High-Performance Silicon-Rich Microparticle Anodes for Lithium-Ion Batteries Enabled by Internal Stress Mitigation
Corresponding Author: Biao Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 222
Abstract
Si is a promising anode material for Li ion batteries because of its high specific capacity, abundant reserve, and low cost. However, its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process. The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles. Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles, which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process. The Si8.5Sn0.5Sb microparticles (mean particle size: 8.22 μm) show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles, respectively. The discharge capacities of the Si8.5Sn0.5Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g−1 are 1.62 and 1.19 Ah g−1, respectively, corresponding to a retention rate of 94.2% and 99.6%, respectively, relative to the capacity of the first cycle after activation. Multicomponent microparticle anodes containing Si, Sn, Sb, Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02% per cycle for 1000 cycles at 1 A g−1, corroborating the proposed mechanism. The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy–density Li-ion batteries.
Highlights:
1 The Sn and Sb incorporation boosts the electronic conductivity and lithium diffusivity of Si anodes, thereby reducing the stress due to lithium concentration gradient.
2 The lithiation of modified electrode mimics isotropic solid solution reaction, rather than the original anisotropic two-phase reaction of Si, effectively weakening the stress concentration.
3 The silicon-rich particles exhibit a capacity of over 1.9 Ah g−1 after 100 cycles at 0.1 A g−1 and maintain the excellent cyclic stability at 3 A g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- A.M. Chockla, J.T. Harris, V.A. Akhavan, T.D. Bogart, V.C. Holmberg et al., Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133(51), 20914–20921 (2011). https://doi.org/10.1021/ja208232h
- W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14(1), 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
- M. Obrovac, V. Chevrier, Alloy negative electrodes for li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). https://doi.org/10.1021/cr500207g
- M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary : understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4985 (2013). https://doi.org/10.1002/adma.201301795
- B. Zhu, G. Liu, G. Lv, Y. Mu, Y. Zhao et al., Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci. Adv. 5(11), eaax0651 (2019). https://doi.org/10.1126/sciadv.aax0651
- A. Sciences, Elements electrical conductivity reference table (2023). https://www.angstromsciences.com/elements-electrical-conductivity
- K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018). https://doi.org/10.1002/smll.201702737
- K. Hirai, T. Ichitsubo, T. Uda, A. Miyazaki, S. Yagi et al., Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater. 56(7), 1539–1545 (2008). https://doi.org/10.1016/j.actamat.2007.12.002
- G. Zhang, X. Li, D. Wei, H. Yu, J. Ye et al., Synergistic engineering of structural and electronic regulation of In2Se3 for ultrastable Li-ion battery. Chem. Eng. J. 453, 139841 (2023). https://doi.org/10.1016/j.cej.2022.139841
- X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6(2), 1522–1531 (2012). https://doi.org/10.1021/nn204476h
- R. Deshpande, Y.-T. Cheng, M.W. Verbrugge, Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081–5088 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.021
- J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan et al., Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanops for high-performance and safe lithium storage. Adv. Mater. 29(48), 1700523 (2017). https://doi.org/10.1002/adma.201700523
- H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
