Digital Light Processing 3D-Printed Ceramic Metamaterials for Electromagnetic Wave Absorption
Corresponding Author: Jie Kong
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 122
Abstract
Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic (EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precursor for digital light processing (DLP) 3D printing to fabricate ceramic parts with complex geometry, no cracks and linear shrinkage. Guiding with the principles of impedance matching, attenuation, and effective-medium theory, we design a cross-helix-array metamaterial model based on the complex permittivity constant of precursor-derived ceramics. The corresponding ceramic metamaterials can be successfully prepared by DLP printing and subsequent pyrolysis process, achieving a low reflection coefficient and a wide effective absorption bandwidth in the X-band even under high temperature. This is a general method that can be extended to other bands, which can be realized by merely adjusting the unit structure of metamaterials. This strategy provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials, and it exposes the downstream applications of highly efficient and broad EM wave-absorbing materials and structures with great potential applications.
Article Highlights:
1 A novel UV-curable polysiloxane precursor was synthesized with excellent UV curable performance and stability.
2 The polysiloxane can fabricate Si–O–C ceramic with complex geometry via digital light processing 3D printing.
3 The ceramic metamaterials show electromagnetic wave absorption with a low reflection coefficient and a wide effective absorption bandwidth even under high temperature.
4 It provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials with potential in EM wave-absorbing structures from nano to micro scale.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020). https://doi.org/10.1002/adma.201906769
- X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun et al., Phase and morphology evolution of high dielectric CoO/Co3O4 ps with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020). https://doi.org/10.1016/j.cej.2020.125205
- Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019). https://doi.org/10.1002/advs.201801057
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- S. Fu, M. Zhu, Y. Zhu, Organosilicon polymer-derived ceramics: an overview. J. Adv. Ceram. 8, 457–478 (2019). https://doi.org/10.1007/s40145-019-0335-3
- P. Wang, L. Cheng, L. Zhang, Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency. Chem. Eng. J. 338, 248–260 (2018). https://doi.org/10.1016/j.cej.2017.12.008
- Z. Shi, R. Fan, K. Yan, K. Sun, M. Zhang et al., Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Funct. Mater. 23(33), 4123–4132 (2013). https://doi.org/10.1002/adfm.201202895
- B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 111, 100651 (2020). https://doi.org/10.1016/j.pmatsci.2020.100651
- C. Luo, Y. Tang, T. Jiao, J. Kong, High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes. ACS Appl. Mater. Interfaces 10, 28051–28061 (2018). https://doi.org/10.1021/acsami.8b07879
- N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687
- Y. Jia, T.D. Ajayi, M.A. Roberts Jr., C.C. Chung, C. Xu, Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 46254–46266 (2020). https://doi.org/10.1021/acsami.0c08479
- A. Kovalčíková, J. Sedláček, Z. Lenčéš, R. Bystrický, J. Dusza et al., Oxidation resistance of SiC ceramics prepared by different proceessing routes. J. Eur. Ceram. Soc. 36, 3783–3793 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.016
- D. Jia, B. Liang, Z. Yang, Y. Zhou, Metastable Si–B–C–N ceramics and their matrix composites developed by inorganic route based on mechanical alloying: fabrication, microstructures, properties and their relevant basic scientific issues. Prog. Mater. Sci. 98, 1–67 (2018). https://doi.org/10.1016/j.pmatsci.2018.05.006
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@ TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- D. Li, D. Jia, Z. Yang, Y. Zhou, Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures. Int. Mater. Rev. 67, 266–297 (2022). https://doi.org/10.1080/09506608.2021.1941716
