Biomass-Derived Porous Carbon-Based Nanostructures for Microwave Absorption
Corresponding Author: Zhichuan J. Xu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 24
Abstract
Currently, electromagnetic (EM) pollution poses severe complication toward the operation of electronic devices and biological systems. To this end, it is pertinent to develop novel microwave absorbers through compositional and structural design. Porous carbon (PC) materials demonstrate great potential in EM wave absorption due to their ultralow density, large surface area, and excellent dielectric loss ability. However, the large-scale production of PC materials through low-cost and simple synthetic route is a challenge. Deriving PC materials through biomass sources is a sustainable, ubiquitous, and low-cost method, which comes with many desired features, such as hierarchical texture, periodic pattern, and some unique nanoarchitecture. Using the bio-inspired microstructure to manufacture PC materials in mild condition is desirable. In this review, we summarize the EM wave absorption application of biomass-derived PC materials from optimizing structure and designing composition. The corresponding synthetic mechanisms and development prospects are discussed as well. The perspective in this field is given at the end of the article.
Highlights:
1 The synthetic methods and corresponding mechanisms of porous carbon (PC)-based nanostructures from biomass resource are reviewed.
2 The application of biomass-derived PC in microwave absorption is discussed in terms of structure and composition optimization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
- Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou et al., Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 28(2), 1704363 (2018). https://doi.org/10.1002/adfm.201704363
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- H. Lv, Z. Yang, Y. Cheng, L.Y.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 5, 491–512 (2017). https://doi.org/10.1039/C6TC03026B
- C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
- Y. Jiang, Y. Chen, Y.J. Liu, G.X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018). https://doi.org/10.1016/j.carbon.2016.07.015
- G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase composites and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
- H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3, 5056–5064 (2015). https://doi.org/10.1039/C5TC00525F
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie, R. Yu, J. Shui, Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 10(3), 980–990 (2017). https://doi.org/10.1007/s12274-016-1357-6
- M. Lu, W. Cao, H. Shi, X. Fang, J. Yang et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2(27), 10540–10547 (2014). https://doi.org/10.1039/C4TA01715C
- M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6(17), 4586–4602 (2018). https://doi.org/10.1039/C7TC05869A
- C. Chen, J. Xi, Y. Han, L. Peng, W. Gao, Z. Xu, C. Gao, Ultralight graphene micro-popcorns for multifunctional composite applications. Carbon 139, 545–555 (2018). https://doi.org/10.1016/j.carbon.2018.07.020
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- Y. Cheng, J. Cao, H. Lv, H. Zhao, Y. Zhao, G. Ji, In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1−x-catalyzed growth to pursue superior microwave attenuation in X-band. Inorg. Chem. Front. 6, 309–316 (2019). https://doi.org/10.1039/C8QI01102H
- G. Tong, F. Liu, W. Wu, F. Du, J. Guan, Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2(20), 7373–7382 (2014). https://doi.org/10.1039/c4ta00117f
- C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl. Mater. Interfaces 10, 39307–39318 (2018). https://doi.org/10.1021/acsami.8b15365
- A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, K.R. Naveed, T. Elshaarani, A. Khan, M. Usman, Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
- C. Luo, Y. Tang, T. Jiao, J. Kong, High-temperature stable and metal-free electromagnetic wave absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes. ACS Appl. Mater. Interfaces 10, 28051–28061 (2018). https://doi.org/10.1021/acsami.8b07879
- P. Chen, L. Wang, G. Wang, M. Gao, J. Ge, W. Yuan, Y. Shen, A. Xie, S. Yu, Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7(12), 4095–4103 (2014). https://doi.org/10.1039/c4ee02531h
- Z.E. Tang, S. Lim, Y.L. Pang, H.C. Ong, K.T. Lee, Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew. Sust. Energy Rev. 92, 235–253 (2018). https://doi.org/10.1016/j.rser.2018.04.056
- J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004–11015 (2013). https://doi.org/10.1021/nn404640c
- G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, X. Zhang, Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17(3), 1668–1674 (2015). https://doi.org/10.1039/c4gc02185a
- J. Cui, Y. Xi, S. Chen, D. Li, X. She, J. Sun, W. Han, D. Yang, S. Guo, Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv. Funct. Mater. 26(46), 8487–8495 (2016). https://doi.org/10.1002/adfm.201603933
- H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
- Y. Cheng, Z. Li, Y. Li, S. Dai, G. Ji, H. Zhao, J. Cao, Y. Du, Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
- X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, G. Wang, Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800761