- S. Imtiaz, I.S. Amiinu, D. Storan, N. Kapuria, H. Geaney et al., Dense silicon nanowire networks grown on a stainless steel fiber cloth: a flexible and robust anode for lithium-ion batteries. Adv. Mater. 33(52), 2105917 (2021). https://doi.org/10.1002/adma.202105917
- Y.K. Jeong, W. Huang, R.A. Vila, W.X. Huang, J.Y. Wang et al., Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high-performance lithium-ion battery anodes. Adv. Energy Mater. 10(41), 2002108 (2020). https://doi.org/10.1002/aenm.202002108
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
- J. Ryu, D. Hong, S. Choi, S. Park, Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 10(2), 2843–2851 (2016). https://doi.org/10.1021/acsnano.5b07977
- S.W. Lee, H.W. Lee, I. Ryu, W.D. Nix, H.J. Gao et al., Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6(1), 7533 (2015). https://doi.org/10.1038/ncomms8533
- M.Y. Ge, J.P. Rong, X. Fang, C.W. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12(5), 2318–2323 (2012). https://doi.org/10.1021/nl300206e
- H. Tian, H. Tian, W. Yang, F. Zhang, W. Yang et al., Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 31(25), 2101796 (2021). https://doi.org/10.1002/adfm.202101796
- S. Park, J. Sung, S. Chae, J. Hong, T. Lee et al., Scalable synthesis of hollow beta-SIC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14(9), 11548–11557 (2020). https://doi.org/10.1021/acsnano.0c04013
- Y. Yu, J. Zhu, K. Zeng, M. Jiang, Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J. Mater. Chem. 9(6), 3472–3481 (2021). https://doi.org/10.1039/D0TA10525B
- C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013). https://doi.org/10.1038/nchem.1802
- S. Choi, T.-W. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microp anodes in lithium ion batteries. Science 357(6348), 279–283 (2017). https://doi.org/10.1126/science.aal4373
- Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui et al., High-areal-capacity silicon electrodes with low-cost silicon ps based on spatial control of self-healing binder. Adv. Energy Mater. 5(8), 1401826 (2015). https://doi.org/10.1002/aenm.201401826
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14(1), 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- Y. Yang, S. Liu, Z. Dong, Z. Huang, C. Lu et al., Hierarchical conformal coating enables highly stable microp Si anodes for advanced Li-ion batteries. Appl. Mater. Today 26, 101403 (2022). https://doi.org/10.1016/j.apmt.2022.101403
- D. Wang, M. Gao, H. Pan, J. Wang, Y. Liu, High performance amorphous-si@siox/c composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J. Power Sources 256, 190–199 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.128
- Y. Lee, T. Lee, J. Hong, J. Sung, N. Kim et al., Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 30(40), 2004841 (2020). https://doi.org/10.1002/adfm.202004841
- A. Heist, D.M. Piper, T. Evans, S.C. Kim, S.S. Han et al., Self-contained fragmentation and interfacial stability in crude micron-silicon anodes. J. Electrochem. Soc. 165(2), A244–A250 (2018). https://doi.org/10.1149/2.0811802jes
- X. Qu, X. Zhang, Y. Wu, J. Hu, M. Gao, An eggshell-structured n-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J. Power Sources 443, 227265 (2019). https://doi.org/10.1016/j.jpowsour.2019.227265
- J. Chen, X.L. Fan, Q. Li, H.B. Yang, M.R. Khoshi et al., Electrolyte design for LIF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
- J. Im, J.D. Kwon, D.H. Kim, S. Yoon, K.Y. Cho, P-doped SiOx/Si/SiOx sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 6(3), 2101052 (2022). https://doi.org/10.1002/smtd.202101052
- S. Cho, W. Jung, G.Y. Jung, K. Eom, High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery. J. Power Sources 454, 227931 (2020). https://doi.org/10.1016/j.jpowsour.2020.227931
- P.R. Abel, A.M. Chockla, Y.-M. Lin, V.C. Holmberg, J.T. Harris et al., Nanostructured Si(1–x)gex for tunable thin film lithium-ion battery anodes. ACS Nano 7(3), 2249–2257 (2013). https://doi.org/10.1021/nn3053632