- P. Huang, B. Zhou, Q. Zheng, Y. Tian, M. Wang et al., Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Adv. Mater. 32, 1905951 (2020). https://doi.org/10.1002/adma.201905951
- T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). https://doi.org/10.1002/adma.201303088
- C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl. Mater. Interfaces 10, 39307–39318 (2018). https://doi.org/10.1021/acsami.8b15365
- M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31, 2011229 (2021). https://doi.org/10.1002/adfm.202011229
- H. Mei, X. Zhao, S. Zhou, D. Han, S. Xiao et al., 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem. Eng. J. 372, 940–945 (2019). https://doi.org/10.1016/j.cej.2019.05.011
- L. Lei, Z. Yao, J. Zhou, B. Wei, H. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200, 108479 (2020). https://doi.org/10.1016/j.compscitech.2020.108479
- H. Wang, H. Ma, M. Chen, S. Sun, T. Cui, A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves. Adv. Funct. Mater. 31, 2100275 (2021). https://doi.org/10.1002/adfm.202100275
- Q. Zhang, D. Lin, B. Deng, X. Xu, Q. Nian et al., Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 29, 1605506 (2017). https://doi.org/10.1002/adma.201605506
- M.R. Hashemi, S. Cakmakyapan, M. Jarrahi, Reconfigurable metamaterials for terahertz wave manipulation. Rep. Prog. Phys. 80, 094501 (2017). https://doi.org/10.1088/1361-6633/aa77cb
- C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012). https://doi.org/10.1002/adma.201200674
- Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 116, 100736 (2021). https://doi.org/10.1016/j.pmatsci.2020.100736
- G.L. Messing, A.J. Stevenson, Toward pore-free ceramics. Science 322, 383–384 (2008). https://doi.org/10.1126/science.1160903
- A. Viard, D. Fonblanc, D. Lopez-Ferber, M. Schmidt, A. Lale et al., Polymer derived Si–B–C–N ceramics: 30 years of research. Adv. Eng. Mater. 20, 1800360 (2018). https://doi.org/10.1002/adem.201800360
- Q. Wen, Z. Yu, R. Riedel, The fate and role of in situ formed carbon in polymer-derived ceramics. Prog. Mater. Sci. 109, 100623 (2020). https://doi.org/10.1016/j.pmatsci.2019.100623
- P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010). https://doi.org/10.1111/j.1551-2916.2010.03876.x
- C. Luo, T. Jiao, Y. Tang, J. Kong, Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv. Eng. Mater. 20, 1701168 (2018). https://doi.org/10.1002/adem.201701168
- Y. Song, S. Jin, K. Hu, Y. Du, J. Liang et al., Adjustable iron-containing SiBCN ceramics with high-temperature microwave absorption and anti-oxidation properties. J. Am. Ceram. Soc. 104, 5244–5256 (2021). https://doi.org/10.1111/jace.17879
- Y. Jia, M.A.R. Chowdhury, D. Zhang, C. Xu, Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics. ACS Appl. Mater. Interfaces 11, 45862–45874 (2019). https://doi.org/10.1021/acsami.9b16475
- Q. Chen, D. Li, X. Liao, Z. Yang, D. Jia et al., Polymer-derived lightweight SiBCN ceramic nanofibers with high microwave absorption performance. ACS Appl. Mater. Interfaces 13, 34889–34898 (2021). https://doi.org/10.1021/acsami.1c07912
- J. Sun, T. Li, A. Reitz, Q. Fu, R. Riedel et al., High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air. Corros. Sci. 175, 108866 (2020). https://doi.org/10.1016/j.corsci.2020.108866
- L. Brigo, J.E.M. Schmidt, A. Gandin, N. Michieli, P. Colombo et al., 3D nanofabrication of SiOC ceramic structures. Adv. Sci. 5, 1800937 (2018). https://doi.org/10.1002/advs.201800937
- E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa et al., Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 28, 370–376 (2016). https://doi.org/10.1002/adma.201503470
- X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
- N. Emminghaus, C. Hoff, J. Hermsdorf, S. Kaierle, Residual oxygen content and powder recycling: effects on surface roughness and porosity of additively manufactured Ti-6Al-4V. Addit. Manuf. 46, 102093 (2021). https://doi.org/10.1016/j.addma.2021.102093
- Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter et al., Additive manufacturing of polymer-derived ceramics. Science 351, 58–62 (2016). https://doi.org/10.1126/science.aad2688
- C. He, C. Ma, X. Li, F. Hou, J. Liu et al., Polymer-derived SiOC ceramic lattice with thick struts prepared by digital light processing. Add. Manuf. 35, 101366 (2020). https://doi.org/10.1016/j.addma.2020.101366