- Q. Liu, D. Zhang, T. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93(1), 013110 (2008). https://doi.org/10.1063/1.2957035
- J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8(16), 8899–8909 (2016). https://doi.org/10.1039/c6nr01863g
- H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
- N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6(9), 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
- Y. Guo, W. Liu, R. Wu, L. Sun, Y. Zhang, Y. Cui, S. Liu, H. Wang, B. Shan, Marine-biomass-derived porous carbon sheets with a tunable n-doping content for superior sodium-ion storage. ACS Appl. Mater. Interfaces 10(44), 38376–38386 (2018). https://doi.org/10.1021/acsami.8b14304
- Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
- Z. Gao, Y. Zhang, N. Song, X. Li, Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 5(2), 69–88 (2017). https://doi.org/10.1080/21663831.2016.1250834
- W. Song, M. Cao, L. Fan, M. Lu, Y. Li, C. Wang, H. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014). https://doi.org/10.1016/j.carbon.2014.05.014
- B. Zhao, Y. Li, J. Liu, L. Fan, K. Gao et al., Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. Cryst. Eng. Commun. 21, 816–826 (2019). https://doi.org/10.1039/C8CE01677A
- H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao, Y. Du, G. Ji, Z.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900163
- R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh, R.B. Mathur, Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1(18), 5727–5735 (2013). https://doi.org/10.1039/c3ta10604g
- Z.N. Wing, B. Wang, J.W. Halloran, Permittivity of porous titanate dielectrics. J. Am. Ceram. Soc. 89(12), 3696–3700 (2006). https://doi.org/10.1111/j.1551-2916.2006.01323.x
- O. Levy, D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys. Rev. B 56(13), 8035 (1997). https://doi.org/10.1103/PhysRevB.56.8035
- Y. Cheng, J. Cao, Y. Li, Z. Li, H. Zhao, G. Ji, Y. Du, The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustain. Chem. Eng. 6(1), 1427–1435 (2018). https://doi.org/10.1021/acssuschemeng.7b03846
- R. Che, L.M. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- F.M. Alanagh, A.B. Khiabani, H. Salimkhani, Improvement in magnetic and microwave absorption properties of nano-Fe3O4@CFs composites using a modified multi-step EPD process. Appl. Surf. Sci. 420, 726–739 (2017). https://doi.org/10.1016/j.apsusc.2017.05.207
- H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 7, 4744–4750 (2015). https://doi.org/10.1021/am508438s
- X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535–5546 (2015). https://doi.org/10.1039/c4ta05718j
- Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen, C. He, Effect of pore morphology on the dielectric properties of porous carbons for microwave absorption applications. J. Phys. Chem. C 118, 26027–26032 (2014). https://doi.org/10.1021/jp506999k
- H. Xu, X. Yin, Z. Li, C. Liu, Z. Wang, M. Li, L. Zhang, L. Cheng, Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology 29, 184003 (2018). https://doi.org/10.1088/1361-6528/aaaf25
- S. Chung, A. Manthiram, Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li–S batteries. Adv. Mater. 26, 1360–1365 (2014). https://doi.org/10.1002/adma.201304365
- S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8(34), 19011–19023 (2018). https://doi.org/10.1039/C8RA00913A
- J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying, Z. Chen, Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017). https://doi.org/10.1016/j.carbon.2017.07.088
- J. Rong, F. Qiu, T. Zhang, X. Zhang, Y. Zhu, J. Xu, D. Yang, Y. Dai, A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption. Chem. Eng. J. 322, 397–407 (2017). https://doi.org/10.1016/j.cej.2017.04.049
- Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017). https://doi.org/10.1039/C7GC01681F
- W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, Y. Tian, Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 176, 533–541 (2015). https://doi.org/10.1016/j.electacta.2015.07.059
- Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129, 695–701 (2018). https://doi.org/10.1016/j.carbon.2017.12.103
- Y. Li, Q. Meng, J. Ma, C. Zhu, J. Cui et al., Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 7(21), 11146–11154 (2015). https://doi.org/10.1021/acsami.5b02774
- F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan, J. Qiu, Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem. Commun. 52(40), 6673–6676 (2016). https://doi.org/10.1039/C6CC02147F
- D. Wang, F. Li, M. Liu, G. Lu, H. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 120(2), 379–382 (2008). https://doi.org/10.1002/ange.200702721
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- H. Lv, H. Zhang, G. Ji, Z.J. Xu, An interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces 8, 6529–6538 (2016). https://doi.org/10.1021/acsami.5b12662
- C. Luo, T. Jiao, Y. Tang, J. Kong, Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv. Eng. Mater. 20, 1701168 (2018). https://doi.org/10.1002/adem.201701168
- S.K. Singh, H. Prakash, M.J. Akhtar, K.K. Kar, Lightweight and high-performance microwave absorbing heteroatom-doped carbon derived from chicken feather fibers. ACS Sustain. Chem. Eng. 6, 5381–5393 (2018). https://doi.org/10.1021/acssuschemeng.8b00183
- S. Lu, M. Jin, Y. Zhang, Y. Niu, J. Gao, C. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy. Mater. 8, 1702545 (2018). https://doi.org/10.1002/aenm.201702545