- L.Y. Beaulieu, T.D. Hatchard, A. Bonakdarpour, M.D. Fleischauer, J.R. Dahn, Reaction of li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150(11), A1457 (2003). https://doi.org/10.1149/1.1613668
- M.D. Fleischauer, J.R. Dahn, Combinatorial investigations of the Si–Al–Mn system for Li-ion battery applications. J. Electrochem. Soc. 151(8), A1216–A1221 (2004). https://doi.org/10.1149/1.1768544
- T.D. Hatchard, M.N. Obrovac, J.R. Dahn, A comparison of the reactions of the SiSn, SiAg, and SiZn binary systems with L3i. J. Electrochem. Soc. 153(2), A282 (2006). https://doi.org/10.1149/1.2140607
- L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo et al., The electrochemical reaction of Li with amorphous Si–Sn alloys. J. Electrochem. Soc. 150(2), A149–A156 (2003). https://doi.org/10.1149/1.1530151
- M. Suzuki, J. Suzuki, K. Sekine, T. Takamura, Li insertion/extraction characteristics of a vacuum-deposited Si–Sn two-component film. J. Power Sources 146(1–2), 452–456 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.098
- Y. Ma, J. Li, Y. Wei, W. Liu, X. Zhang et al., Synthesis of Sn–Si composite films by co-sputtering technique for high-capacity microbattery anodes. Ionics 27(8), 3301–3314 (2021). https://doi.org/10.1007/s11581-021-04130-w
- Z. Dong, W. Du, C. Yan, C. Zhang, G. Chen et al., A novel tin-bonded silicon anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(38), 45578–45588 (2021). https://doi.org/10.1021/acsami.1c13547
- J. Wu, Z. Zhu, H. Zhang, H. Fu, H. Li et al., A novel Si/Sn composite with entangled ribbon structure as anode materials for lithium ion batterya novel Si/Sn composite with entangled ribbon structure as anode materials for lithium ion battery. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep29356
- A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, Tin-seeded silicon nanowires for high capacity Li-ion batteries. Chem. Mater. 24(19), 3738–3745 (2012). https://doi.org/10.1021/cm301968b
- C.Y. Zhu, Y. Zhang, Z.H. Ma, Y.F. Zhu, L.Q. Li, Mesoporous-Si embedded and anchored by hierarchical Sn nano-ps as promising anode for lithium-ion batteries. J. Alloys Compd. 832, 154935 (2020). https://doi.org/10.1016/j.jallcom.2020.154935
- H. Seo, H.-S. Kim, K. Kim, H. Choi, J.-H. Kim, Magnesium silicide-derived porous Sb–Si–C composite for stable lithium storage. J. Alloys Compd. 782, 525–532 (2019). https://doi.org/10.1016/j.jallcom.2018.12.212
- C. Yuan, S. Liu, Y. Yang, M. Yu, Y. Tian et al., Structure-controllable binary nanoporous-silicon/antimony alloy as anode for high-performance lithium-ion batteries. ChemElectroChem 5(23), 3809–3816 (2018). https://doi.org/10.1002/celc.201800776
- G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
- J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154(3), A156 (2007). https://doi.org/10.1149/1.2409862
- T. Hatchard, J. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151(6), A838 (2004). https://doi.org/10.1149/1.1739217
- J.M. Whiteley, J.W. Kim, D.M. Piper, S.-H. Lee, High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries. J. Electrochem. Soc. 163(2), A251 (2015). https://doi.org/10.1149/2.0701602jes
- K.C. Hewitt, Y.L. Beaulieu, J.R. Dahn, Electrochemistry of INSB as a Li insertion host: problems and prospects. J. Electrochem. Soc. 148(5), A402 (2001). https://doi.org/10.1149/1.1359194
- B. Key, R. Bhattacharyya, M. Morcrette, V. Seznec, J.-M. Tarascon et al., Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131(26), 9239–9249 (2009). https://doi.org/10.1021/ja8086278
- M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau et al., A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 6(7), 2145–2155 (2013). https://doi.org/10.1039/C3EE41318G
- X. Yang, N. Tachikawa, Y. Katayama, L. Li, J. Yan, Effect of the pillar size on the electrochemical performance of laser-induced silicon micropillars as anodes for lithium-ion batteries. Appl. Sci. 9(17), 3623 (2019). https://doi.org/10.3390/app9173623
