Understanding Bridging Sites and Accelerating Quantum Efficiency for Photocatalytic CO2 Reduction
Corresponding Author: Huixia Luo
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 5
Abstract
We report a novel double-shelled nanoboxes photocatalyst architecture with tailored interfaces that accelerate quantum efficiency for photocatalytic CO2 reduction reaction (CO2RR) via Mo–S bridging bonds sites in Sv–In2S3@2H–MoTe2. The X-ray absorption near-edge structure shows that the formation of Sv–In2S3@2H–MoTe2 adjusts the coordination environment via interface engineering and forms Mo–S polarized sites at the interface. The interfacial dynamics and catalytic behavior are clearly revealed by ultrafast femtosecond transient absorption, time-resolved, and in situ diffuse reflectance–Infrared Fourier transform spectroscopy. A tunable electronic structure through steric interaction of Mo–S bridging bonds induces a 1.7-fold enhancement in Sv–In2S3@2H–MoTe2(5) photogenerated carrier concentration relative to pristine Sv–In2S3. Benefiting from lower carrier transport activation energy, an internal quantum efficiency of 94.01% at 380 nm was used for photocatalytic CO2RR. This study proposes a new strategy to design photocatalyst through bridging sites to adjust the selectivity of photocatalytic CO2RR.
Highlights:
1 The S-vacancies result in the change of d-band electronic state of Mo.
2 An internal quantum efficiency of 94.01% at 380 nm for photocatalytic CO2 reduction reaction (CO2RR).
3 The Mo–S bridging bonds optimize adsorption energies and accelerate CO2RR kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8, 1802427 (2018). https://doi.org/10.1002/aenm.201802427
- C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14, 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59, 10651–10657 (2020). https://doi.org/10.1002/anie.202003623
- K. Li, Y. Cai, X. Yang, S. Wang, C. Teng et al., H2S involved photocatalytic system: a novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant. Adv. Funct. Mater. 32, 2113002 (2022). https://doi.org/10.1002/adfm.202113002
- R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu et al., 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, e202218016 (2023). https://doi.org/10.1002/anie.202218016
- H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa et al., Double resonance Raman modes in monolayer and few-layer MoTe2. Phys. Rev. B 91, 205415 (2015). https://doi.org/10.1103/PhysRevB.91.205415
- K.A.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
- Y. Feng, C. Wang, P. Cui, C. Li, B. Zhang et al., Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2. Adv. Mater. 34, 2109074 (2022). https://doi.org/10.1002/adma.202109074
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- V. Wang, N. Xu, J. Liu, G. Tang, W. Geng, Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (Dft-D) for the 94 elements H-Pu. J. chem. phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- Z. Wang, J. Zhu, X. Zu, Y. Wu, S. Shang et al., Selective CO2 photoreduction to CH4 via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angew. Chem. Int. Ed. 61, e202203249 (2022). https://doi.org/10.1002/anie.202203249
- NIST-JANAF Thermochemical Tables. https://janaf.nist.gov/
- Y.N. Bo, H.Y. Wang, Y.X. Lin, T. Yang, R. Ye et al., Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew. Chem. Int. Ed. 60, 16085 (2021). https://doi.org/10.1002/anie.202104001
- Q. Li, C. Fang, Z. Yang, B. Yu, M. Takabatake et al., Modulating the oxidation state of titanium via dual anions substitution for efficient N2 electroreduction. Small 18, 2201343 (2022). https://doi.org/10.1002/smll.202201343
