Correction to: Highly Porous Yet Transparent Mechanically Flexible Aerogels Realizing Solar–Thermal Regulatory Cooling
Corresponding Author: Tianxi Liu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 158
Abstract
The demand for highly porous yet transparent aerogels with mechanical flexibility and solar-thermal dual-regulation for energy-saving windows is significant but challenging. Herein, a delaminated aerogel film (DAF) is fabricated through filtration-induced delaminated gelation and ambient drying. The delaminated gelation process involves the assembly of fluorinated cellulose nanofiber (FCNF) at the solid–liquid interface between the filter and the filtrate during filtration, resulting in the formation of lamellar FCNF hydrogels with strong intra-plane and weak interlayer hydrogen bonding. By exchanging the solvents from water to hexane, the hydrogen bonding in the FCNF hydrogel is further enhanced, enabling the formation of the DAF with intra-layer mesopores upon ambient drying. The resulting aerogel film is lightweight and ultra-flexible, which possesses desirable properties of high visible-light transmittance (91.0%), low thermal conductivity (33 mW m−1 K−1), and high atmospheric-window emissivity (90.1%). Furthermore, the DAF exhibits reduced surface energy and exceptional hydrophobicity due to the presence of fluorine-containing groups, enhancing its durability and UV resistance. Consequently, the DAF has demonstrated its potential as solar-thermal regulatory cooling window materials capable of simultaneously providing indoor lighting, thermal insulation, and daytime radiative cooling under direct sunlight. Significantly, the enclosed space protected by the DAF exhibits a temperature reduction of 2.6 °C compared to that shielded by conventional architectural glass.
Highlights:
1 A lamellar-structured fluorinated cellulose nanofiber aerogel film is prepared by filtration-induced delaminated gelation and ambient drying.
2 The aerogel film demonstrates exceptional mechanical flexibility and resistance to complex deformations.
3 The aerogel film displays low thermal conductivity, high visible-light transmittance and superior selective infrared emissivity, rendering it high solar-thermal regulatory cooling performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Amasyali, N.M. El-Gohary, A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018). https://doi.org/10.1016/j.rser.2017.04.095
- L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007
- W. Chung, Review of building energy-use performance benchmarking methodologies. Appl. Energy 88, 1470–1479 (2011). https://doi.org/10.1016/j.apenergy.2010.11.022
- E. Abraham, V. Cherpak, B. Senyuk, J.B. ten Hove, T. Lee et al., Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8, 381–396 (2023). https://doi.org/10.1038/s41560-023-01226-7
- L. Zhao, X. Lee, R.B. Smith, K. Oleson, Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014). https://doi.org/10.1038/nature13462
- S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
- B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 15, 94 (2023). https://doi.org/10.1007/s40820-023-01063-z
- L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018). https://doi.org/10.1002/adma.201802152
- A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). https://doi.org/10.1038/nature13883
- P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- A. Leroy, B. Bhatia, C. Kelsall, A. Castillejo-Cuberos et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
- N.N. Shi, C.C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Thermal physiology. Keeping cool: enhanced optical reflection and radiative heat dissipation in saharan silver ants. Science 349, 298–301 (2015). https://doi.org/10.1126/science.aab3564
- Q. Wu, Y. Cui, G. Xia, J. Yang, S. Du et al., Passive daytime radiative cooling coatings with renewable self-cleaning functions. Chin. Chemical Lett. 35, 108687 (2024). https://doi.org/10.1016/j.cclet.2023.108687
- C. Buratti, E. Moretti, Glazing systems with silica aerogel for energy savings in buildings. Appl. Energy 98, 396–403 (2012). https://doi.org/10.1016/j.apenergy.2012.03.062
- Q. Liu, A.W. Frazier, X. Zhao, J.A. De La Cruz, A.J. Hess et al., Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48, 266–274 (2018). https://doi.org/10.1016/j.nanoen.2018.03.029
- R.C. Walker, A.P. Hyer, H. Guo, J.K. Ferri, Silica aerogel synthesis/process–property predictions by machine learning. Chem. Mater. 35, 4897–4910 (2023). https://doi.org/10.1021/acs.chemmater.2c03459