- X. Gao, W. Xing, J. Zhou, G. Wang, S. Zhou, Z. Liu, Q. Xue, Z. Yan, Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim. Acta 133, 459–466 (2014). https://doi.org/10.1016/j.electacta.2014.04.101
- J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012). https://doi.org/10.1039/c2jm34066f
- S. Rovani, A.G. Rodrigues, L.F. Medeiros, R. Cataluña, É.C. Lima, A.N. Fernandes, Synthesis and characterisation of activated carbon from agroindustrial waste—preliminary study of 17 β-estradiol removal from aqueous solution. J. Environ. Chem. Eng. 4(2), 2128–2137 (2016). https://doi.org/10.1016/j.jece.2016.03.030
- A. Dobashi, J. Maruyama, Y. Shen, M. Nandi, H. Uyama, Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Carbohydr. Polym. 200, 381–390 (2018). https://doi.org/10.1016/j.carbpol.2018.08.016
- T. Guan, J. Zhao, G. Zhang, D. Zhang, B. Han, N. Tang, J. Wang, K. Li, Insight into controllability and predictability of pore structures in pitch-based activated carbons. Microporous Mesoporous Mater. 271, 118–127 (2018). https://doi.org/10.1016/j.micromeso.2018.05.036
- J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzor, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/C4EE02986K
- M.J. Prauchner, F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater. 152, 163–171 (2012). https://doi.org/10.1016/j.micromeso.2011.11.040
- G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang, X. Yao, Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99, 203–211 (2016). https://doi.org/10.1016/j.carbon.2015.11.079
- E. Lei, C. Ma, Z. Xu, S. Liu, CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl. Surf. Sci. 457, 477–486 (2018). https://doi.org/10.1016/j.apsusc.2018.07.001
- X. Wu, L. Jiang, C. Long, Z. Fan, From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015). https://doi.org/10.1016/j.nanoen.2015.03.013
- Z. Xie, X. Shang, J. Yan, T. Hussain, P. Nie, J. Liu, Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochim. Acta 290, 666–675 (2018). https://doi.org/10.1016/j.electacta.2018.09.104
- R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li, S. Xiong, Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A 6, 17730–17739 (2018). https://doi.org/10.1039/c8ta06471g
- H. Wu, Y. Deng, J. Mou, Q. Zheng, F. Xie, E. Long, C. Xu, D. Lin, Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries. Electrochim. Acta 242, 146–158 (2017). https://doi.org/10.1016/j.electacta.2017.05.026
- Q. Wang, B. Qin, X. Zhang, X. Xie, L. Jin, Q. Cao, Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors. J. Mater. Chem. A 6, 19653–19663 (2018). https://doi.org/10.1039/c8ta07563h
- T. Ramesh, N. Rajalakshmi, K.S. Dhathathreyan, L.R.G. Reddy, Hierarchical porous carbon microfibers derived from tamarind seed coat for high-energy supercapacitor application. ACS Omega 3(10), 12832–12840 (2018). https://doi.org/10.1021/acsomega.8b01850
- J. Deng, M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18, 4824–4854 (2016). https://doi.org/10.1039/c6gc01172a
- X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon. Nanoscale 9(22), 7408–7418 (2017). https://doi.org/10.1039/C7NR02628E
- H. Zhao, Y. Cheng, H. Lv, B. Zhang, G. Ji, Y. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon. ACS Sustain. Chem. Eng. 6(11), 15850–15857 (2018). https://doi.org/10.1021/acssuschemeng.8b04461
- J. Cao, C. Zhu, Y. Aoki, H. Habazaki, Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 6(6), 7292–7303 (2018). https://doi.org/10.1021/acssuschemeng.7b04459
- Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song et al., MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors. Chem. Eng. J. 320, 634–643 (2017). https://doi.org/10.1016/j.cej.2017.03.091
- A. Xie, J. Dai, X. Chen, P. Ma, J. He, C. Li et al., Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in situ activation. Chem. Eng. J. 304, 609–620 (2016). https://doi.org/10.1016/j.cej.2016.06.138
- P. Xiao, L. Zhao, Z. Sui, M. Xu, B. Han, Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method. Microporous Mesoporous Mater. 253, 215–222 (2017). https://doi.org/10.1016/j.micromeso.2017.07.001
- J.S. Lee, X. Wang, H. Luo, S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids. Adv. Mater. 22(9), 1004–1007 (2010). https://doi.org/10.1002/adma.200903403
- X. Wang, S. Dai, Ionic liquids as versatile precursors for functionalized porous carbon and carbon–oxide composite materials by confined carbonization. Angew. Chem. Int. Ed. 49(37), 6664–6668 (2010). https://doi.org/10.1002/anie.201003163
- S. Kubo, R.J. White, N. Yoshizawa, M. Antonietti, M.-M. Titirici, Ordered carbohydrate-derived porous carbons. Chem. Mater. 23, 4882–4885 (2011). https://doi.org/10.1021/cm2020077
- N. Brun, K. Sakaushi, L. Yu, L. Giebeler, J. Eckert, M.M. Titirici, Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Phys. Chem. Chem. Phys. 15, 6080–6087 (2013). https://doi.org/10.1039/c3cp50653c
- R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 38, 3401–3418 (2009). https://doi.org/10.1039/b822668g
- S.M. Suchitra, P.R. Reddy, N.K. Udayashankar, Synthesis and characterization of graphitic carbon nitride nanotubes using porous anodic alumina templates. Adv. Sci. Lett. 24(8), 5673–5676 (2018). https://doi.org/10.1166/asl.2018.12174
- J. Janaun, N. Ellis, Role of silica template in the preparation of sulfonated mesoporous carbon catalysts. Appl. Catal. A 394, 25–31 (2011). https://doi.org/10.1016/j.apcata.2010.12.016