- O.E. Dagdeviren, D. Glass, R. Sapienza, E. Cortés, S.A. Maier et al., The effect of photoinduced surface oxygen vacancies on the charge carrier dynamics in TiO2 films. Nano Lett. 21, 8348–8354 (2021). https://doi.org/10.1021/acs.nanolett.1c02853
- A.S. Al-Fatesh, Y. Arafat, S.O. Kasim, A.A. Ibrahim, A.E. Abasaeed et al., In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B Environ. 280, 119445 (2021). https://doi.org/10.1016/j.apcatb.2020.119445
- Y. Liu, Y. Zheng, W. Zhang, Z. Peng, H. Xie et al., Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. J. Mater. Sci. Technol. 95, 127–135 (2021). https://doi.org/10.1016/j.jmst.2021.03.025
- X. Yao, X. Hu, W. Zhang, X. Gong, X. Wang et al., Mie resonance in hollow nanoshells of ternary TiO2-Au-CdS and enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 276, 119153 (2020). https://doi.org/10.1016/j.apcatb.2020.119153
- H. Cheng, Q. Liu, Y. Diao, L. Wei, J. Chen et al., CoMo2S4 with superior conductivity for electrocatalytic hydrogen evolution: elucidating the key role of co. Adv. Funct. Mater. 9, 2103732 (2021). https://doi.org/10.1002/adfm.202103732
- S. Gong, Y. Niu, X. Liu, C. Xu, C. Chen et al., Selective CO2 photoreduction to acetate at asymmetric ternary bridging sites. ACS Nano 17, 4922–4932 (2023). https://doi.org/10.1021/acsnano.2c11977
- C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng et al., Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021). https://doi.org/10.1038/s41467-021-26425-2
- W. Liu, P. Fu, Y. Zhang, H. Xu, H. Wang et al., Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. PNAS 120, e2218813120 (2023). https://doi.org/10.1073/pnas.2218813120
- K.K. Halankar, B.P. Mandal, A.K. Tyagi, Superior electrochemical performance of MoS2 decorated on functionalized carbon nanotubes as anode material for sodium ion battery. Carbon Trends 5, 100103 (2021). https://doi.org/10.1016/j.cartre.2021.100103
- X. Guo, E. Song, W. Zhao, S. Xu, W. Zhao et al., Charge self-regulation in 1T’’’-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity. Nat. Commun. 13, 5954 (2022). https://doi.org/10.1038/s41467-022-33636-8
- J.C. McGlynn, T. Dankwort, L. Kienle, N.A.G. Bandeira, J.P. Fraser et al., The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 10, 4916 (2019). https://doi.org/10.1038/s41467-019-12831-0
- D. Lee, Y. Lee, Beneficial effect of V on stability of dispersed MoS2 catalysts in slurry phase hydrocracking of vacuum residue: XAFS studies. J. Catal. 413, 443–454 (2022). https://doi.org/10.1016/j.jcat.2022.06.037
- J.Y. Zhang, J. Liang, B. Mei, K. Lan, L. Zu et al., Synthesis of Ni/NiO@MoO3−x composite nanoarrays for high current density hydrogen evolution reaction. Adv. Energy Mater. 12, 2200001 (2022). https://doi.org/10.1002/aenm.202200001
- M. Krbal, V. Prokop, A.A. Kononov, J.R. Pereira, J. Mistrik et al., Amorphous-to-crystal transition in quasi-two-dimensional MoS2: implications for 2D electronic devices. ACS Appl. Nano Mater. 4, 8834–8844 (2021). https://doi.org/10.1021/acsanm.1c01504
- X. Zhao, X. Li, Z. Zhu, W. Hu, H. Zhang et al., Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen. Appl. Catal. B Environ. 300, 120759 (2022). https://doi.org/10.1016/j.apcatb.2021.120759
- M. Cao, L. Ni, Z. Wang, J. Liu, Y. Tian et al., DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Appl. Surf. Sci. 551, 149364 (2021). https://doi.org/10.1016/j.apsusc.2021.149364
- M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li et al., Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Mater. 32, 2111740 (2022). https://doi.org/10.1002/adfm.202111740
- M. Humayun, N. Sun, F. Raziq, X. Zhang, R. Yan et al., Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B Environ. 231, 23–33 (2018). https://doi.org/10.1016/j.apcatb.2018.02.060
- Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei et al., Designing covalent organic frameworks with Co–O4 atomic sites for efficient CO2 photoreduction. Nat. Commun. 14, 1147 (2023). https://doi.org/10.1038/s41467-023-36779-4
- L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao et al., Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 144, 17097–17109 (2022). https://doi.org/10.1021/jacs.2c06920
- X. Chen, C. Peng, W. Dan, L. Yu, Y. Wu et al., Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nat. Commun. 13, 4592 (2022). https://doi.org/10.1038/s41467-022-32367-0
- S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2022). https://doi.org/10.1007/s40820-021-00749-6
- Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8, 504–514 (2023). https://doi.org/10.1038/s41560-023-01242-7
- J. Sheng, Y. He, J. Li, C. Yuan, H. Huang et al., Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO Photoreduction. ACS Nano 14, 13103–13114 (2020). https://doi.org/10.1021/acsnano.0c04659
- H. Li, C. Cheng, Z. Yang, J. Wei, Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat. Commun. 13, 6466 (2022). https://doi.org/10.1038/s41467-022-34263-z
- J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang et al., Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 13, 4681 (2022). https://doi.org/10.1038/s41467-022-32449-z
- C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
- L. Ju, X. Tan, X. Mao, Y. Gu, S. Smith et al., Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 12, 5128 (2021). https://doi.org/10.1038/s41467-021-25426-5
- Q. Cheng, M. Huang, L. Xiao, S. Mou, X. Zhao et al., Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 13, 4021–4029 (2023). https://doi.org/10.1021/acscatal.2c06228
- D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu et al., Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 34, 2108475 (2022). https://doi.org/10.1002/adma.202108475
- C. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao et al., A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 32, 2001267 (2020). https://doi.org/10.1002/adma.202001267
References
G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv. Energy Mater. 8, 1802427 (2018). https://doi.org/10.1002/aenm.201802427
C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14, 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
S. Ji, Y. Qu, T. Wang, Y. Chen, G. Wang et al., Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 59, 10651–10657 (2020). https://doi.org/10.1002/anie.202003623
K. Li, Y. Cai, X. Yang, S. Wang, C. Teng et al., H2S involved photocatalytic system: a novel syngas production strategy by boosting the photoreduction of CO2 while recovering hydrogen from the environmental toxicant. Adv. Funct. Mater. 32, 2113002 (2022). https://doi.org/10.1002/adfm.202113002
R. Yang, Y. Fan, Y. Zhang, L. Mei, R. Zhu et al., 2D transition metal dichalcogenides for photocatalysis. Angew. Chem. Int. Ed. 62, e202218016 (2023). https://doi.org/10.1002/anie.202218016
H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa et al., Double resonance Raman modes in monolayer and few-layer MoTe2. Phys. Rev. B 91, 205415 (2015). https://doi.org/10.1103/PhysRevB.91.205415
K.A.N. Duerloo, Y. Li, E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014). https://doi.org/10.1038/ncomms5214
Y. Feng, C. Wang, P. Cui, C. Li, B. Zhang et al., Ultrahigh photocatalytic CO2 reduction efficiency and selectivity manipulation by single-tungsten-atom oxide at the atomic step of TiO2. Adv. Mater. 34, 2109074 (2022). https://doi.org/10.1002/adma.202109074
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