- R. Kataoka, Y. Oda, R. Inoue, N. Kawasaki, N. Takeichi et al., Silicon micropowder negative electrode endures more than 1000 cycles when a surface-roughened clad current collector is used. J. Power Sources 346, 128–133 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.014
- C. Luo, L. Du, W. Wu, H. Xu, G. Zhang et al., Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng. 6(10), 12621–12629 (2018). https://doi.org/10.1021/acssuschemeng.8b01161
- S. Niu, M. Zhao, L. Ma, F. Zhao, Y. Zhang et al., High performance polyurethane–polyacrylic acid polymer binders for silicon microp anodes in lithium-ion batteries. Sustain. Energy Fuels 6(5), 1301–1311 (2022). https://doi.org/10.1039/D1SE01820E
- Y. Yang, C. Ni, M. Gao, J. Wang, Y. Liu et al., Dispersion-strengthened microp silicon composite with high anti-pulverization capability for li-ion batteries. Energy Storage Mater. 14, 279–288 (2018). https://doi.org/10.1016/j.ensm.2018.04.008
- A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010). https://doi.org/10.1038/nmat2725
- Y.Y. Liu, M.H. Sun, Y.F. Yuan, Q. Wu, H.X. Wang et al., Accommodation of silicon in an interconnected copper network for robust li-ion storage. Adv. Funct. Mater. 30(14), 1910249 (2020). https://doi.org/10.1002/adfm.201910249
- Q. Liu, X. Hu, Y. Liu, Z. Wen, One-step low-temperature molten salt synthesis of two-dimensional Si@ SiOx@ C hybrids for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 12(50), 55844–55855 (2020). https://doi.org/10.1021/acsami.0c15882
- P. Limthongkul, Y.-I. Jang, N.J. Dudney, Y.-M. Chiang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51(4), 1103–1113 (2003). https://doi.org/10.1016/S1359-6454(02)00514-1
- M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93 (2004). https://doi.org/10.1149/1.1652421
- Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021). https://doi.org/10.1016/j.joule.2021.05.015
- Y. Gao, Z. Hou, R. Zhou, D. Wang, X. Guo et al., Critical roles of mechanical properties of solid electrolyte interphase for potassium metal anodes. Adv. Funct. Mater. 32, 2112399 (2022). https://doi.org/10.1002/adfm.202112399
- Y. Gao, B. Zhang, Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv. Mater. 35(18), 2205421 (2023). https://doi.org/10.1002/adma.202205421
- M. Kim, Z.Z. Yang, I. Bloom, Review-the lithiation/delithiation behavior of Si-based electrodes: a connection between electrochemistry and mechanics. J. Electrochem. Soc. 168(1), 9 (2021). https://doi.org/10.1149/1945-7111/abd56f
- K. Zhao, M. Pharr, S. Cai, J.J. Vlassak, Z. Suo, Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94, s226–s235 (2011). https://doi.org/10.1111/j.1551-2916.2011.04432.x
- Y.-T. Cheng, M.W. Verbrugge, Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode ps. J. Electrochem. Soc. 157(4), A508 (2010). https://doi.org/10.1149/1.3298892
- Z. Cui, F. Gao, J. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280–1295 (2012). https://doi.org/10.1016/j.jmps.2012.03.008
- M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107(4), 045503 (2011). https://doi.org/10.1103/PhysRevLett.107.045503
- X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7(11), 749–756 (2012). https://doi.org/10.1038/nnano.2012.170
- M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix et al., Studying the kinetics of crystalline silicon nanop lithiation with in situ transmission electron microscopy. Adv. Mater. 24(45), 6034–6041 (2012). https://doi.org/10.1002/adma.201202744
- H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu et al., A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349–361 (2014). https://doi.org/10.1016/j.jmps.2014.06.004
- X.H. Liu, H. Zheng, L. Zhong, S. Huan, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011). https://doi.org/10.1021/nl201684d
- M. Wang, X. Xiao, X. Huang, Study of lithium diffusivity in amorphous silicon via finite element analysis. J. Power Sources 307, 77–85 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.082