- S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 15, 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
- Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
- O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, T. Chen, S. Kiddell et al., Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties. Compos. Commun. 34, 101274 (2022). https://doi.org/10.1016/j.coco.2022.101274
- X. Yu, X. Ren, X. Wang, G.H. Tang, M. Du, A high thermal stability core–shell aerogel structure for high-temperature solar thermal conversion. Compos. Commun. 37, 101440 (2023). https://doi.org/10.1016/j.coco.2022.101440
- X. Li, H. He, Q. Liu, C. Zhao, H. Chen, Fabrication and property of hydrophobic polyvinyl alcohol/clay aerogel via irradiation-crosslinking and ambient-drying. Compos. Commun. 36, 101359 (2022). https://doi.org/10.1016/j.coco.2022.101359
- L. Jian, G. Wang, X. Liu, H. Ma, Unveiling an S-scheme F-Co3O4@Bi2WO6 heterojunction for robust water purification. eScience (2023). https://doi.org/10.1016/j.esci.2023.100206
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013). https://doi.org/10.1021/nl4004283
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
- K. Xu, Y. Wang, B. Zhang, C. Zhang, T. Liu, Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 24, 100677 (2021). https://doi.org/10.1016/j.coco.2021.100677
- R. Zhao, E. Songfeng, D. Ning, Q. Ma, B. Geng et al., Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions. Compos. Commun. 35, 101322 (2022). https://doi.org/10.1016/j.coco.2022.101322
- M. He, M.K. Alam, H. Liu, M. Zheng, J. Zhao et al., Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos. Commun. 28, 100936 (2021). https://doi.org/10.1016/j.coco.2021.100936
- J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545–1555 (2022). https://doi.org/10.1007/s42765-022-00188-x
- T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4, 1118–1128 (2022). https://doi.org/10.1007/s42765-022-00145-8
- P.S. Weiss, How do we assess the impact of nanoscience and nanotechnology? ACS Nano 15, 1–2 (2021). https://doi.org/10.1021/acsnano.1c00391
- S. Tang, M. Ma, X. Zhang, X. Zhao, J. Fan et al., Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation. Adv. Funct. Mater. 32, 2205417 (2022). https://doi.org/10.1002/adfm.202205417
- H. Françon, Z. Wang, A. Marais, K. Mystek, A. Piper et al., Ambient-dried, 3D-printable and electrically conducting cellulose nanofiber aerogels by inclusion of functional polymers. Adv. Funct. Mater. 30, 1909383 (2020). https://doi.org/10.1002/adfm.201909383
- Z. Ye, C. Hu, J. Wang, H. Liu, L. Li et al., Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. Exploration 3, 20230002 (2023). https://doi.org/10.1002/EXP.20230002
- L. Wang, Y. Song, L. Li, L. Tao, M. Yan et al., Development of robust perovskite single crystal radiation detectors with high spectral resolution through synergetic trap deactivation and self-healing. InfoMat 5, e12461 (2023). https://doi.org/10.1002/inf2.12461
- J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
- X. Han, Z. Wang, L. Ding, L. Chen, F. Wang et al., Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chemical Lett. 32, 3105–3108 (2021). https://doi.org/10.1016/j.cclet.2021.03.044
- T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
- Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33, 2301319 (2023). https://doi.org/10.1002/adfm.202301319
- H. Lai, Z. Chen, H. Zhuo, Y. Hu, X. Zhao et al., Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel. Chin. Chemical Lett. 35, 108331 (2024). https://doi.org/10.1016/j.cclet.2023.108331
- J. Nemoto, T. Saito, A. Isogai, Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl. Mater. Interfaces 7, 19809–19815 (2015). https://doi.org/10.1021/acsami.5b05841
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248
- R. Zhang, B. Li, Y. Yang, N. Wu, Z. Sui et al., Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano Res. 16, 7931–7940 (2023). https://doi.org/10.1007/s12274-023-5521-5
- M. Li, X. Chen, X. Li, J. Dong, X. Zhao et al., Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv. Fiber Mater. 4, 1267–1277 (2022). https://doi.org/10.1007/s42765-022-00175-2
- X. Yang, E.D. Cranston, Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016–6025 (2014). https://doi.org/10.1021/cm502873c
- W. Chen, Q. Zhang, K. Uetani, Q. Li, P. Lu et al., Absorption materials: sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials. Adv. Mater. Interfaces 3, 9 (2016). https://doi.org/10.1002/admi.201600004
- S. Gamage, D. Banerjee, M.M. Alam, T. Hallberg, C. Åkerlind et al., Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28, 9383–9393 (2021). https://doi.org/10.1007/s10570-021-04112-1