V. Wang, N. Xu, J. Liu, G. Tang, W. Geng, Vaspkit: A user-friendly interface facilitating high-throughput computing and analysis using vasp code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (Dft-D) for the 94 elements H-Pu. J. chem. phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
Z. Wang, J. Zhu, X. Zu, Y. Wu, S. Shang et al., Selective CO2 photoreduction to CH4 via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angew. Chem. Int. Ed. 61, e202203249 (2022). https://doi.org/10.1002/anie.202203249
NIST-JANAF Thermochemical Tables. https://janaf.nist.gov/
Y.N. Bo, H.Y. Wang, Y.X. Lin, T. Yang, R. Ye et al., Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew. Chem. Int. Ed. 60, 16085 (2021). https://doi.org/10.1002/anie.202104001
Q. Li, C. Fang, Z. Yang, B. Yu, M. Takabatake et al., Modulating the oxidation state of titanium via dual anions substitution for efficient N2 electroreduction. Small 18, 2201343 (2022). https://doi.org/10.1002/smll.202201343
O.E. Dagdeviren, D. Glass, R. Sapienza, E. Cortés, S.A. Maier et al., The effect of photoinduced surface oxygen vacancies on the charge carrier dynamics in TiO2 films. Nano Lett. 21, 8348–8354 (2021). https://doi.org/10.1021/acs.nanolett.1c02853
A.S. Al-Fatesh, Y. Arafat, S.O. Kasim, A.A. Ibrahim, A.E. Abasaeed et al., In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Appl. Catal. B Environ. 280, 119445 (2021). https://doi.org/10.1016/j.apcatb.2020.119445
Y. Liu, Y. Zheng, W. Zhang, Z. Peng, H. Xie et al., Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation. J. Mater. Sci. Technol. 95, 127–135 (2021). https://doi.org/10.1016/j.jmst.2021.03.025
X. Yao, X. Hu, W. Zhang, X. Gong, X. Wang et al., Mie resonance in hollow nanoshells of ternary TiO2-Au-CdS and enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 276, 119153 (2020). https://doi.org/10.1016/j.apcatb.2020.119153
H. Cheng, Q. Liu, Y. Diao, L. Wei, J. Chen et al., CoMo2S4 with superior conductivity for electrocatalytic hydrogen evolution: elucidating the key role of co. Adv. Funct. Mater. 9, 2103732 (2021). https://doi.org/10.1002/adfm.202103732
S. Gong, Y. Niu, X. Liu, C. Xu, C. Chen et al., Selective CO2 photoreduction to acetate at asymmetric ternary bridging sites. ACS Nano 17, 4922–4932 (2023). https://doi.org/10.1021/acsnano.2c11977
C. Zhan, Y. Xu, L. Bu, H. Zhu, Y. Feng et al., Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 12, 6261 (2021). https://doi.org/10.1038/s41467-021-26425-2
W. Liu, P. Fu, Y. Zhang, H. Xu, H. Wang et al., Efficient hydrogen production from wastewater remediation by piezoelectricity coupling advanced oxidation processes. PNAS 120, e2218813120 (2023). https://doi.org/10.1073/pnas.2218813120
K.K. Halankar, B.P. Mandal, A.K. Tyagi, Superior electrochemical performance of MoS2 decorated on functionalized carbon nanotubes as anode material for sodium ion battery. Carbon Trends 5, 100103 (2021). https://doi.org/10.1016/j.cartre.2021.100103
X. Guo, E. Song, W. Zhao, S. Xu, W. Zhao et al., Charge self-regulation in 1T’’’-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity. Nat. Commun. 13, 5954 (2022). https://doi.org/10.1038/s41467-022-33636-8
J.C. McGlynn, T. Dankwort, L. Kienle, N.A.G. Bandeira, J.P. Fraser et al., The rapid electrochemical activation of MoTe2 for the hydrogen evolution reaction. Nat. Commun. 10, 4916 (2019). https://doi.org/10.1038/s41467-019-12831-0
D. Lee, Y. Lee, Beneficial effect of V on stability of dispersed MoS2 catalysts in slurry phase hydrocracking of vacuum residue: XAFS studies. J. Catal. 413, 443–454 (2022). https://doi.org/10.1016/j.jcat.2022.06.037
