A Strongly Coupled Cluster Heterostructure with Pt–N-Mo Bonding for Durable and Efficient H2 Evolution in Anion-Exchange Membrane Water Electrolyzers
Corresponding Author: Zhenhai Wen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 296
Abstract
Creating strongly coupled heterostructures with favorable catalytic activities is crucial for promoting the performance of catalytic reactions, especially those involve multiple intermediates. Herein, we fabricated a strongly coupled platinum/molybdenum nitrides nanocluster heterostructure on nitrogen-doped reduced graphene oxide (Pt/Mo₂N–NrGO) for alkaline hydrogen evolution reaction. The well-defined Pt-containing Anderson-type polyoxometalates promote strong interfacial Pt–N–Mo bonding in Pt/Mo2N–NrGO, which exhibits a remarkably low overpotential, high mass activity, and exceptional long-term durability (> 500 h at 1500 mA cm⁻2) in an anion-exchange membrane water electrolyzer (AEMWE). Operando Raman spectroscopy and density functional theory reveal that pronounced electronic coupling at the Pt/Mo₂N cluster interface facilitates the catalytic decomposition of H2O through synergistic stabilization of intermediates (Pt–H* and Mo-OH*), thereby enhancing the kinetics of the rate-determining Volmer step. Techno-economic analysis indicates a levelized hydrogen production cost of $2.02 kg⁻1, meeting the US DOE targets. Our strategy presents a viable pathway to designing next-generation catalysts for industrial AEMWE for green hydrogen production.
Highlights:
1 A strongly coupled platinum/molybdenum nitrides nanocluster heterostructure has been prepared by using Pt-containing Anderson-type polyoxometalates as precursors.
2 The pronounced electronic coupling at the Pt/Mo2N cluster interface facilitates the catalytic decomposition of H2O through synergistic stabilization of Pt-H* and Mo-OH*.
3 The optimized Pt/Mo2N-NrGO exhibits a remarkably low overpotential, high mass activity, and exceptional long-term durability (>500 h at 1500 mA cm-2) in a practical anion-exchange membrane water electrolyzer.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Giovanniello, A.N. Cybulsky, T. Schittekatte, D.S. Mallapragada, The influence of additionality and time-matching requirements on the emissions from grid-connected hydrogen production. Nat. Energy 9(2), 197–207 (2024). https://doi.org/10.1038/s41560-023-01435-0
- J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
- G. He, D.S. Mallapragada, A. Bose, C.F. Heuberger-Austin, E. Gençer, Sector coupling via hydrogen to lower the cost of energy system decarbonization. Energy Environ. Sci. 14(9), 4635–4646 (2021). https://doi.org/10.1039/D1EE00627D
- K. Eid, K.I. Ozoemena, R.S. Varma, Unravelling the structure-activity relationship of porous binary metal-based electrocatalysts for green hydrogen evolution reaction. Coord. Chem. Rev. 523, 216238 (2025). https://doi.org/10.1016/j.ccr.2024.216238
- J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao et al., Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 4(12), 1050–1058 (2021). https://doi.org/10.1038/s41929-021-00715-w
- A. Abdelgawad, B. Salah, Q. Lu, A.M. Abdullah, M. Chitt et al., Template-free synthesis of M/g-C3N4 (M = Cu, Mn, and Fe) porous one-dimensional nanostructures for green hydrogen production. J. Electroanal. Chem. 938, 117426 (2023). https://doi.org/10.1016/j.jelechem.2023.117426
- J.N. Hansen, H. Prats, K.K. Toudahl, N.M. Secher, K. Chan et al., Is there anything better than Pt for HER? ACS Energy Lett. 6(4), 1175–1180 (2021). https://doi.org/10.1021/acsenergylett.1c00246
- C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22(8), 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3