- H. Lv, J. Zhao, H. Zhang, G. Ji, Y. Du, Achieving excellent bandwidth absorber by a mirror growth process of magnetic porous polyhedron structure. Nano Res. 6, 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1
- Y. Duan, Z. Xiao, X. Yan, Z. Gao, Y. Tang, L. Hou, Q. Li, G. Ning, Y. Li, Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires. ACS Appl. Mater. Interfaces 10(46), 40078–40087 (2018). https://doi.org/10.1021/acsami.8b11395
- W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou, G. Ji, A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
- H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight feature. J. Mater. Chem. C 3, 0232–10241 (2015). https://doi.org/10.1039/C5TC02512E
- G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2018). https://doi.org/10.1016/j.jcis.2018.10.084
- M. Qiao, X. Lei, Y. Ma, L. Tian, X. He, K. Su, Q. Zhang, Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
- D. Liu, Y. Du, Z. Li, Y. Wang, P. Xu et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6(36), 9615–9623 (2018). https://doi.org/10.1039/c8tc02931h
- W. Xu, G. Wang, P. Yin, Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759–767 (2018). https://doi.org/10.1016/j.carbon.2018.07.044
- F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
- Y. Cheng, G. Ji, Z. Li, H. Lv, W. Liu, Y. Zhao, J. Cao, Y. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloys Compd. 704, 289–295 (2017). https://doi.org/10.1016/j.jallcom.2017.02.024
- I. Abdalla, A. Salim, M. Zhu, J. Yu, Z. Li, Light and flexible composite nanofibrous membranes for high efficiency electromagnetic absorption in a broad frequency. ACS Appl. Mater. Interfaces 10, 44561–44569 (2018). https://doi.org/10.1021/acsami.8b17514
- H. Guan, H. Wang, Y. Zhang, C. Dong, G. Chen, Y. Wang, J. Xie, Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit peel. Appl. Surf. Sci. 447, 261–268 (2018). https://doi.org/10.1016/j.apsusc.2018.03.225
- B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
- L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan, M. Yu, Q. Zhang, Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J. 326, 945–955 (2017). https://doi.org/10.1016/j.cej.2017.06.006
- L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, F. Li, Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21, 095708 (2010). https://doi.org/10.1088/0957-4484/21/9/095708
- H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.J. Xu, Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223
- J. Fang, Y. Shang, Z. Chen, W. Wei, Y. Hu, X. Yue, Z. Jiang, Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. J. Mater. Chem. C 5(19), 4695–4705 (2017). https://doi.org/10.1039/C7TC00987A
- W. Li, H. Qi, F. Guo, Y. Du, N. Song, Y. Liu, Y. Chen, Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent. J. Alloys Compd. 772, 760–769 (2019). https://doi.org/10.1016/j.jallcom.2018.09.075
- H. Zhao, Y. Cheng, J. Ma, Y. Zhang, G. Ji, Y. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018). https://doi.org/10.1016/j.cej.2018.01.151
- H. Zhao, Z. Fu, H. Chen, M. Zhong, C. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8, 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
- H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- C. Li, Y. Ge, X. Jiang, G.I.N. Waterhouse, Z. Zhang, Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption. Ceram. Int. 44(16), 19171–19183 (2018). https://doi.org/10.1016/j.ceramint.2018.06.264
- Y. Cheng, H. Zhao, Z. Yang, J. Lv, J. Cao, X. Qi, G. Ji, Y. Du, An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J. Alloys Compd. 762, 463–472 (2018). https://doi.org/10.1016/j.jallcom.2018.05.261
- S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8, 19011–19023 (2018). https://doi.org/10.1039/c8ra00913a
- L. Wang, M. Liu, G. Wang, B. Dai, F. Yu, J. Zhang, An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 776, 43–51 (2019). https://doi.org/10.1016/j.jallcom.2018.10.214
- H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustain. Chem. Eng. 6, 11801–11810 (2018). https://doi.org/10.1021/acssuschemeng.8b02089
- H. Zhao, J. Cheng, Y. Wang, Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 736, 71–79 (2018). https://doi.org/10.1016/j.jallcom.2017.11.120
References
G. Wang, Z. Gao, S. Tang, C. Chen, F. Duan et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 6(12), 11009–11017 (2012). https://doi.org/10.1021/nn304630h
Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou et al., Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 28(2), 1704363 (2018). https://doi.org/10.1002/adfm.201704363
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song, L. Zheng, H. Zeng, Z.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30(15), 1706343 (2018). https://doi.org/10.1002/adma.201706343
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan, W. She, Y. Yang, R. Che, CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
H. Lv, Z. Yang, Y. Cheng, L.Y.P. Wang, B. Zhang, Y. Zhao, Z.J. Xu, A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 5, 491–512 (2017). https://doi.org/10.1039/C6TC03026B
C. Zhou, S. Geng, X. Xu, T. Wang, L. Zhang, X. Tian, F. Yang, H. Yang, Y. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016). https://doi.org/10.1016/j.carbon.2016.07.015