J.Y. Zhang, J. Liang, B. Mei, K. Lan, L. Zu et al., Synthesis of Ni/NiO@MoO3−x composite nanoarrays for high current density hydrogen evolution reaction. Adv. Energy Mater. 12, 2200001 (2022). https://doi.org/10.1002/aenm.202200001
M. Krbal, V. Prokop, A.A. Kononov, J.R. Pereira, J. Mistrik et al., Amorphous-to-crystal transition in quasi-two-dimensional MoS2: implications for 2D electronic devices. ACS Appl. Nano Mater. 4, 8834–8844 (2021). https://doi.org/10.1021/acsanm.1c01504
X. Zhao, X. Li, Z. Zhu, W. Hu, H. Zhang et al., Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen. Appl. Catal. B Environ. 300, 120759 (2022). https://doi.org/10.1016/j.apcatb.2021.120759
M. Cao, L. Ni, Z. Wang, J. Liu, Y. Tian et al., DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure. Appl. Surf. Sci. 551, 149364 (2021). https://doi.org/10.1016/j.apsusc.2021.149364
M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li et al., Boosting photocatalytic hydrogen production via interfacial engineering on 2D ultrathin Z-scheme ZnIn2S4/g-C3N4 heterojunction. Adv. Funct. Mater. 32, 2111740 (2022). https://doi.org/10.1002/adfm.202111740
M. Humayun, N. Sun, F. Raziq, X. Zhang, R. Yan et al., Synthesis of ZnO/Bi-doped porous LaFeO3 nanocomposites as highly efficient nano-photocatalysts dependent on the enhanced utilization of visible-light-excited electrons. Appl. Catal. B Environ. 231, 23–33 (2018). https://doi.org/10.1016/j.apcatb.2018.02.060
Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei et al., Designing covalent organic frameworks with Co–O4 atomic sites for efficient CO2 photoreduction. Nat. Commun. 14, 1147 (2023). https://doi.org/10.1038/s41467-023-36779-4
L. Ran, Z. Li, B. Ran, J. Cao, Y. Zhao et al., Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J. Am. Chem. Soc. 144, 17097–17109 (2022). https://doi.org/10.1021/jacs.2c06920
X. Chen, C. Peng, W. Dan, L. Yu, Y. Wu et al., Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor. Nat. Commun. 13, 4592 (2022). https://doi.org/10.1038/s41467-022-32367-0
S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2022). https://doi.org/10.1007/s40820-021-00749-6
Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo et al., Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting. Nat. Energy 8, 504–514 (2023). https://doi.org/10.1038/s41560-023-01242-7
J. Sheng, Y. He, J. Li, C. Yuan, H. Huang et al., Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2-to-CO Photoreduction. ACS Nano 14, 13103–13114 (2020). https://doi.org/10.1021/acsnano.0c04659
H. Li, C. Cheng, Z. Yang, J. Wei, Encapsulated CdSe/CdS nanorods in double-shelled porous nanocomposites for efficient photocatalytic CO2 reduction. Nat. Commun. 13, 6466 (2022). https://doi.org/10.1038/s41467-022-34263-z
J. Zhou, J. Li, L. Kan, L. Zhang, Q. Huang et al., Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat. Commun. 13, 4681 (2022). https://doi.org/10.1038/s41467-022-32449-z
C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
L. Ju, X. Tan, X. Mao, Y. Gu, S. Smith et al., Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat. Commun. 12, 5128 (2021). https://doi.org/10.1038/s41467-021-25426-5
Q. Cheng, M. Huang, L. Xiao, S. Mou, X. Zhao et al., Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 13, 4021–4029 (2023). https://doi.org/10.1021/acscatal.2c06228
D. Gao, J. Xu, L. Wang, B. Zhu, H. Yu et al., Optimizing atomic hydrogen desorption of sulfur-rich NiS1+x cocatalyst for boosting photocatalytic H2 evolution. Adv. Mater. 34, 2108475 (2022). https://doi.org/10.1002/adma.202108475
C. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao et al., A generalized surface chalcogenation strategy for boosting the electrochemical N2 fixation of metal nanocrystals. Adv. Mater. 32, 2001267 (2020). https://doi.org/10.1002/adma.202001267