- X. Tian, P. Zhao, W. Sheng, Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31(31), e1808066 (2019). https://doi.org/10.1002/adma.201808066
- F. Li, J.-B. Baek, Atomic tailoring of platinum catalysts. Nat. Catal. 2(6), 477–478 (2019). https://doi.org/10.1038/s41929-019-0302-y
- Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan et al., Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nat. Catal. 7(6), 678–688 (2024). https://doi.org/10.1038/s41929-024-01156-x
- P. Yang, F. Liu, X. Zang, L. Xin, W. Xiao et al., Microwave quasi-solid state to construct strong metal-support interactions with interfacial electron-enriched Ru for anion exchange membrane electrolysis. Adv. Energy Mater. 14(8), 2303384 (2024). https://doi.org/10.1002/aenm.202303384
- B. Salah, A. Abdelgawad, Q. Lu, A.K. Ipadeola, R. Luque et al., Synergistically interactive MnFeM (M = Cu, Ti, and Co) sites doped porous g-C3N4 fiber-like nanostructures for an enhanced green hydrogen production. Green Chem. 25(15), 6032–6040 (2023). https://doi.org/10.1039/d3gc01071f
- J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31(31), e1808167 (2019). https://doi.org/10.1002/adma.201808167
- G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28(43), 1803291 (2018). https://doi.org/10.1002/adfm.201803291
- Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
- B. Salah, A. Abdelgawad, J.K. El-Demellawi, Q. Lu, Z. Xia et al., Scalable one-pot fabrication of carbon-nanofiber-supported noble-metal-free nanocrystals for synergetic-dependent green hydrogen production: unraveling electrolyte and support effects. ACS Appl. Mater. Interfaces 16(15), 18768–18781 (2024). https://doi.org/10.1021/acsami.3c18191
- M. Lao, K. Rui, G. Zhao, P. Cui, X. Zheng et al., Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem. Int. Ed. 58(16), 5432–5437 (2019). https://doi.org/10.1002/anie.201901010
- H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
- R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
- R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
- T. Lee, A. Soon, The rise of ab initio surface thermodynamics. Nat. Catal. 7(1), 4–6 (2024). https://doi.org/10.1038/s41929-023-01088-y
- Z. Zeb, Y. Huang, L. Chen, W. Zhou, M. Liao et al., Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 482, 215058 (2023). https://doi.org/10.1016/j.ccr.2023.215058
- S. Zhang, R. Liu, C. Streb, G. Zhang, Design and synthesis of novel polyoxometalate-based binary and ternary nanohybrids for energy conversion and storage. Polyoxometalates 2(3), 9140037 (2023). https://doi.org/10.26599/POM.2023.9140037
- Y. Liu, C. Yue, F. Sun, W. Bao, L. Chen et al., Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction. Chem. Eng. J. 454, 140105 (2023). https://doi.org/10.1016/j.cej.2022.140105
- Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale et al., Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 10(1), 982 (2019). https://doi.org/10.1038/s41467-019-08877-9
- H. Wang, J. Li, K. Li, Y. Lin, J. Chen et al., Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 50(2), 1354–1390 (2021). https://doi.org/10.1039/d0cs00415d
- Y. Huang, W. Zhou, W. Kong, L. Chen, X. Lu et al., Atomically interfacial engineering on molybdenum nitride quantum dots decorated N-doped graphene for high-rate and stable alkaline hydrogen production. Adv. Sci. 9(36), 2204949 (2022). https://doi.org/10.1002/advs.202204949
- F.-Y. Yu, Z.-L. Lang, Y.-J. Zhou, K. Feng, H.-Q. Tan et al., Revealing hydrogen evolution performance of single-atom platinum electrocatalyst with polyoxometalate molecular models. ACS Energy Lett. 6(11), 4055–4062 (2021). https://doi.org/10.1021/acsenergylett.1c01911
- B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000). https://doi.org/10.1063/1.1316015
