Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material
Corresponding Author: Yanglong Hou
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 62
Abstract
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting, conversion and storage without an external power supply. However, most self-charging designs assembled by multiple energy harvesting, conversion and storage materials increase the energy transfer loss; the environmental energy supply is generally limited by climate and meteorological conditions, hindering the potential application of these self-powered devices to be available at all times. Based on aerobic autoxidation of catechol, which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge, we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups. Energy harvesting, conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials. Moreover, the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications. This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
Highlights:
1 An air-breathing chemical self-charge concept of oxygen-enriched carbon cathode.
2 The oxygen-enriched carbon material with abundant catechol groups.
3 Rapid air-oxidation chemical self-charge of catechol groups.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, Y. Lu, P. Adelhelm, M.M. Titirici, Y.S. Hu, Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019). https://doi.org/10.1039/C9CS00162J
- K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou et al., Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 370, 136–147 (2019). https://doi.org/10.1016/j.cej.2019.03.190
- K. Li, S. Feng, C. Jing, Y. Chen, X. Liu et al., Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 55, 13773–13776 (2019). https://doi.org/10.1039/c9cc06791d
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- Y.G. Lee, J. Lee, G.H. An, Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Adv. Funct. Mater. 31, 2104256 (2021). https://doi.org/10.1002/adfm.202104256
- J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
- K. Li, Z. Guo, Q. Sun, X. Dai, Y. Li et al., Phosphorus vacancy regulation and interfacial coupling of biotemplate derived CoP@FeP2 heterostructure to boost pseudocapacitive reaction kinetics. Chem. Eng. J. 454, 140223 (2023). https://doi.org/10.1016/j.cej.2022.140223
- Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
- K. Li, Y. Xiao, T. Zheng, Q. Sun, Y. Zhang et al., Vanadium doping and phosphorus vacancy co-regulation of biotemplate derived three-dimensional cobalt phosphide to enhance pseudocapacitance performance. Appl. Surf. Sci. 622, 156950 (2023). https://doi.org/10.1016/j.apsusc.2023.156950
- X. Pu, L. Li, H. Song, C. Du, Z. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
- M. Qiu, P. Sun, G. Gui, Y. Tong, W. Mai, A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging. ACS Nano 13, 8246–8255 (2019). https://doi.org/10.1021/acsnano.9b03603
- X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020). https://doi.org/10.1039/C9EE03258D
- R. Liu, M. Takakuwa, A. Li, D. Inoue, D. Hashizume et al., An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater. 10, 2000523 (2020). https://doi.org/10.1002/aenm.202000523
- J. Meng, G. Wu, X. Wu, H. Cheng, Z. Xu et al., Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage. Adv. Sci. 7, 1901931 (2020). https://doi.org/10.1002/advs.201901931
- C. Shao, Y. Zhao, L. Qu, Recent advances in highly integrated energy conversion and storage system. Susmat 2, 142–160 (2022). https://doi.org/10.1002/sus2.48
- R. Liu, Z. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
- J. Lv, Y.X. Tan, J. Xie, R. Yang, M. Yu et al., Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57, 12716–12720 (2018). https://doi.org/10.1002/anie.201806596
- Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao et al., Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10, 1903930 (2020). https://doi.org/10.1002/aenm.201903930
- X. Xue, S. Wang, W. Guo, Y. Zhang, Z. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012). https://doi.org/10.1021/nl302879t
- K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