- L.A. Berla, S.W. Lee, I. Ryu, Y. Cui, W.D. Nix, Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. Power Sources 258, 253–259 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.032
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
D. Larcher, J.-M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7(1), 19–29 (2015). https://doi.org/10.1038/nchem.2085
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14(1), 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
A.M. Chockla, J.T. Harris, V.A. Akhavan, T.D. Bogart, V.C. Holmberg et al., Silicon nanowire fabric as a lithium ion battery electrode material. J. Am. Chem. Soc. 133(51), 20914–20921 (2011). https://doi.org/10.1021/ja208232h
W. He, H. Xu, Z. Chen, J. Long, J. Zhang et al., Regulating the solvation structure of Li+ enables chemical prelithiation of silicon-based anodes toward high-energy lithium-ion batteries. Nano-Micro Lett. 15(1), 107 (2023). https://doi.org/10.1007/s40820-023-01068-8
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14(1), 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
G. Zhou, L. Xu, G. Hu, L. Mai, Y. Cui, Nanowires for electrochemical energy storage. Chem. Rev. 119(20), 11042–11109 (2019). https://doi.org/10.1021/acs.chemrev.9b00326
M. Obrovac, V. Chevrier, Alloy negative electrodes for li-ion batteries. Chem. Rev. 114(23), 11444–11502 (2014). https://doi.org/10.1021/cr500207g
M.T. McDowell, S.W. Lee, W.D. Nix, Y. Cui, 25th anniversary : understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25(36), 4966–4985 (2013). https://doi.org/10.1002/adma.201301795
B. Zhu, G. Liu, G. Lv, Y. Mu, Y. Zhao et al., Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci. Adv. 5(11), eaax0651 (2019). https://doi.org/10.1126/sciadv.aax0651
A. Sciences, Elements electrical conductivity reference table (2023). https://www.angstromsciences.com/elements-electrical-conductivity
K. Feng, M. Li, W. Liu, A.G. Kashkooli, X. Xiao et al., Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018). https://doi.org/10.1002/smll.201702737
K. Hirai, T. Ichitsubo, T. Uda, A. Miyazaki, S. Yagi et al., Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries. Acta Mater. 56(7), 1539–1545 (2008). https://doi.org/10.1016/j.actamat.2007.12.002
G. Zhang, X. Li, D. Wei, H. Yu, J. Ye et al., Synergistic engineering of structural and electronic regulation of In2Se3 for ultrastable Li-ion battery. Chem. Eng. J. 453, 139841 (2023). https://doi.org/10.1016/j.cej.2022.139841
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu et al., Size-dependent fracture of silicon nanops during lithiation. ACS Nano 6(2), 1522–1531 (2012). https://doi.org/10.1021/nn204476h
R. Deshpande, Y.-T. Cheng, M.W. Verbrugge, Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195(15), 5081–5088 (2010). https://doi.org/10.1016/j.jpowsour.2010.02.021
J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan et al., Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanops for high-performance and safe lithium storage. Adv. Mater. 29(48), 1700523 (2017). https://doi.org/10.1002/adma.201700523
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotechnol. 7(5), 310–315 (2012). https://doi.org/10.1038/nnano.2012.35
S. Imtiaz, I.S. Amiinu, D. Storan, N. Kapuria, H. Geaney et al., Dense silicon nanowire networks grown on a stainless steel fiber cloth: a flexible and robust anode for lithium-ion batteries. Adv. Mater. 33(52), 2105917 (2021). https://doi.org/10.1002/adma.202105917
Y.K. Jeong, W. Huang, R.A. Vila, W.X. Huang, J.Y. Wang et al., Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high-performance lithium-ion battery anodes. Adv. Energy Mater. 10(41), 2002108 (2020). https://doi.org/10.1002/aenm.202002108
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
J. Ryu, D. Hong, S. Choi, S. Park, Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes. ACS Nano 10(2), 2843–2851 (2016). https://doi.org/10.1021/acsnano.5b07977
S.W. Lee, H.W. Lee, I. Ryu, W.D. Nix, H.J. Gao et al., Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6(1), 7533 (2015). https://doi.org/10.1038/ncomms8533