- D.E. Bugaris, M.D. Smith, H.C. Zur Loye, Hydroflux crystal growth of platinum group metal hydroxides: Sr6NaPd2(OH)17, Li2Pt(OH)6, Na2Pt(OH)6, Sr2Pt(OH)8, and Ba2Pt(OH)8. Inorg. Chem. 52(7), 3836–3844 (2013). https://doi.org/10.1021/ic302439b
- J.G. Smith, K.J. Sawant, Z. Zeng, T.B. Eldred, J. Wu et al., Disproportionation chemistry in K2PtCl4 visualized at atomic resolution using scanning transmission electron microscopy. Sci. Adv. 10(6), eadi075 (2024). https://doi.org/10.1126/sciadv.adi0175
- Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang et al., Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 60(12), 6673–6681 (2021). https://doi.org/10.1002/anie.202016102
- T. Ma, H. Cao, S. Li, S. Cao, Z. Zhao et al., Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv. Mater. 34(41), e2206368 (2022). https://doi.org/10.1002/adma.202206368
- L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen et al., Single-atom Cr–N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145(39), 21432–21441 (2023). https://doi.org/10.1021/jacs.3c06863
- H. Hu, Z. Zhang, Y. Zhang, T. Thomas, H. Du et al., An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy Environ. Sci. 16(10), 4584–4592 (2023). https://doi.org/10.1039/d3ee01541f
- X. Wang, W. Zhou, Y. Wang, L. Gong, X. Liu et al., MoO2/Mo heterostructures for hydrogen evolution reaction and ammonia sensing in self-powered mode. Nano Energy 109, 108253 (2023). https://doi.org/10.1016/j.nanoen.2023.108253
- L. Chen, Y. Huang, J. Wang, M. Liao, Z. Liu et al., Growth behavior and electronic regulation of Pt on various Mo-based supports for hydrogen evolution electrocatalysis. Sci. China Chem. 68(5), 1837–1846 (2025). https://doi.org/10.1007/s11426-024-2324-8
- L. Chen, Y. Huang, J. Wang, M. Liao, S. Huang et al., Platinum-dependent 2H-to-1T phases conversion of MoS2 nanosheets growing on cross-interlocking porous carbon for boosting hydrogen evolution reaction. Chem. Eng. J. 498, 155060 (2024). https://doi.org/10.1016/j.cej.2024.155060
- K.L. Zhou, Z. Wang, C.B. Han, X. Ke, C. Wang et al., Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12(1), 3783 (2021). https://doi.org/10.1038/s41467-021-24079-8
- R. Gao, J. Wang, Z.F. Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J.J. Zou, Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 6, 614 (2021). https://doi.org/10.1038/s41560-021-00826-5
- J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988
- C. Wan, Y. Ling, S. Wang, H. Pu, Y. Huang et al., Unraveling and resolving the inconsistencies in tafel analysis for hydrogen evolution reactions. ACS Cent. Sci. 10(3), 658–665 (2024). https://doi.org/10.1021/acscentsci.3c01439
- C. Yang, L. Zhou, C. Wang, W. Duan, L. Zhang et al., Large-scale synthetic Mo@(2H–1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Appl. Catal. B Environ. 304, 120993 (2022). https://doi.org/10.1016/j.apcatb.2021.120993
- W. Gou, Z. Xia, X. Tan, Q. Xue, F. Ye et al., Highly active and stable amorphous IrOx/CeO2 nanowires for acidic oxygen evolution. Nano Energy 104, 107960 (2022). https://doi.org/10.1016/j.nanoen.2022.107960
- T. Zhao, S. Wang, C. Jia, C. Rong, Z. Su et al., Cooperative boron and vanadium doping of nickel phosphides for hydrogen evolution in alkaline and anion exchange membrane water/seawater electrolyzers. Small 19(27), 2208076 (2023). https://doi.org/10.1002/smll.202208076
- S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng et al., Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16(12), 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1
- International Renewable Energy Agency (IRENA). Green Hydrogen cost reduction: Scaling up electrolysers to meet the 1.5 ℃ climate goal. Abu Dhabi, 2020.