- A. Al-zubaidi, X. Ji, J. Yu, Thermal charging of supercapacitors: a perspective. Sustain. Energ. Fuels 1, 1457–1474 (2017). https://doi.org/10.1039/C7SE00239D
- X. Fu, Z. Xia, R. Sun, H. An, F. Qi et al., A self-charging hybrid electric power device with high specific energy and power. ACS Energy Lett. 3, 2425–2432 (2018). https://doi.org/10.1021/acsenergylett.8b01331
- L. Ma, Y. Zhao, X. Ji, J. Zeng, Q. Yang et al., A usage scenario independent “air chargeable” flexible zinc ion energy storage device. Adv. Energy Mater. 9, 1900509 (2019). https://doi.org/10.1002/aenm.201900509
- G. Pankratova, P. Bollella, D. Pankratov, L. Gorton, Supercapacitive biofuel cells. Curr. Opin Biotech 73, 179–187 (2022). https://doi.org/10.1016/j.copbio.2021.08.008
- Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/NMAT4919
- Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
- C. Liu, W. Xu, C. Mei, M. Li, W. Chen et al., A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte. Adv. Energy Mater. 11, 2003902 (2021). https://doi.org/10.1002/aenm.202003902
- M. Liao, J. Wang, L. Ye, H. Sun, P. Li et al., A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. J. Mater. Chem. A 9, 6811–6818 (2021). https://doi.org/10.1039/D1TA00803J
- Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301–10308 (2022). https://doi.org/10.1021/jacs.2c01485
- J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015). https://doi.org/10.1038/NMAT4317
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). https://doi.org/10.1126/science.1246501
- Z. Zuo, Y. Li, Emerging electrochemical energy applications of graphdiyne. Joule 3, 899–907 (2019). https://doi.org/10.1016/j.joule.2019.01.016
- S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120, 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466
- S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 2001239 (2020). https://doi.org/10.1002/aenm.202001239
- X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energ. Environ. Sci. 14, 2036–2089 (2021). https://doi.org/10.1039/D1EE00166C
- J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
- K. Li, H. Teng, Q. Sun, Y. Li, X. Wu et al., Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J. Energy Storage 53, 105094 (2022). https://doi.org/10.1016/j.est.2022.105094
- K. Tian, J. Wang, L. Cao, W. Yang, W. Guo et al., Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 11, 3884 (2020). https://doi.org/10.1038/s41467-020-17727-y
- T.H. James, J.M. Snell, A. Weissberger, Oxidation processes. XII.1 the autoxidation of hydroquinone and of the mono-, di- and trimethylhydroquinones. J. Am. Chem. Soc. 60, 2084–2093 (1938). https://doi.org/10.1021/ja01276a020
- J.R. Green, G.E.K. Branch, The influence of hydroxyl ion concentration on the autoxidation of hydroquinone. J. Am. Chem. Soc. 63, 3441–3444 (1941). https://doi.org/10.1021/ja01857a053
- J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili et al., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7, 588–590 (2011). https://doi.org/10.1038/nchembio.630
- L.R. Radovic, Chemistry and physics of carbon, 3rd edn. (Marcel Dekker Inc, New York, 2001), pp.143–171
- L. Li, Y. Xing, Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J. Electrochem. Soc. 153, A1823–A1828 (2006). https://doi.org/10.1149/1.2234659
- A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
- A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477–2512 (2004). https://doi.org/10.1098/rsta.2004.1452
- F. Bonino, S. Brutti, P. Reale, B. Scrosati, L. Gherghel et al., A disordered carbon as a novel anode material in lithium-ion cells. Adv. Mater. 17, 743–746 (2005). https://doi.org/10.1002/adma.200401006
- Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji et al., Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-tohydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019). https://doi.org/10.1038/s41563-019-0398-0
- T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- Y. Zhao, S. Huang, M. Xia, S. Rehman, S. Mu et al., N-P-O co-doped high performance 3D grapheme prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016). https://doi.org/10.1016/j.nanoen.2016.08.053
References