M.Y. Ge, J.P. Rong, X. Fang, C.W. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12(5), 2318–2323 (2012). https://doi.org/10.1021/nl300206e
H. Tian, H. Tian, W. Yang, F. Zhang, W. Yang et al., Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv. Funct. Mater. 31(25), 2101796 (2021). https://doi.org/10.1002/adfm.202101796
S. Park, J. Sung, S. Chae, J. Hong, T. Lee et al., Scalable synthesis of hollow beta-SIC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14(9), 11548–11557 (2020). https://doi.org/10.1021/acsnano.0c04013
Y. Yu, J. Zhu, K. Zeng, M. Jiang, Mechanically robust and superior conductive n-type polymer binders for high-performance micro-silicon anodes in lithium-ion batteries. J. Mater. Chem. 9(6), 3472–3481 (2021). https://doi.org/10.1039/D0TA10525B
C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui et al., Self-healing chemistry enables the stable operation of silicon microp anodes for high-energy lithium-ion batteries. Nat. Chem. 5(12), 1042–1048 (2013). https://doi.org/10.1038/nchem.1802
S. Choi, T.-W. Kwon, A. Coskun, J.W. Choi, Highly elastic binders integrating polyrotaxanes for silicon microp anodes in lithium ion batteries. Science 357(6348), 279–283 (2017). https://doi.org/10.1126/science.aal4373
Z. Chen, C. Wang, J. Lopez, Z. Lu, Y. Cui et al., High-areal-capacity silicon electrodes with low-cost silicon ps based on spatial control of self-healing binder. Adv. Energy Mater. 5(8), 1401826 (2015). https://doi.org/10.1002/aenm.201401826
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14(1), 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
Y. Yang, S. Liu, Z. Dong, Z. Huang, C. Lu et al., Hierarchical conformal coating enables highly stable microp Si anodes for advanced Li-ion batteries. Appl. Mater. Today 26, 101403 (2022). https://doi.org/10.1016/j.apmt.2022.101403
D. Wang, M. Gao, H. Pan, J. Wang, Y. Liu, High performance amorphous-si@siox/c composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J. Power Sources 256, 190–199 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.128
Y. Lee, T. Lee, J. Hong, J. Sung, N. Kim et al., Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 30(40), 2004841 (2020). https://doi.org/10.1002/adfm.202004841
A. Heist, D.M. Piper, T. Evans, S.C. Kim, S.S. Han et al., Self-contained fragmentation and interfacial stability in crude micron-silicon anodes. J. Electrochem. Soc. 165(2), A244–A250 (2018). https://doi.org/10.1149/2.0811802jes
X. Qu, X. Zhang, Y. Wu, J. Hu, M. Gao, An eggshell-structured n-doped silicon composite anode with high anti-pulverization and favorable electronic conductivity. J. Power Sources 443, 227265 (2019). https://doi.org/10.1016/j.jpowsour.2019.227265
J. Chen, X.L. Fan, Q. Li, H.B. Yang, M.R. Khoshi et al., Electrolyte design for LIF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5(5), 386–397 (2020). https://doi.org/10.1038/s41560-020-0601-1
J. Im, J.D. Kwon, D.H. Kim, S. Yoon, K.Y. Cho, P-doped SiOx/Si/SiOx sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 6(3), 2101052 (2022). https://doi.org/10.1002/smtd.202101052
S. Cho, W. Jung, G.Y. Jung, K. Eom, High-performance boron-doped silicon micron-rod anode fabricated using a mass-producible lithography method for a lithium ion battery. J. Power Sources 454, 227931 (2020). https://doi.org/10.1016/j.jpowsour.2020.227931
P.R. Abel, A.M. Chockla, Y.-M. Lin, V.C. Holmberg, J.T. Harris et al., Nanostructured Si(1–x)gex for tunable thin film lithium-ion battery anodes. ACS Nano 7(3), 2249–2257 (2013). https://doi.org/10.1021/nn3053632
L.Y. Beaulieu, T.D. Hatchard, A. Bonakdarpour, M.D. Fleischauer, J.R. Dahn, Reaction of li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150(11), A1457 (2003). https://doi.org/10.1149/1.1613668
M.D. Fleischauer, J.R. Dahn, Combinatorial investigations of the Si–Al–Mn system for Li-ion battery applications. J. Electrochem. Soc. 151(8), A1216–A1221 (2004). https://doi.org/10.1149/1.1768544