- Y. Zuo, S. Bellani, G. Saleh, M. Ferri, D.V. Shinde et al., Ru-Cu nanoheterostructures for efficient hydrogen evolution reaction in alkaline water electrolyzers. J. Am. Chem. Soc. 145(39), 21419–21431 (2023). https://doi.org/10.1021/jacs.3c06726
- X. Chen, X.-T. Wang, J.-B. Le, S.-M. Li, X. Wang et al., Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat. Commun. 14(1), 5289 (2023). https://doi.org/10.1038/s41467-023-41030-1
- Z. Lin, Z. Wang, J. Gong, T. Jin, S. Shen et al., Reversed spillover effect activated by Pt atom dimers boosts alkaline hydrogen evolution reaction. Adv. Funct. Mater. 33(45), 2307510 (2023). https://doi.org/10.1002/adfm.202307510
- J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
- X. Xin, Y. Zhang, R. Wang, Y. Wang, P. Guo et al., Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide-nitrogen doped carbon system for efficient photocatalytic water splitting. Nat. Commun. 14(1), 1759 (2023). https://doi.org/10.1038/s41467-023-37366-3
References
M.A. Giovanniello, A.N. Cybulsky, T. Schittekatte, D.S. Mallapragada, The influence of additionality and time-matching requirements on the emissions from grid-connected hydrogen production. Nat. Energy 9(2), 197–207 (2024). https://doi.org/10.1038/s41560-023-01435-0
J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
G. He, D.S. Mallapragada, A. Bose, C.F. Heuberger-Austin, E. Gençer, Sector coupling via hydrogen to lower the cost of energy system decarbonization. Energy Environ. Sci. 14(9), 4635–4646 (2021). https://doi.org/10.1039/D1EE00627D
K. Eid, K.I. Ozoemena, R.S. Varma, Unravelling the structure-activity relationship of porous binary metal-based electrocatalysts for green hydrogen evolution reaction. Coord. Chem. Rev. 523, 216238 (2025). https://doi.org/10.1016/j.ccr.2024.216238
J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao et al., Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal. 4(12), 1050–1058 (2021). https://doi.org/10.1038/s41929-021-00715-w
A. Abdelgawad, B. Salah, Q. Lu, A.M. Abdullah, M. Chitt et al., Template-free synthesis of M/g-C3N4 (M = Cu, Mn, and Fe) porous one-dimensional nanostructures for green hydrogen production. J. Electroanal. Chem. 938, 117426 (2023). https://doi.org/10.1016/j.jelechem.2023.117426
J.N. Hansen, H. Prats, K.K. Toudahl, N.M. Secher, K. Chan et al., Is there anything better than Pt for HER? ACS Energy Lett. 6(4), 1175–1180 (2021). https://doi.org/10.1021/acsenergylett.1c00246
C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu et al., Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction. Nat. Mater. 22(8), 1022–1029 (2023). https://doi.org/10.1038/s41563-023-01584-3
X. Tian, P. Zhao, W. Sheng, Hydrogen evolution and oxidation: mechanistic studies and material advances. Adv. Mater. 31(31), e1808066 (2019). https://doi.org/10.1002/adma.201808066
F. Li, J.-B. Baek, Atomic tailoring of platinum catalysts. Nat. Catal. 2(6), 477–478 (2019). https://doi.org/10.1038/s41929-019-0302-y
Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan et al., Edge sites dominate the hydrogen evolution reaction on platinum nanocatalysts. Nat. Catal. 7(6), 678–688 (2024). https://doi.org/10.1038/s41929-024-01156-x
P. Yang, F. Liu, X. Zang, L. Xin, W. Xiao et al., Microwave quasi-solid state to construct strong metal-support interactions with interfacial electron-enriched Ru for anion exchange membrane electrolysis. Adv. Energy Mater. 14(8), 2303384 (2024). https://doi.org/10.1002/aenm.202303384
B. Salah, A. Abdelgawad, Q. Lu, A.K. Ipadeola, R. Luque et al., Synergistically interactive MnFeM (M = Cu, Ti, and Co) sites doped porous g-C3N4 fiber-like nanostructures for an enhanced green hydrogen production. Green Chem. 25(15), 6032–6040 (2023). https://doi.org/10.1039/d3gc01071f
J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31(31), e1808167 (2019). https://doi.org/10.1002/adma.201808167
G. Zhao, K. Rui, S.X. Dou, W. Sun, Heterostructures for electrochemical hydrogen evolution reaction: a review. Adv. Funct. Mater. 28(43), 1803291 (2018). https://doi.org/10.1002/adfm.201803291