Y. Jiang, Y. Chen, Y.J. Liu, G.X. Sui, Lightweight spongy bone-like graphene@SiC aerogel composites for high performance microwave absorption. Chem. Eng. J. 337, 522–531 (2018). https://doi.org/10.1016/j.carbon.2016.07.015
G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase composites and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174
H. Lv, G. Ji, X. Liang, H. Zhang, Y. Du, A novel rod-like MnO2@Fe loading on graphene giving excellent electromagnetic absorption properties. J. Mater. Chem. C 3, 5056–5064 (2015). https://doi.org/10.1039/C5TC00525F
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie, R. Yu, J. Shui, Magnetically aligned Co–C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9(36), 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
Y. Ding, Z. Zhang, B. Luo, Q. Liao, S. Liu, Y. Liu, Y. Zhang, Investigation on the broadband electromagnetic wave absorption properties and mechanism of Co3O4-nanosheets/reduced-graphene-oxide composite. Nano Res. 10(3), 980–990 (2017). https://doi.org/10.1007/s12274-016-1357-6
M. Lu, W. Cao, H. Shi, X. Fang, J. Yang et al., Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2(27), 10540–10547 (2014). https://doi.org/10.1039/C4TA01715C
M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. J. Mater. Chem. C 6(17), 4586–4602 (2018). https://doi.org/10.1039/C7TC05869A
C. Chen, J. Xi, Y. Han, L. Peng, W. Gao, Z. Xu, C. Gao, Ultralight graphene micro-popcorns for multifunctional composite applications. Carbon 139, 545–555 (2018). https://doi.org/10.1016/j.carbon.2018.07.020
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
Y. Cheng, J. Cao, H. Lv, H. Zhao, Y. Zhao, G. Ji, In situ regulating aspect ratio of bamboo-like CNTs via CoxNi1−x-catalyzed growth to pursue superior microwave attenuation in X-band. Inorg. Chem. Front. 6, 309–316 (2019). https://doi.org/10.1039/C8QI01102H
G. Tong, F. Liu, W. Wu, F. Du, J. Guan, Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics. J. Mater. Chem. A 2(20), 7373–7382 (2014). https://doi.org/10.1039/c4ta00117f
C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl. Mater. Interfaces 10, 39307–39318 (2018). https://doi.org/10.1021/acsami.8b15365
A. Nazir, H. Yu, L. Wang, M. Haroon, R.S. Ullah, S. Fahad, K.R. Naveed, T. Elshaarani, A. Khan, M. Usman, Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53(12), 8699–8719 (2018). https://doi.org/10.1007/s10853-018-2122-x
C. Luo, Y. Tang, T. Jiao, J. Kong, High-temperature stable and metal-free electromagnetic wave absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes. ACS Appl. Mater. Interfaces 10, 28051–28061 (2018). https://doi.org/10.1021/acsami.8b07879
P. Chen, L. Wang, G. Wang, M. Gao, J. Ge, W. Yuan, Y. Shen, A. Xie, S. Yu, Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7(12), 4095–4103 (2014). https://doi.org/10.1039/c4ee02531h
Z.E. Tang, S. Lim, Y.L. Pang, H.C. Ong, K.T. Lee, Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renew. Sust. Energy Rev. 92, 235–253 (2018). https://doi.org/10.1016/j.rser.2018.04.056
J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004–11015 (2013). https://doi.org/10.1021/nn404640c
G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li, X. Zhang, Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem. 17(3), 1668–1674 (2015). https://doi.org/10.1039/c4gc02185a
J. Cui, Y. Xi, S. Chen, D. Li, X. She, J. Sun, W. Han, D. Yang, S. Guo, Prolifera-green-tide as sustainable source for carbonaceous aerogels with hierarchical pore to achieve multiple energy storage. Adv. Funct. Mater. 26(46), 8487–8495 (2016). https://doi.org/10.1002/adfm.201603933
H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9(7), 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
Y. Cheng, Z. Li, Y. Li, S. Dai, G. Ji, H. Zhao, J. Cao, Y. Du, Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption. Carbon 127, 643–652 (2018). https://doi.org/10.1016/j.carbon.2017.11.055
X. Zhang, J. Zhu, P. Yin, A. Guo, A. Huang, L. Guo, G. Wang, Tunable high-performance microwave absorption of Co1−xS hollow spheres constructed by nanosheets within ultralow filler loading. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201800761
Q. Liu, D. Zhang, T. Fan, Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93(1), 013110 (2008). https://doi.org/10.1063/1.2957035
J. Fang, T. Liu, Z. Chen, Y. Wang, W. Wei, X. Yue, Z. Jiang, A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber. Nanoscale 8(16), 8899–8909 (2016). https://doi.org/10.1039/c6nr01863g
H. Lv, X. Liang, G. Ji, H. Zhang, Y. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 7, 9776–9783 (2015). https://doi.org/10.1021/acsami.5b01654
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu, Q. Shao, Z. Guo, Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6(9), 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
Y. Guo, W. Liu, R. Wu, L. Sun, Y. Zhang, Y. Cui, S. Liu, H. Wang, B. Shan, Marine-biomass-derived porous carbon sheets with a tunable n-doping content for superior sodium-ion storage. ACS Appl. Mater. Interfaces 10(44), 38376–38386 (2018). https://doi.org/10.1021/acsami.8b14304
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie, J. Wang, M. Su, L. Li, Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
Z. Gao, Y. Zhang, N. Song, X. Li, Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett. 5(2), 69–88 (2017). https://doi.org/10.1080/21663831.2016.1250834