- K. Huang, H. Elsayed, G. Franchin, P. Colombo, 3D printing of polymer-derived SiOC with hierarchical and tunable porosity. Add. Manuf. 36, 101549 (2020). https://doi.org/10.1016/j.addma.2020.101549
- Y. Lakhdar, C. Tuck, J. Binner, R. Goodridge, Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 116, 100736 (2021). https://doi.org/10.1016/j.pmatsci.2020.100736
- J. Xiao, D. Liu, H. Cheng, Y. Jia, S. Zhou et al., Carbon nanotubes as light absorbers in digital light processing three-dimensional printing of SiCN ceramics from preceramic polysilazane. Ceram. Int. 46, 19393–19400 (2020). https://doi.org/10.1016/j.ceramint.2020.04.282
- R.C. Che, L.M. Peng, X.F. Duan, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky et al., Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev. 59, 326–355 (2014). https://doi.org/10.1179/1743280414Y.0000000037
- J. Kong, X. Fan, G. Zhang, X. Xie, Q. Si et al., Synthesis and UV-curing behaviors of novel rapid UV-curable polyorganosilazanes. Polymer 47, 1519–1525 (2006). https://doi.org/10.1016/j.polymer.2006.01.007
- X. Liu, Z. Zhang, Y. Wu, Absorption properties of carbon black/silicon carbide microwave absorbers. Compos. Part B-Eng. 42, 326–329 (2011). https://doi.org/10.1016/j.compositesb.2010.11.009
- M. Cao, R. Qin, C. Qiu, J. Zhu, Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Design. 24, 391–396 (2003). https://doi.org/10.1016/S0261-3069(02)00119-X
- X. Shi, W. You, Y. Zhao, X. Li, Z. Shao et al., Multi-scale magnetic coupling of Fe@ SiO2@C–Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 11, 17270–17276 (2019). https://doi.org/10.1039/C9NR06629B
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33, 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
- C. Wang, Z. Lv, M.P. Mohan, Z. Cui, Z. Liu et al., Pangolin–inspired stretchable, microwave-invisible metascale. Adv. Mater. 33, 2102131 (2021). https://doi.org/10.1002/adma.202102131
- Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao et al., ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 114, 206–214 (2022). https://doi.org/10.1016/j.jmst.2021.11.021
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
References
S. Gupta, N.H. Tai, Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019). https://doi.org/10.1016/j.carbon.2019.06.002
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, 1906769 (2020). https://doi.org/10.1002/adma.201906769
X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun et al., Phase and morphology evolution of high dielectric CoO/Co3O4 ps with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020). https://doi.org/10.1016/j.cej.2020.125205
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019). https://doi.org/10.1002/advs.201801057
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
S. Fu, M. Zhu, Y. Zhu, Organosilicon polymer-derived ceramics: an overview. J. Adv. Ceram. 8, 457–478 (2019). https://doi.org/10.1007/s40145-019-0335-3
P. Wang, L. Cheng, L. Zhang, Lightweight, flexible SiCN ceramic nanowires applied as effective microwave absorbers in high frequency. Chem. Eng. J. 338, 248–260 (2018). https://doi.org/10.1016/j.cej.2017.12.008
Z. Shi, R. Fan, K. Yan, K. Sun, M. Zhang et al., Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Funct. Mater. 23(33), 4123–4132 (2013). https://doi.org/10.1002/adfm.201202895
B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature boride ceramics. Prog. Mater. Sci. 111, 100651 (2020). https://doi.org/10.1016/j.pmatsci.2020.100651
C. Luo, Y. Tang, T. Jiao, J. Kong, High-temperature stable and metal-free electromagnetic wave-absorbing SiBCN ceramics derived from carbon-rich hyperbranched polyborosilazanes. ACS Appl. Mater. Interfaces 10, 28051–28061 (2018). https://doi.org/10.1021/acsami.8b07879
N.P. Padture, Advanced structural ceramics in aerospace propulsion. Nat. Mater. 15, 804–809 (2016). https://doi.org/10.1038/nmat4687
Y. Jia, T.D. Ajayi, M.A. Roberts Jr., C.C. Chung, C. Xu, Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding. ACS Appl. Mater. Interfaces 12, 46254–46266 (2020). https://doi.org/10.1021/acsami.0c08479
A. Kovalčíková, J. Sedláček, Z. Lenčéš, R. Bystrický, J. Dusza et al., Oxidation resistance of SiC ceramics prepared by different proceessing routes. J. Eur. Ceram. Soc. 36, 3783–3793 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.03.016