Y. Shi, Z.-R. Ma, Y.-Y. Xiao, Y.-C. Yin, W.-M. Huang et al., Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 12(1), 3021 (2021). https://doi.org/10.1038/s41467-021-23306-6
B. Salah, A. Abdelgawad, J.K. El-Demellawi, Q. Lu, Z. Xia et al., Scalable one-pot fabrication of carbon-nanofiber-supported noble-metal-free nanocrystals for synergetic-dependent green hydrogen production: unraveling electrolyte and support effects. ACS Appl. Mater. Interfaces 16(15), 18768–18781 (2024). https://doi.org/10.1021/acsami.3c18191
M. Lao, K. Rui, G. Zhao, P. Cui, X. Zheng et al., Platinum/nickel bicarbonate heterostructures towards accelerated hydrogen evolution under alkaline conditions. Angew. Chem. Int. Ed. 58(16), 5432–5437 (2019). https://doi.org/10.1002/anie.201901010
H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang et al., Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 6, 6430 (2015). https://doi.org/10.1038/ncomms7430
R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li⁺-Ni(OH)₂-Pt interfaces. Science 334(6060), 1256–1260 (2011). https://doi.org/10.1126/science.1211934
T. Lee, A. Soon, The rise of ab initio surface thermodynamics. Nat. Catal. 7(1), 4–6 (2024). https://doi.org/10.1038/s41929-023-01088-y
Z. Zeb, Y. Huang, L. Chen, W. Zhou, M. Liao et al., Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 482, 215058 (2023). https://doi.org/10.1016/j.ccr.2023.215058
S. Zhang, R. Liu, C. Streb, G. Zhang, Design and synthesis of novel polyoxometalate-based binary and ternary nanohybrids for energy conversion and storage. Polyoxometalates 2(3), 9140037 (2023). https://doi.org/10.26599/POM.2023.9140037
Y. Liu, C. Yue, F. Sun, W. Bao, L. Chen et al., Superhydrophilic molybdenum phosphide quantum dots on porous carbon matrix for boosting hydrogen evolution reaction. Chem. Eng. J. 454, 140105 (2023). https://doi.org/10.1016/j.cej.2022.140105
Y. Huang, Y. Sun, X. Zheng, T. Aoki, B. Pattengale et al., Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 10(1), 982 (2019). https://doi.org/10.1038/s41467-019-08877-9
H. Wang, J. Li, K. Li, Y. Lin, J. Chen et al., Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 50(2), 1354–1390 (2021). https://doi.org/10.1039/d0cs00415d
Y. Huang, W. Zhou, W. Kong, L. Chen, X. Lu et al., Atomically interfacial engineering on molybdenum nitride quantum dots decorated N-doped graphene for high-rate and stable alkaline hydrogen production. Adv. Sci. 9(36), 2204949 (2022). https://doi.org/10.1002/advs.202204949
F.-Y. Yu, Z.-L. Lang, Y.-J. Zhou, K. Feng, H.-Q. Tan et al., Revealing hydrogen evolution performance of single-atom platinum electrocatalyst with polyoxometalate molecular models. ACS Energy Lett. 6(11), 4055–4062 (2021). https://doi.org/10.1021/acsenergylett.1c01911
B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113(18), 7756–7764 (2000). https://doi.org/10.1063/1.1316015
D.E. Bugaris, M.D. Smith, H.C. Zur Loye, Hydroflux crystal growth of platinum group metal hydroxides: Sr6NaPd2(OH)17, Li2Pt(OH)6, Na2Pt(OH)6, Sr2Pt(OH)8, and Ba2Pt(OH)8. Inorg. Chem. 52(7), 3836–3844 (2013). https://doi.org/10.1021/ic302439b
J.G. Smith, K.J. Sawant, Z. Zeng, T.B. Eldred, J. Wu et al., Disproportionation chemistry in K2PtCl4 visualized at atomic resolution using scanning transmission electron microscopy. Sci. Adv. 10(6), eadi075 (2024). https://doi.org/10.1126/sciadv.adi0175
Y. Gu, A. Wu, Y. Jiao, H. Zheng, X. Wang et al., Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem. Int. Ed. 60(12), 6673–6681 (2021). https://doi.org/10.1002/anie.202016102
T. Ma, H. Cao, S. Li, S. Cao, Z. Zhao et al., Crystalline lattice-confined atomic Pt in metal carbides to match electronic structures and hydrogen evolution behaviors of platinum. Adv. Mater. 34(41), e2206368 (2022). https://doi.org/10.1002/adma.202206368
L. Zeng, Z. Zhao, Q. Huang, C. Zhou, W. Chen et al., Single-atom Cr–N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 145(39), 21432–21441 (2023). https://doi.org/10.1021/jacs.3c06863