- C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22, 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
- K.-Y. Chan, X. Shen, J. Yang, K.-T. Lin, H. Venkatesan et al., Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun. 13, 5553 (2022). https://doi.org/10.1038/s41467-022-33234-8
References
K. Amasyali, N.M. El-Gohary, A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018). https://doi.org/10.1016/j.rser.2017.04.095
L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007
W. Chung, Review of building energy-use performance benchmarking methodologies. Appl. Energy 88, 1470–1479 (2011). https://doi.org/10.1016/j.apenergy.2010.11.022
E. Abraham, V. Cherpak, B. Senyuk, J.B. ten Hove, T. Lee et al., Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8, 381–396 (2023). https://doi.org/10.1038/s41560-023-01226-7
L. Zhao, X. Lee, R.B. Smith, K. Oleson, Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014). https://doi.org/10.1038/nature13462
S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
B. Yu, Y. Wang, Y. Zhang, Z. Zhang, Self-supporting nanoporous copper film with high porosity and broadband light absorption for efficient solar steam generation. Nano-Micro Lett. 15, 94 (2023). https://doi.org/10.1007/s40820-023-01063-z
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30, e1802152 (2018). https://doi.org/10.1002/adma.201802152
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). https://doi.org/10.1038/nature13883
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
A. Leroy, B. Bhatia, C. Kelsall, A. Castillejo-Cuberos et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5, eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
N.N. Shi, C.C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Thermal physiology. Keeping cool: enhanced optical reflection and radiative heat dissipation in saharan silver ants. Science 349, 298–301 (2015). https://doi.org/10.1126/science.aab3564
Q. Wu, Y. Cui, G. Xia, J. Yang, S. Du et al., Passive daytime radiative cooling coatings with renewable self-cleaning functions. Chin. Chemical Lett. 35, 108687 (2024). https://doi.org/10.1016/j.cclet.2023.108687
C. Buratti, E. Moretti, Glazing systems with silica aerogel for energy savings in buildings. Appl. Energy 98, 396–403 (2012). https://doi.org/10.1016/j.apenergy.2012.03.062
Q. Liu, A.W. Frazier, X. Zhao, J.A. De La Cruz, A.J. Hess et al., Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence. Nano Energy 48, 266–274 (2018). https://doi.org/10.1016/j.nanoen.2018.03.029
R.C. Walker, A.P. Hyer, H. Guo, J.K. Ferri, Silica aerogel synthesis/process–property predictions by machine learning. Chem. Mater. 35, 4897–4910 (2023). https://doi.org/10.1021/acs.chemmater.2c03459
S. Luo, L. Peng, Y. Xie, X. Cao, X. Wang et al., Flexible large-area graphene films of 50–600 nm thickness with high carrier mobility. Nano-Micro Lett. 15, 61 (2023). https://doi.org/10.1007/s40820-023-01032-6
Z. Jiao, W. Huyan, F. Yang, J. Yao, R. Tan et al., Achieving ultra-wideband and elevated temperature electromagnetic wave absorption via constructing lightweight porous rigid structure. Nano-Micro Lett. 14, 173 (2022). https://doi.org/10.1007/s40820-022-00904-7
O.A. Tafreshi, Z. Saadatnia, S. Ghaffari-Mosanenzadeh, T. Chen, S. Kiddell et al., Flexible and shape-configurable PI composite aerogel films with tunable dielectric properties. Compos. Commun. 34, 101274 (2022). https://doi.org/10.1016/j.coco.2022.101274
X. Yu, X. Ren, X. Wang, G.H. Tang, M. Du, A high thermal stability core–shell aerogel structure for high-temperature solar thermal conversion. Compos. Commun. 37, 101440 (2023). https://doi.org/10.1016/j.coco.2022.101440
X. Li, H. He, Q. Liu, C. Zhao, H. Chen, Fabrication and property of hydrophobic polyvinyl alcohol/clay aerogel via irradiation-crosslinking and ambient-drying. Compos. Commun. 36, 101359 (2022). https://doi.org/10.1016/j.coco.2022.101359
L. Jian, G. Wang, X. Liu, H. Ma, Unveiling an S-scheme F-Co3O4@Bi2WO6 heterojunction for robust water purification. eScience (2023). https://doi.org/10.1016/j.esci.2023.100206
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013). https://doi.org/10.1021/nl4004283
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
K. Xu, Y. Wang, B. Zhang, C. Zhang, T. Liu, Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Compos. Commun. 24, 100677 (2021). https://doi.org/10.1016/j.coco.2021.100677