W. Song, M. Cao, L. Fan, M. Lu, Y. Li, C. Wang, H. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding. Carbon 77, 130–142 (2014). https://doi.org/10.1016/j.carbon.2014.05.014
B. Zhao, Y. Li, J. Liu, L. Fan, K. Gao et al., Symmetrical polyhedron-bowl Co/CoO with hexagonal plate to forward electromagnetic wave absorption ability. Cryst. Eng. Commun. 21, 816–826 (2019). https://doi.org/10.1039/C8CE01677A
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao, Y. Du, G. Ji, Z.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900163
R. Kumar, S.R. Dhakate, T. Gupta, P. Saini, B.P. Singh, R.B. Mathur, Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes. J. Mater. Chem. A 1(18), 5727–5735 (2013). https://doi.org/10.1039/c3ta10604g
Z.N. Wing, B. Wang, J.W. Halloran, Permittivity of porous titanate dielectrics. J. Am. Ceram. Soc. 89(12), 3696–3700 (2006). https://doi.org/10.1111/j.1551-2916.2006.01323.x
O. Levy, D. Stroud, Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys. Rev. B 56(13), 8035 (1997). https://doi.org/10.1103/PhysRevB.56.8035
Y. Cheng, J. Cao, Y. Li, Z. Li, H. Zhao, G. Ji, Y. Du, The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption. ACS Sustain. Chem. Eng. 6(1), 1427–1435 (2018). https://doi.org/10.1021/acssuschemeng.7b03846
R. Che, L.M. Peng, X. Duan, Q. Chen, X. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
F.M. Alanagh, A.B. Khiabani, H. Salimkhani, Improvement in magnetic and microwave absorption properties of nano-Fe3O4@CFs composites using a modified multi-step EPD process. Appl. Surf. Sci. 420, 726–739 (2017). https://doi.org/10.1016/j.apsusc.2017.05.207
H. Lv, X. Liang, Y. Cheng, H. Zhang, D. Tang, B. Zhang, G. Ji, Y. Du, Coin-like α-Fe2O3@CoFe2O4 core-shell composites with excellent electromagnetic absorption performance. ACS Appl. Mater. Interfaces 7, 4744–4750 (2015). https://doi.org/10.1021/am508438s
X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535–5546 (2015). https://doi.org/10.1039/c4ta05718j
Y. Huang, Y. Wang, Z. Li, Z. Yang, C. Shen, C. He, Effect of pore morphology on the dielectric properties of porous carbons for microwave absorption applications. J. Phys. Chem. C 118, 26027–26032 (2014). https://doi.org/10.1021/jp506999k
H. Xu, X. Yin, Z. Li, C. Liu, Z. Wang, M. Li, L. Zhang, L. Cheng, Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties. Nanotechnology 29, 184003 (2018). https://doi.org/10.1088/1361-6528/aaaf25
S. Chung, A. Manthiram, Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li–S batteries. Adv. Mater. 26, 1360–1365 (2014). https://doi.org/10.1002/adma.201304365
S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8(34), 19011–19023 (2018). https://doi.org/10.1039/C8RA00913A
J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying, Z. Chen, Wood-based straightway channel structure for high performance microwave absorption. Carbon 124, 492–498 (2017). https://doi.org/10.1016/j.carbon.2017.07.088
J. Rong, F. Qiu, T. Zhang, X. Zhang, Y. Zhu, J. Xu, D. Yang, Y. Dai, A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption. Chem. Eng. J. 322, 397–407 (2017). https://doi.org/10.1016/j.cej.2017.04.049
Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017). https://doi.org/10.1039/C7GC01681F
W. Lv, F. Wen, J. Xiang, J. Zhao, L. Li, L. Wang, Z. Liu, Y. Tian, Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim. Acta 176, 533–541 (2015). https://doi.org/10.1016/j.electacta.2015.07.059
Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129, 695–701 (2018). https://doi.org/10.1016/j.carbon.2017.12.103
Y. Li, Q. Meng, J. Ma, C. Zhu, J. Cui et al., Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 7(21), 11146–11154 (2015). https://doi.org/10.1021/acsami.5b02774
F. Ma, D. Ma, G. Wu, W. Geng, J. Shao, S. Song, J. Wan, J. Qiu, Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors. Chem. Commun. 52(40), 6673–6676 (2016). https://doi.org/10.1039/C6CC02147F
D. Wang, F. Li, M. Liu, G. Lu, H. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 120(2), 379–382 (2008). https://doi.org/10.1002/ange.200702721
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng, B. Quan, Y. Du, Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
H. Lv, H. Zhang, G. Ji, Z.J. Xu, An interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interfaces 8, 6529–6538 (2016). https://doi.org/10.1021/acsami.5b12662
C. Luo, T. Jiao, Y. Tang, J. Kong, Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv. Eng. Mater. 20, 1701168 (2018). https://doi.org/10.1002/adem.201701168
S.K. Singh, H. Prakash, M.J. Akhtar, K.K. Kar, Lightweight and high-performance microwave absorbing heteroatom-doped carbon derived from chicken feather fibers. ACS Sustain. Chem. Eng. 6, 5381–5393 (2018). https://doi.org/10.1021/acssuschemeng.8b00183
S. Lu, M. Jin, Y. Zhang, Y. Niu, J. Gao, C. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy. Mater. 8, 1702545 (2018). https://doi.org/10.1002/aenm.201702545
X. Gao, W. Xing, J. Zhou, G. Wang, S. Zhou, Z. Liu, Q. Xue, Z. Yan, Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim. Acta 133, 459–466 (2014). https://doi.org/10.1016/j.electacta.2014.04.101
J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012). https://doi.org/10.1039/c2jm34066f
S. Rovani, A.G. Rodrigues, L.F. Medeiros, R. Cataluña, É.C. Lima, A.N. Fernandes, Synthesis and characterisation of activated carbon from agroindustrial waste—preliminary study of 17 β-estradiol removal from aqueous solution. J. Environ. Chem. Eng. 4(2), 2128–2137 (2016). https://doi.org/10.1016/j.jece.2016.03.030