T.D. Hatchard, M.N. Obrovac, J.R. Dahn, A comparison of the reactions of the SiSn, SiAg, and SiZn binary systems with L3i. J. Electrochem. Soc. 153(2), A282 (2006). https://doi.org/10.1149/1.2140607
L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo et al., The electrochemical reaction of Li with amorphous Si–Sn alloys. J. Electrochem. Soc. 150(2), A149–A156 (2003). https://doi.org/10.1149/1.1530151
M. Suzuki, J. Suzuki, K. Sekine, T. Takamura, Li insertion/extraction characteristics of a vacuum-deposited Si–Sn two-component film. J. Power Sources 146(1–2), 452–456 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.098
Y. Ma, J. Li, Y. Wei, W. Liu, X. Zhang et al., Synthesis of Sn–Si composite films by co-sputtering technique for high-capacity microbattery anodes. Ionics 27(8), 3301–3314 (2021). https://doi.org/10.1007/s11581-021-04130-w
Z. Dong, W. Du, C. Yan, C. Zhang, G. Chen et al., A novel tin-bonded silicon anode for lithium-ion batteries. ACS Appl. Mater. Interfaces 13(38), 45578–45588 (2021). https://doi.org/10.1021/acsami.1c13547
J. Wu, Z. Zhu, H. Zhang, H. Fu, H. Li et al., A novel Si/Sn composite with entangled ribbon structure as anode materials for lithium ion batterya novel Si/Sn composite with entangled ribbon structure as anode materials for lithium ion battery. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep29356
A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, Tin-seeded silicon nanowires for high capacity Li-ion batteries. Chem. Mater. 24(19), 3738–3745 (2012). https://doi.org/10.1021/cm301968b
C.Y. Zhu, Y. Zhang, Z.H. Ma, Y.F. Zhu, L.Q. Li, Mesoporous-Si embedded and anchored by hierarchical Sn nano-ps as promising anode for lithium-ion batteries. J. Alloys Compd. 832, 154935 (2020). https://doi.org/10.1016/j.jallcom.2020.154935
H. Seo, H.-S. Kim, K. Kim, H. Choi, J.-H. Kim, Magnesium silicide-derived porous Sb–Si–C composite for stable lithium storage. J. Alloys Compd. 782, 525–532 (2019). https://doi.org/10.1016/j.jallcom.2018.12.212
C. Yuan, S. Liu, Y. Yang, M. Yu, Y. Tian et al., Structure-controllable binary nanoporous-silicon/antimony alloy as anode for high-performance lithium-ion batteries. ChemElectroChem 5(23), 3809–3816 (2018). https://doi.org/10.1002/celc.201800776
G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6
J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154(3), A156 (2007). https://doi.org/10.1149/1.2409862
T. Hatchard, J. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151(6), A838 (2004). https://doi.org/10.1149/1.1739217
J.M. Whiteley, J.W. Kim, D.M. Piper, S.-H. Lee, High-capacity and highly reversible silicon-tin hybrid anode for solid-state lithium-ion batteries. J. Electrochem. Soc. 163(2), A251 (2015). https://doi.org/10.1149/2.0701602jes
K.C. Hewitt, Y.L. Beaulieu, J.R. Dahn, Electrochemistry of INSB as a Li insertion host: problems and prospects. J. Electrochem. Soc. 148(5), A402 (2001). https://doi.org/10.1149/1.1359194
B. Key, R. Bhattacharyya, M. Morcrette, V. Seznec, J.-M. Tarascon et al., Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131(26), 9239–9249 (2009). https://doi.org/10.1021/ja8086278
M. Gauthier, D. Mazouzi, D. Reyter, B. Lestriez, P. Moreau et al., A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ. Sci. 6(7), 2145–2155 (2013). https://doi.org/10.1039/C3EE41318G
X. Yang, N. Tachikawa, Y. Katayama, L. Li, J. Yan, Effect of the pillar size on the electrochemical performance of laser-induced silicon micropillars as anodes for lithium-ion batteries. Appl. Sci. 9(17), 3623 (2019). https://doi.org/10.3390/app9173623
R. Kataoka, Y. Oda, R. Inoue, N. Kawasaki, N. Takeichi et al., Silicon micropowder negative electrode endures more than 1000 cycles when a surface-roughened clad current collector is used. J. Power Sources 346, 128–133 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.014
C. Luo, L. Du, W. Wu, H. Xu, G. Zhang et al., Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries. ACS Sustain. Chem. Eng. 6(10), 12621–12629 (2018). https://doi.org/10.1021/acssuschemeng.8b01161