H. Hu, Z. Zhang, Y. Zhang, T. Thomas, H. Du et al., An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy Environ. Sci. 16(10), 4584–4592 (2023). https://doi.org/10.1039/d3ee01541f
X. Wang, W. Zhou, Y. Wang, L. Gong, X. Liu et al., MoO2/Mo heterostructures for hydrogen evolution reaction and ammonia sensing in self-powered mode. Nano Energy 109, 108253 (2023). https://doi.org/10.1016/j.nanoen.2023.108253
L. Chen, Y. Huang, J. Wang, M. Liao, Z. Liu et al., Growth behavior and electronic regulation of Pt on various Mo-based supports for hydrogen evolution electrocatalysis. Sci. China Chem. 68(5), 1837–1846 (2025). https://doi.org/10.1007/s11426-024-2324-8
L. Chen, Y. Huang, J. Wang, M. Liao, S. Huang et al., Platinum-dependent 2H-to-1T phases conversion of MoS2 nanosheets growing on cross-interlocking porous carbon for boosting hydrogen evolution reaction. Chem. Eng. J. 498, 155060 (2024). https://doi.org/10.1016/j.cej.2024.155060
K.L. Zhou, Z. Wang, C.B. Han, X. Ke, C. Wang et al., Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat. Commun. 12(1), 3783 (2021). https://doi.org/10.1038/s41467-021-24079-8
R. Gao, J. Wang, Z.F. Huang, R. Zhang, W. Wang, L. Pan, J. Zhang, W. Zhu, X. Zhang, C. Shi, J. Lim, J.J. Zou, Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 6, 614 (2021). https://doi.org/10.1038/s41560-021-00826-5
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen et al., Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152(3), J23 (2005). https://doi.org/10.1149/1.1856988
C. Wan, Y. Ling, S. Wang, H. Pu, Y. Huang et al., Unraveling and resolving the inconsistencies in tafel analysis for hydrogen evolution reactions. ACS Cent. Sci. 10(3), 658–665 (2024). https://doi.org/10.1021/acscentsci.3c01439
C. Yang, L. Zhou, C. Wang, W. Duan, L. Zhang et al., Large-scale synthetic Mo@(2H–1T)-MoSe2 monolithic electrode for efficient hydrogen evolution in all pH scale ranges and seawater. Appl. Catal. B Environ. 304, 120993 (2022). https://doi.org/10.1016/j.apcatb.2021.120993
W. Gou, Z. Xia, X. Tan, Q. Xue, F. Ye et al., Highly active and stable amorphous IrOx/CeO2 nanowires for acidic oxygen evolution. Nano Energy 104, 107960 (2022). https://doi.org/10.1016/j.nanoen.2022.107960
T. Zhao, S. Wang, C. Jia, C. Rong, Z. Su et al., Cooperative boron and vanadium doping of nickel phosphides for hydrogen evolution in alkaline and anion exchange membrane water/seawater electrolyzers. Small 19(27), 2208076 (2023). https://doi.org/10.1002/smll.202208076
S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng et al., Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16(12), 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1
International Renewable Energy Agency (IRENA). Green Hydrogen cost reduction: Scaling up electrolysers to meet the 1.5 ℃ climate goal. Abu Dhabi, 2020.
Y. Zuo, S. Bellani, G. Saleh, M. Ferri, D.V. Shinde et al., Ru-Cu nanoheterostructures for efficient hydrogen evolution reaction in alkaline water electrolyzers. J. Am. Chem. Soc. 145(39), 21419–21431 (2023). https://doi.org/10.1021/jacs.3c06726
X. Chen, X.-T. Wang, J.-B. Le, S.-M. Li, X. Wang et al., Revealing the role of interfacial water and key intermediates at ruthenium surfaces in the alkaline hydrogen evolution reaction. Nat. Commun. 14(1), 5289 (2023). https://doi.org/10.1038/s41467-023-41030-1
Z. Lin, Z. Wang, J. Gong, T. Jin, S. Shen et al., Reversed spillover effect activated by Pt atom dimers boosts alkaline hydrogen evolution reaction. Adv. Funct. Mater. 33(45), 2307510 (2023). https://doi.org/10.1002/adfm.202307510
J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li et al., Shell-isolated nanop-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010). https://doi.org/10.1038/nature08907
X. Xin, Y. Zhang, R. Wang, Y. Wang, P. Guo et al., Hydrovoltaic effect-enhanced photocatalysis by polyacrylic acid/cobaltous oxide-nitrogen doped carbon system for efficient photocatalytic water splitting. Nat. Commun. 14(1), 1759 (2023). https://doi.org/10.1038/s41467-023-37366-3