A. Dobashi, J. Maruyama, Y. Shen, M. Nandi, H. Uyama, Activated carbon monoliths derived from bacterial cellulose/polyacrylonitrile composite as new generation electrode materials in EDLC. Carbohydr. Polym. 200, 381–390 (2018). https://doi.org/10.1016/j.carbpol.2018.08.016
T. Guan, J. Zhao, G. Zhang, D. Zhang, B. Han, N. Tang, J. Wang, K. Li, Insight into controllability and predictability of pore structures in pitch-based activated carbons. Microporous Mesoporous Mater. 271, 118–127 (2018). https://doi.org/10.1016/j.micromeso.2018.05.036
J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzor, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy Environ. Sci. 8, 941–955 (2015). https://doi.org/10.1039/C4EE02986K
M.J. Prauchner, F. Rodríguez-Reinoso, Chemical versus physical activation of coconut shell: a comparative study. Microporous Mesoporous Mater. 152, 163–171 (2012). https://doi.org/10.1016/j.micromeso.2011.11.040
G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang, X. Yao, Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99, 203–211 (2016). https://doi.org/10.1016/j.carbon.2015.11.079
E. Lei, C. Ma, Z. Xu, S. Liu, CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl. Surf. Sci. 457, 477–486 (2018). https://doi.org/10.1016/j.apsusc.2018.07.001
X. Wu, L. Jiang, C. Long, Z. Fan, From flour to honeycomb-like carbon foam: carbon makes room for high energy density supercapacitors. Nano Energy 13, 527–536 (2015). https://doi.org/10.1016/j.nanoen.2015.03.013
Z. Xie, X. Shang, J. Yan, T. Hussain, P. Nie, J. Liu, Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochim. Acta 290, 666–675 (2018). https://doi.org/10.1016/j.electacta.2018.09.104
R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li, S. Xiong, Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors. J. Mater. Chem. A 6, 17730–17739 (2018). https://doi.org/10.1039/c8ta06471g
H. Wu, Y. Deng, J. Mou, Q. Zheng, F. Xie, E. Long, C. Xu, D. Lin, Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries. Electrochim. Acta 242, 146–158 (2017). https://doi.org/10.1016/j.electacta.2017.05.026
Q. Wang, B. Qin, X. Zhang, X. Xie, L. Jin, Q. Cao, Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors. J. Mater. Chem. A 6, 19653–19663 (2018). https://doi.org/10.1039/c8ta07563h
T. Ramesh, N. Rajalakshmi, K.S. Dhathathreyan, L.R.G. Reddy, Hierarchical porous carbon microfibers derived from tamarind seed coat for high-energy supercapacitor application. ACS Omega 3(10), 12832–12840 (2018). https://doi.org/10.1021/acsomega.8b01850
J. Deng, M. Li, Y. Wang, Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chem. 18, 4824–4854 (2016). https://doi.org/10.1039/c6gc01172a
X. Qiu, L. Wang, H. Zhu, Y. Guan, Q. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nanoporous carbon. Nanoscale 9(22), 7408–7418 (2017). https://doi.org/10.1039/C7NR02628E
H. Zhao, Y. Cheng, H. Lv, B. Zhang, G. Ji, Y. Du, Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon. ACS Sustain. Chem. Eng. 6(11), 15850–15857 (2018). https://doi.org/10.1021/acssuschemeng.8b04461
J. Cao, C. Zhu, Y. Aoki, H. Habazaki, Starch-derived hierarchical porous carbon with controlled porosity for high performance supercapacitors. ACS Sustain. Chem. Eng. 6(6), 7292–7303 (2018). https://doi.org/10.1021/acssuschemeng.7b04459
Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song et al., MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors. Chem. Eng. J. 320, 634–643 (2017). https://doi.org/10.1016/j.cej.2017.03.091
A. Xie, J. Dai, X. Chen, P. Ma, J. He, C. Li et al., Ultrahigh adsorption of typical antibiotics onto novel hierarchical porous carbons derived from renewable lignin via halloysite nanotubes-template and in situ activation. Chem. Eng. J. 304, 609–620 (2016). https://doi.org/10.1016/j.cej.2016.06.138
P. Xiao, L. Zhao, Z. Sui, M. Xu, B. Han, Direct synthesis of ordered mesoporous hydrothermal carbon materials via a modified soft-templating method. Microporous Mesoporous Mater. 253, 215–222 (2017). https://doi.org/10.1016/j.micromeso.2017.07.001
J.S. Lee, X. Wang, H. Luo, S. Dai, Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids. Adv. Mater. 22(9), 1004–1007 (2010). https://doi.org/10.1002/adma.200903403
X. Wang, S. Dai, Ionic liquids as versatile precursors for functionalized porous carbon and carbon–oxide composite materials by confined carbonization. Angew. Chem. Int. Ed. 49(37), 6664–6668 (2010). https://doi.org/10.1002/anie.201003163
S. Kubo, R.J. White, N. Yoshizawa, M. Antonietti, M.-M. Titirici, Ordered carbohydrate-derived porous carbons. Chem. Mater. 23, 4882–4885 (2011). https://doi.org/10.1021/cm2020077
N. Brun, K. Sakaushi, L. Yu, L. Giebeler, J. Eckert, M.M. Titirici, Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium–sulfur batteries. Phys. Chem. Chem. Phys. 15, 6080–6087 (2013). https://doi.org/10.1039/c3cp50653c
R.J. White, V. Budarin, R. Luque, J.H. Clark, D.J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources. Chem. Soc. Rev. 38, 3401–3418 (2009). https://doi.org/10.1039/b822668g
S.M. Suchitra, P.R. Reddy, N.K. Udayashankar, Synthesis and characterization of graphitic carbon nitride nanotubes using porous anodic alumina templates. Adv. Sci. Lett. 24(8), 5673–5676 (2018). https://doi.org/10.1166/asl.2018.12174