S. Niu, M. Zhao, L. Ma, F. Zhao, Y. Zhang et al., High performance polyurethane–polyacrylic acid polymer binders for silicon microp anodes in lithium-ion batteries. Sustain. Energy Fuels 6(5), 1301–1311 (2022). https://doi.org/10.1039/D1SE01820E
Y. Yang, C. Ni, M. Gao, J. Wang, Y. Liu et al., Dispersion-strengthened microp silicon composite with high anti-pulverization capability for li-ion batteries. Energy Storage Mater. 14, 279–288 (2018). https://doi.org/10.1016/j.ensm.2018.04.008
A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010). https://doi.org/10.1038/nmat2725
Y.Y. Liu, M.H. Sun, Y.F. Yuan, Q. Wu, H.X. Wang et al., Accommodation of silicon in an interconnected copper network for robust li-ion storage. Adv. Funct. Mater. 30(14), 1910249 (2020). https://doi.org/10.1002/adfm.201910249
Q. Liu, X. Hu, Y. Liu, Z. Wen, One-step low-temperature molten salt synthesis of two-dimensional Si@ SiOx@ C hybrids for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 12(50), 55844–55855 (2020). https://doi.org/10.1021/acsami.0c15882
P. Limthongkul, Y.-I. Jang, N.J. Dudney, Y.-M. Chiang, Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Mater. 51(4), 1103–1113 (2003). https://doi.org/10.1016/S1359-6454(02)00514-1
M.N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7(5), A93 (2004). https://doi.org/10.1149/1.1652421
Y. Gao, X. Du, Z. Hou, X. Shen, Y.-W. Mai et al., Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5(7), 1860–1872 (2021). https://doi.org/10.1016/j.joule.2021.05.015
Y. Gao, Z. Hou, R. Zhou, D. Wang, X. Guo et al., Critical roles of mechanical properties of solid electrolyte interphase for potassium metal anodes. Adv. Funct. Mater. 32, 2112399 (2022). https://doi.org/10.1002/adfm.202112399
Y. Gao, B. Zhang, Probing the mechanically stable solid electrolyte interphase and the implications in design strategies. Adv. Mater. 35(18), 2205421 (2023). https://doi.org/10.1002/adma.202205421
M. Kim, Z.Z. Yang, I. Bloom, Review-the lithiation/delithiation behavior of Si-based electrodes: a connection between electrochemistry and mechanics. J. Electrochem. Soc. 168(1), 9 (2021). https://doi.org/10.1149/1945-7111/abd56f
K. Zhao, M. Pharr, S. Cai, J.J. Vlassak, Z. Suo, Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94, s226–s235 (2011). https://doi.org/10.1111/j.1551-2916.2011.04432.x
Y.-T. Cheng, M.W. Verbrugge, Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode ps. J. Electrochem. Soc. 157(4), A508 (2010). https://doi.org/10.1149/1.3298892
Z. Cui, F. Gao, J. Qu, A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60(7), 1280–1295 (2012). https://doi.org/10.1016/j.jmps.2012.03.008
M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107(4), 045503 (2011). https://doi.org/10.1103/PhysRevLett.107.045503
X.H. Liu, J.W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7(11), 749–756 (2012). https://doi.org/10.1038/nnano.2012.170
M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix et al., Studying the kinetics of crystalline silicon nanop lithiation with in situ transmission electron microscopy. Adv. Mater. 24(45), 6034–6041 (2012). https://doi.org/10.1002/adma.201202744
H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu et al., A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349–361 (2014). https://doi.org/10.1016/j.jmps.2014.06.004
X.H. Liu, H. Zheng, L. Zhong, S. Huan, K. Karki et al., Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11(8), 3312–3318 (2011). https://doi.org/10.1021/nl201684d
M. Wang, X. Xiao, X. Huang, Study of lithium diffusivity in amorphous silicon via finite element analysis. J. Power Sources 307, 77–85 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.082
L.A. Berla, S.W. Lee, I. Ryu, Y. Cui, W.D. Nix, Robustness of amorphous silicon during the initial lithiation/delithiation cycle. J. Power Sources 258, 253–259 (2014). https://doi.org/10.1016/j.jpowsour.2014.02.032