. Sun, K. Zhao, Y. Sun et al., Rationally regulating closed pore structures by pitch coating to boost sodium storage performance of hard carbon in low-voltage platforms. Adv. Funct. Mater. 34(40), 2403642 (2024). https://doi.org/10.1002/adfm.202403642
S. Zhang, N. Sun, X. Li, R. Ali Soomro, B. Xu, Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage. Energy Storage Mater. 66, 103183 (2024). https://doi.org/10.1016/j.ensm.2024.103183
Y. Kawabuchi, M. Kishino, S. Kawano, D.D. Whitehurst, I. Mochida, Carbon deposition from benzene and cyclohexane onto active carbon fiber to control its pore size. Langmuir 12(17), 4281–4285 (1996). https://doi.org/10.1021/la960292a
J. Zheng, W. Liu, S. Li, Y. Lai, J. Li et al., Spatial confinement strategy modulated by kinetic diameters of gaseous molecules for sodium storage. Energy Storage Mater. 73, 103835 (2024). https://doi.org/10.1016/j.ensm.2024.103835
X. Chen, N. Sawut, K. Chen, H. Li, J. Zhang et al., Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage. Energy Environ. Sci. 16(9), 4041–4053 (2023). https://doi.org/10.1039/d3ee01154b
L. Zhou, Y. Cui, P. Niu, L. Ge, R. Zheng et al., Biomass-derived hard carbon material for high-capacity sodium-ion battery anode through structure regulation. Carbon 231, 119733 (2025). https://doi.org/10.1016/j.carbon.2024.119733
T. Gao, Y. Zhou, Y. Jiang, Z. Xue, Y. Ding, Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries. Diam. Relat. Mater. 150, 111737 (2024). https://doi.org/10.1016/j.diamond.2024.111737
S. Alvin, D. Yoon, C. Chandra, R.F. Susanti, W. Chang et al., Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. J. Power Sour. 430, 157–168 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.013
B. Wang, S. Zhang, X. Jia, F. Yuan, H. Sun et al., Tailoring closed pore structure in phenolic resin derived hard carbon enables excellent sodium ion storage. Chem. Eng. J. 499, 156126 (2024). https://doi.org/10.1016/j.cej.2024.156126
Y. Yan, G. Chen, W. Liu, M. Qu, Z. Xie et al., Pre-carbonization for regulating sucrose-based hard carbon pore structure as high plateau capacity sodium-ion battery anode. J. Energy Storage 104, 114590 (2024). https://doi.org/10.1016/j.est.2024.114590
J. Peng, H. Tan, Y. Tang, J. Yang, P. Liu et al., The induced formation and regulation of closed-pore structure for biomass hard carbon as anode in sodium-ion batteries. J. Energy Storage 101, 113864 (2024). https://doi.org/10.1016/j.est.2024.113864
W. Deng, Y. Cao, G. Yuan, G. Liu, X. Zhang et al., Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode. ACS Appl. Mater. Interfaces 13(40), 47728–47739 (2021). https://doi.org/10.1021/acsami.1c15884
L. Chen, L. Zhang, Y. Jiang, J. Zhao, F. Xu et al., Regulation of surface oxygen functional groups in starch-derived hard carbon via pre-oxidation: a strategy for enhanced sodium storage performance. Mater. Today Chem. 41, 102314 (2024). https://doi.org/10.1016/j.mtchem.2024.102314
X. Li, S. Zhang, J. Tang, J. Yang, K. Wen et al., Structural design of biomass-derived hard carbon anode materials for superior sodium storage via increasing crystalline cellulose and closing the open pores. J. Mater. Chem. A 12(32), 21176–21189 (2024). https://doi.org/10.1039/d4ta03284e
L. Lai, J. Li, Y. Deng, Z. Yu, L. Wei et al., Carbon and carbon/metal hybrid structures enabled by ultrafast heating methods. Small Struct. 3(11), 2200112 (2022). https://doi.org/10.1002/sstr.202200112
Z. Song, Q. Du, J. Chen, J. Huang, Y. Chen et al., Joule heating for structure reconstruction of hard carbon with superior sodium ion storage performance. Chem. Eng. J. 496, 154103 (2024). https://doi.org/10.1016/j.cej.2024.154103
M. Yuan, S. Yu, K. Wang, C. Mi, L. Shen, Ultrafast synthesis of hard carbon for high-rate and low-temperature sodium-ion storage through flash Joule heating. Solid State Ion. 414, 116622 (2024). https://doi.org/10.1016/j.ssi.2024.116622
H. Xu, H. Song, M. Sun, Y. Zhang, X. Feng et al., Molecular-level precursor regulation strategy aids fast-charging hard carbon anodes for sodium-ion batteries. Nano Energy 137, 110824 (2025). https://doi.org/10.1016/j.nanoen.2025.110824
Z. Li, Y. Chen, Z. Jian, H. Jiang, J.J. Razink et al., Defective hard carbon anode for Na-ion batteries. Chem. Mater. 30(14), 4536–4542 (2018). https://doi.org/10.1021/acs.chemmater.8b00645
G. Ryoo, J. Shin, B.G. Kim, D.G. Lee, J.T. Han et al., Sub-minute carbonization of polymer/carbon nanotube films by microwave induction heating for ultrafast preparation of hard carbon anodes for sodium-ion batteries. Chem. Eng. J. 496, 154081 (2024). https://doi.org/10.1016/j.cej.2024.154081
S. Nagmani, S. Manna, Puravankara, Hierarchically porous closed-pore hard carbon as a plateau-dominated high-performance anode for sodium-ion batteries. Chem. Commun. 60(22), 3071–3074 (2024). https://doi.org/10.1039/D4CC00025K
P. Nagmani, S. Verma, Puravankara, Jute-fiber precursor-derived low-cost sustainable hard carbon with varying micro/mesoporosity and distinct storage mechanisms for sodium-ion and potassium-ion batteries. Langmuir 38(50), 15703–15713 (2022). https://doi.org/10.1021/acs.langmuir.2c02575
H.-M. Xiao, H. Zheng, P. Yuan, J.-H. Luo, L.-L. Shen et al., Structural engineering of hard carbon through spark plasma sintering for enhanced sodium-ion storage. Rare Met. 43(9), 4274–4285 (2024). https://doi.org/10.1007/s12598-024-02716-7
H.-S. Yang, M.-W. Park, K.-H. Kim, O.L. Li, T.-I. Jeon et al., Facile in situ synthesis of dual-heteroatom-doped high-rate capability carbon anode for rechargeable seawater-batteries. Carbon 189, 251–264 (2022). https://doi.org/10.1016/j.carbon.2021.12.066
Y. Zhen, Y. Chen, F. Li, Z. Guo, Z. Hong et al., Ultrafast synthesis of hard carbon anodes for sodium-ion batteries. Proc. Natl. Acad. Sci. U.S.A. 118(42), e2111119118 (2021). https://doi.org/10.1073/pnas.2111119118
C. Shen, C. Wang, T. Jin, X. Zhang, L. Jiao et al., Tailoring the surface chemistry of hard carbon towards high-efficiency sodium ion storage. Nanoscale 14(25), 8959–8966 (2022). https://doi.org/10.1039/D2NR00172A
X. Wu, S. Wu, C. Wu, X. Zhang, Z. Jiang et al., Plasma-promoted surface regulation of a novel integrative carbon network for boosting the long-cycle capability of sodium-ion storage. Carbon 191, 112–121 (2022). https://doi.org/10.1016/j.carbon.2022.01.025