Y. Li, Y. Lu, P. Adelhelm, M.M. Titirici, Y.S. Hu, Intercalation chemistry of graphite: alkali metal ions and beyond. Chem. Soc. Rev. 48, 4655–4687 (2019). https://doi.org/10.1039/C9CS00162J
K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou et al., Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 370, 136–147 (2019). https://doi.org/10.1016/j.cej.2019.03.190
K. Li, S. Feng, C. Jing, Y. Chen, X. Liu et al., Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 55, 13773–13776 (2019). https://doi.org/10.1039/c9cc06791d
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
Y.G. Lee, J. Lee, G.H. An, Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous supercapacitors. Adv. Funct. Mater. 31, 2104256 (2021). https://doi.org/10.1002/adfm.202104256
J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). https://doi.org/10.1038/s41560-023-01221-y
K. Li, Z. Guo, Q. Sun, X. Dai, Y. Li et al., Phosphorus vacancy regulation and interfacial coupling of biotemplate derived CoP@FeP2 heterostructure to boost pseudocapacitive reaction kinetics. Chem. Eng. J. 454, 140223 (2023). https://doi.org/10.1016/j.cej.2022.140223
Y. Wang, S. Sun, X. Wu, H. Liang, W. Zhang, Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators. Nano-Micro Lett. 15, 78 (2023). https://doi.org/10.1007/s40820-023-01065-x
K. Li, Y. Xiao, T. Zheng, Q. Sun, Y. Zhang et al., Vanadium doping and phosphorus vacancy co-regulation of biotemplate derived three-dimensional cobalt phosphide to enhance pseudocapacitance performance. Appl. Surf. Sci. 622, 156950 (2023). https://doi.org/10.1016/j.apsusc.2023.156950
X. Pu, L. Li, H. Song, C. Du, Z. Zhao et al., A self-charging power unit by integration of a textile triboelectric nanogenerator and a flexible lithium-ion battery for wearable electronics. Adv. Mater. 27, 2472–2478 (2015). https://doi.org/10.1002/adma.201500311
M. Qiu, P. Sun, G. Gui, Y. Tong, W. Mai, A flexible microsupercapacitor with integral photocatalytic fuel cell for self-charging. ACS Nano 13, 8246–8255 (2019). https://doi.org/10.1021/acsnano.9b03603
X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang et al., Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 13, 277–285 (2020). https://doi.org/10.1039/C9EE03258D
R. Liu, M. Takakuwa, A. Li, D. Inoue, D. Hashizume et al., An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater. 10, 2000523 (2020). https://doi.org/10.1002/aenm.202000523
J. Meng, G. Wu, X. Wu, H. Cheng, Z. Xu et al., Microfluidic-architected nanoarrays/porous core-shell fibers toward robust micro-energy-storage. Adv. Sci. 7, 1901931 (2020). https://doi.org/10.1002/advs.201901931
C. Shao, Y. Zhao, L. Qu, Recent advances in highly integrated energy conversion and storage system. Susmat 2, 142–160 (2022). https://doi.org/10.1002/sus2.48
R. Liu, Z. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources. Nat. Rev. Mater. 7, 870–886 (2022). https://doi.org/10.1038/s41578-022-00441-0
J. Lv, Y.X. Tan, J. Xie, R. Yang, M. Yu et al., Direct solar-to-electrochemical energy storage in a functionalized covalent organic framework. Angew. Chem. Int. Ed. 57, 12716–12720 (2018). https://doi.org/10.1002/anie.201806596
Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao et al., Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv. Energy Mater. 10, 1903930 (2020). https://doi.org/10.1002/aenm.201903930
X. Xue, S. Wang, W. Guo, Y. Zhang, Z. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 12, 5048–5054 (2012). https://doi.org/10.1021/nl302879t
K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020). https://doi.org/10.1038/s41467-020-15808-6
A. Al-zubaidi, X. Ji, J. Yu, Thermal charging of supercapacitors: a perspective. Sustain. Energ. Fuels 1, 1457–1474 (2017). https://doi.org/10.1039/C7SE00239D
X. Fu, Z. Xia, R. Sun, H. An, F. Qi et al., A self-charging hybrid electric power device with high specific energy and power. ACS Energy Lett. 3, 2425–2432 (2018). https://doi.org/10.1021/acsenergylett.8b01331
L. Ma, Y. Zhao, X. Ji, J. Zeng, Q. Yang et al., A usage scenario independent “air chargeable” flexible zinc ion energy storage device. Adv. Energy Mater. 9, 1900509 (2019). https://doi.org/10.1002/aenm.201900509