R. Zhao, E. Songfeng, D. Ning, Q. Ma, B. Geng et al., Strengthening and toughening of TEMPO-oxidized cellulose nanofibers/polymers composite films based on hydrogen bonding interactions. Compos. Commun. 35, 101322 (2022). https://doi.org/10.1016/j.coco.2022.101322
M. He, M.K. Alam, H. Liu, M. Zheng, J. Zhao et al., Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos. Commun. 28, 100936 (2021). https://doi.org/10.1016/j.coco.2021.100936
J. Wu, M. Zhang, M. Su, Y. Zhang, J. Liang et al., Robust and flexible multimaterial aerogel fabric toward outdoor passive heating. Adv. Fiber Mater. 4, 1545–1555 (2022). https://doi.org/10.1007/s42765-022-00188-x
T. Xue, C. Zhu, X. Feng, Q. Wali, W. Fan et al., Polyimide aerogel fibers with controllable porous microstructure for super-thermal insulation under extreme environments. Adv. Fiber Mater. 4, 1118–1128 (2022). https://doi.org/10.1007/s42765-022-00145-8
P.S. Weiss, How do we assess the impact of nanoscience and nanotechnology? ACS Nano 15, 1–2 (2021). https://doi.org/10.1021/acsnano.1c00391
S. Tang, M. Ma, X. Zhang, X. Zhao, J. Fan et al., Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation. Adv. Funct. Mater. 32, 2205417 (2022). https://doi.org/10.1002/adfm.202205417
H. Françon, Z. Wang, A. Marais, K. Mystek, A. Piper et al., Ambient-dried, 3D-printable and electrically conducting cellulose nanofiber aerogels by inclusion of functional polymers. Adv. Funct. Mater. 30, 1909383 (2020). https://doi.org/10.1002/adfm.201909383
Z. Ye, C. Hu, J. Wang, H. Liu, L. Li et al., Burst of hopping trafficking correlated reversible dynamic interactions between lipid droplets and mitochondria under starvation. Exploration 3, 20230002 (2023). https://doi.org/10.1002/EXP.20230002
L. Wang, Y. Song, L. Li, L. Tao, M. Yan et al., Development of robust perovskite single crystal radiation detectors with high spectral resolution through synergetic trap deactivation and self-healing. InfoMat 5, e12461 (2023). https://doi.org/10.1002/inf2.12461
J. Yang, X. Shen, W. Yang, J.-K. Kim, Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog. Mater. Sci. 133, 101054 (2023). https://doi.org/10.1016/j.pmatsci.2022.101054
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
X. Han, Z. Wang, L. Ding, L. Chen, F. Wang et al., Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. Chin. Chemical Lett. 32, 3105–3108 (2021). https://doi.org/10.1016/j.cclet.2021.03.044
T. Xue, Y. Yang, D. Yu, Q. Wali, Z. Wang et al., 3D printed integrated gradient-conductive MXene/CNT/polyimide aerogel frames for electromagnetic interference shielding with ultra-low reflection. Nano-Micro Lett. 15, 45 (2023). https://doi.org/10.1007/s40820-023-01017-5
Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33, 2301319 (2023). https://doi.org/10.1002/adfm.202301319
H. Lai, Z. Chen, H. Zhuo, Y. Hu, X. Zhao et al., Defect reduction to enhance the mechanical strength of nanocellulose carbon aerogel. Chin. Chemical Lett. 35, 108331 (2024). https://doi.org/10.1016/j.cclet.2023.108331
J. Nemoto, T. Saito, A. Isogai, Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl. Mater. Interfaces 7, 19809–19815 (2015). https://doi.org/10.1021/acsami.5b05841
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotechnol. 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248
R. Zhang, B. Li, Y. Yang, N. Wu, Z. Sui et al., Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano Res. 16, 7931–7940 (2023). https://doi.org/10.1007/s12274-023-5521-5
M. Li, X. Chen, X. Li, J. Dong, X. Zhao et al., Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv. Fiber Mater. 4, 1267–1277 (2022). https://doi.org/10.1007/s42765-022-00175-2
X. Yang, E.D. Cranston, Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem. Mater. 26, 6016–6025 (2014). https://doi.org/10.1021/cm502873c
W. Chen, Q. Zhang, K. Uetani, Q. Li, P. Lu et al., Absorption materials: sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials. Adv. Mater. Interfaces 3, 9 (2016). https://doi.org/10.1002/admi.201600004
S. Gamage, D. Banerjee, M.M. Alam, T. Hallberg, C. Åkerlind et al., Reflective and transparent cellulose-based passive radiative coolers. Cellulose 28, 9383–9393 (2021). https://doi.org/10.1007/s10570-021-04112-1
C. Cai, Z. Wei, C. Ding, B. Sun, W. Chen et al., Dynamically tunable all-weather daytime cellulose aerogel radiative supercooler for energy-saving building. Nano Lett. 22, 4106–4114 (2022). https://doi.org/10.1021/acs.nanolett.2c00844
K.-Y. Chan, X. Shen, J. Yang, K.-T. Lin, H. Venkatesan et al., Scalable anisotropic cooling aerogels by additive freeze-casting. Nat. Commun. 13, 5553 (2022). https://doi.org/10.1038/s41467-022-33234-8