J. Janaun, N. Ellis, Role of silica template in the preparation of sulfonated mesoporous carbon catalysts. Appl. Catal. A 394, 25–31 (2011). https://doi.org/10.1016/j.apcata.2010.12.016
H. Lv, J. Zhao, H. Zhang, G. Ji, Y. Du, Achieving excellent bandwidth absorber by a mirror growth process of magnetic porous polyhedron structure. Nano Res. 6, 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1
Y. Duan, Z. Xiao, X. Yan, Z. Gao, Y. Tang, L. Hou, Q. Li, G. Ning, Y. Li, Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires. ACS Appl. Mater. Interfaces 10(46), 40078–40087 (2018). https://doi.org/10.1021/acsami.8b11395
W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou, G. Ji, A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
H. Lv, G. Ji, W. Liu, H. Zhang, Y. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight feature. J. Mater. Chem. C 3, 0232–10241 (2015). https://doi.org/10.1039/C5TC02512E
G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, Investigation and optimization of Fe/ZnFe2O4 as a wide-band electromagnetic absorber. J. Colloid Interface Sci. 536, 548–555 (2018). https://doi.org/10.1016/j.jcis.2018.10.084
M. Qiao, X. Lei, Y. Ma, L. Tian, X. He, K. Su, Q. Zhang, Application of yolk–shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
D. Liu, Y. Du, Z. Li, Y. Wang, P. Xu et al., Facile synthesis of 3D flower-like Ni microspheres with enhanced microwave absorption properties. J. Mater. Chem. C 6(36), 9615–9623 (2018). https://doi.org/10.1039/c8tc02931h
W. Xu, G. Wang, P. Yin, Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759–767 (2018). https://doi.org/10.1016/j.carbon.2018.07.044
F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Graphene-based microwave absorbing composites: a review and prospective. Compos. Part B 137, 260–277 (2018). https://doi.org/10.1016/j.compositesb.2017.11.023
Y. Cheng, G. Ji, Z. Li, H. Lv, W. Liu, Y. Zhao, J. Cao, Y. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloys Compd. 704, 289–295 (2017). https://doi.org/10.1016/j.jallcom.2017.02.024
I. Abdalla, A. Salim, M. Zhu, J. Yu, Z. Li, Light and flexible composite nanofibrous membranes for high efficiency electromagnetic absorption in a broad frequency. ACS Appl. Mater. Interfaces 10, 44561–44569 (2018). https://doi.org/10.1021/acsami.8b17514
H. Guan, H. Wang, Y. Zhang, C. Dong, G. Chen, Y. Wang, J. Xie, Microwave absorption performance of Ni(OH)2 decorating biomass carbon composites from Jackfruit peel. Appl. Surf. Sci. 447, 261–268 (2018). https://doi.org/10.1016/j.apsusc.2018.03.225
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan, G. Shao, Z. Bai, R. Zhang, Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10(1), 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan, M. Yu, Q. Zhang, Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J. 326, 945–955 (2017). https://doi.org/10.1016/j.cej.2017.06.006
L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, F. Li, Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21, 095708 (2010). https://doi.org/10.1088/0957-4484/21/9/095708
H. Lv, Y. Guo, G. Wu, G. Ji, Y. Zhao, Z.J. Xu, Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660–5668 (2017). https://doi.org/10.1021/acsami.6b16223
J. Fang, Y. Shang, Z. Chen, W. Wei, Y. Hu, X. Yue, Z. Jiang, Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation. J. Mater. Chem. C 5(19), 4695–4705 (2017). https://doi.org/10.1039/C7TC00987A
W. Li, H. Qi, F. Guo, Y. Du, N. Song, Y. Liu, Y. Chen, Co nanoparticles supported on cotton-based carbon fibers: a novel broadband microwave absorbent. J. Alloys Compd. 772, 760–769 (2019). https://doi.org/10.1016/j.jallcom.2018.09.075
H. Zhao, Y. Cheng, J. Ma, Y. Zhang, G. Ji, Y. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber. Chem. Eng. J. 339, 432–441 (2018). https://doi.org/10.1016/j.cej.2018.01.151
H. Zhao, Z. Fu, H. Chen, M. Zhong, C. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route. ACS Appl. Mater. Interfaces 8, 1468–1477 (2016). https://doi.org/10.1021/acsami.5b10805
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
C. Li, Y. Ge, X. Jiang, G.I.N. Waterhouse, Z. Zhang, Porous Fe3O4/C microspheres for efficient broadband electromagnetic wave absorption. Ceram. Int. 44(16), 19171–19183 (2018). https://doi.org/10.1016/j.ceramint.2018.06.264
Y. Cheng, H. Zhao, Z. Yang, J. Lv, J. Cao, X. Qi, G. Ji, Y. Du, An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption. J. Alloys Compd. 762, 463–472 (2018). https://doi.org/10.1016/j.jallcom.2018.05.261
S. Gao, Q. An, Z. Xiao, S. Zhai, Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 8, 19011–19023 (2018). https://doi.org/10.1039/c8ra00913a
L. Wang, M. Liu, G. Wang, B. Dai, F. Yu, J. Zhang, An ultralight nitrogen-doped carbon aerogel anchored by Ni-NiO nanoparticles for enhanced microwave adsorption performance. J. Alloys Compd. 776, 43–51 (2019). https://doi.org/10.1016/j.jallcom.2018.10.214
H. Wang, F. Meng, J. Li, T. Li, Z. Chen, H. Luo, Z. Zhou, Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption. ACS Sustain. Chem. Eng. 6, 11801–11810 (2018). https://doi.org/10.1021/acssuschemeng.8b02089
H. Zhao, J. Cheng, Y. Wang, Biomass-derived Co@crystalline carbon@carbon aerogel composite with enhanced thermal stability and strong microwave absorption performance. J. Alloys Compd. 736, 71–79 (2018). https://doi.org/10.1016/j.jallcom.2017.11.120