G. Pankratova, P. Bollella, D. Pankratov, L. Gorton, Supercapacitive biofuel cells. Curr. Opin Biotech 73, 179–187 (2022). https://doi.org/10.1016/j.copbio.2021.08.008
Y. Liang, Y. Jing, S. Gheytani, K.Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/NMAT4919
Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu et al., A chemically self-charging aqueous zinc-ion battery. Nat. Commun. 11, 2199 (2020). https://doi.org/10.1038/s41467-020-16039-5
C. Liu, W. Xu, C. Mei, M. Li, W. Chen et al., A chemically self-charging flexible solid-state zinc-ion battery based on VO2 cathode and polyacrylamide-chitin nanofiber hydrogel electrolyte. Adv. Energy Mater. 11, 2003902 (2021). https://doi.org/10.1002/aenm.202003902
M. Liao, J. Wang, L. Ye, H. Sun, P. Li et al., A high-capacity aqueous zinc-ion battery fiber with air-recharging capability. J. Mater. Chem. A 9, 6811–6818 (2021). https://doi.org/10.1039/D1TA00803J
Z. Tie, Y. Zhang, J. Zhu, S. Bi, Z. Niu, An air-rechargeable Zn/organic battery with proton storage. J. Am. Chem. Soc. 144, 10301–10308 (2022). https://doi.org/10.1021/jacs.2c01485
J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015). https://doi.org/10.1038/NMAT4317
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini et al., Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). https://doi.org/10.1126/science.1246501
Z. Zuo, Y. Li, Emerging electrochemical energy applications of graphdiyne. Joule 3, 899–907 (2019). https://doi.org/10.1016/j.joule.2019.01.016
S. Chen, L. Qiu, H.M. Cheng, Carbon-based fibers for advanced electrochemical energy storage devices. Chem. Rev. 120, 2811–2878 (2020). https://doi.org/10.1021/acs.chemrev.9b00466
S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy Mater. 10, 2001239 (2020). https://doi.org/10.1002/aenm.202001239
X. Feng, Y. Bai, M. Liu, Y. Li, H. Yang et al., Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energ. Environ. Sci. 14, 2036–2089 (2021). https://doi.org/10.1039/D1EE00166C
J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
K. Li, H. Teng, Q. Sun, Y. Li, X. Wu et al., Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J. Energy Storage 53, 105094 (2022). https://doi.org/10.1016/j.est.2022.105094
K. Tian, J. Wang, L. Cao, W. Yang, W. Guo et al., Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance. Nat. Commun. 11, 3884 (2020). https://doi.org/10.1038/s41467-020-17727-y
T.H. James, J.M. Snell, A. Weissberger, Oxidation processes. XII.1 the autoxidation of hydroquinone and of the mono-, di- and trimethylhydroquinones. J. Am. Chem. Soc. 60, 2084–2093 (1938). https://doi.org/10.1021/ja01276a020
J.R. Green, G.E.K. Branch, The influence of hydroxyl ion concentration on the autoxidation of hydroquinone. J. Am. Chem. Soc. 63, 3441–3444 (1941). https://doi.org/10.1021/ja01857a053
J. Yu, W. Wei, E. Danner, R.K. Ashley, J.N. Israelachvili et al., Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7, 588–590 (2011). https://doi.org/10.1038/nchembio.630
L.R. Radovic, Chemistry and physics of carbon, 3rd edn. (Marcel Dekker Inc, New York, 2001), pp.143–171
L. Li, Y. Xing, Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J. Electrochem. Soc. 153, A1823–A1828 (2006). https://doi.org/10.1149/1.2234659
A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A 362, 2477–2512 (2004). https://doi.org/10.1098/rsta.2004.1452
F. Bonino, S. Brutti, P. Reale, B. Scrosati, L. Gherghel et al., A disordered carbon as a novel anode material in lithium-ion cells. Adv. Mater. 17, 743–746 (2005). https://doi.org/10.1002/adma.200401006
Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji et al., Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-tohydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019). https://doi.org/10.1038/s41563-019-0398-0
T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi et al., Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
Y. Zhao, S. Huang, M. Xia, S. Rehman, S. Mu et al., N-P-O co-doped high performance 3D grapheme prepared through red phosphorous-assisted “cutting-thin” technique: a universal synthesis and multifunctional applications. Nano Energy 28, 346–355 (2016). https://doi.org/10.1016/j.nanoen.2016.08.053