D. Jia, B. Liang, Z. Yang, Y. Zhou, Metastable Si–B–C–N ceramics and their matrix composites developed by inorganic route based on mechanical alloying: fabrication, microstructures, properties and their relevant basic scientific issues. Prog. Mater. Sci. 98, 1–67 (2018). https://doi.org/10.1016/j.pmatsci.2018.05.006
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@Air@ TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@Carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
D. Li, D. Jia, Z. Yang, Y. Zhou, Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures. Int. Mater. Rev. 67, 266–297 (2022). https://doi.org/10.1080/09506608.2021.1941716
P. Huang, B. Zhou, Q. Zheng, Y. Tian, M. Wang et al., Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Adv. Mater. 32, 1905951 (2020). https://doi.org/10.1002/adma.201905951
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). https://doi.org/10.1002/adma.201303088
C. Luo, T. Jiao, J. Gu, Y. Tang, J. Kong, Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl. Mater. Interfaces 10, 39307–39318 (2018). https://doi.org/10.1021/acsami.8b15365
M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31, 2011229 (2021). https://doi.org/10.1002/adfm.202011229
H. Mei, X. Zhao, S. Zhou, D. Han, S. Xiao et al., 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem. Eng. J. 372, 940–945 (2019). https://doi.org/10.1016/j.cej.2019.05.011
L. Lei, Z. Yao, J. Zhou, B. Wei, H. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance. Compos. Sci. Technol. 200, 108479 (2020). https://doi.org/10.1016/j.compscitech.2020.108479
H. Wang, H. Ma, M. Chen, S. Sun, T. Cui, A reconfigurable multifunctional metasurface for full-space control of electromagnetic waves. Adv. Funct. Mater. 31, 2100275 (2021). https://doi.org/10.1002/adfm.202100275
Q. Zhang, D. Lin, B. Deng, X. Xu, Q. Nian et al., Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ceramic metamaterial. Adv. Mater. 29, 1605506 (2017). https://doi.org/10.1002/adma.201605506
M.R. Hashemi, S. Cakmakyapan, M. Jarrahi, Reconfigurable metamaterials for terahertz wave manipulation. Rep. Prog. Phys. 80, 094501 (2017). https://doi.org/10.1088/1361-6633/aa77cb
C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012). https://doi.org/10.1002/adma.201200674
Y. Lakhdar, C. Tuck, J. Binner, A. Terry, R. Goodridge, Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 116, 100736 (2021). https://doi.org/10.1016/j.pmatsci.2020.100736
G.L. Messing, A.J. Stevenson, Toward pore-free ceramics. Science 322, 383–384 (2008). https://doi.org/10.1126/science.1160903
A. Viard, D. Fonblanc, D. Lopez-Ferber, M. Schmidt, A. Lale et al., Polymer derived Si–B–C–N ceramics: 30 years of research. Adv. Eng. Mater. 20, 1800360 (2018). https://doi.org/10.1002/adem.201800360
Q. Wen, Z. Yu, R. Riedel, The fate and role of in situ formed carbon in polymer-derived ceramics. Prog. Mater. Sci. 109, 100623 (2020). https://doi.org/10.1016/j.pmatsci.2019.100623
P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93, 1805–1837 (2010). https://doi.org/10.1111/j.1551-2916.2010.03876.x
C. Luo, T. Jiao, Y. Tang, J. Kong, Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv. Eng. Mater. 20, 1701168 (2018). https://doi.org/10.1002/adem.201701168
Y. Song, S. Jin, K. Hu, Y. Du, J. Liang et al., Adjustable iron-containing SiBCN ceramics with high-temperature microwave absorption and anti-oxidation properties. J. Am. Ceram. Soc. 104, 5244–5256 (2021). https://doi.org/10.1111/jace.17879
Y. Jia, M.A.R. Chowdhury, D. Zhang, C. Xu, Wide-band tunable microwave-absorbing ceramic composites made of polymer-derived SiOC ceramic and in situ partially surface-oxidized ultra-high-temperature ceramics. ACS Appl. Mater. Interfaces 11, 45862–45874 (2019). https://doi.org/10.1021/acsami.9b16475
Q. Chen, D. Li, X. Liao, Z. Yang, D. Jia et al., Polymer-derived lightweight SiBCN ceramic nanofibers with high microwave absorption performance. ACS Appl. Mater. Interfaces 13, 34889–34898 (2021). https://doi.org/10.1021/acsami.1c07912
J. Sun, T. Li, A. Reitz, Q. Fu, R. Riedel et al., High-temperature stability and oxidation behavior of SiOC/HfO2 ceramic nanocomposite in air. Corros. Sci. 175, 108866 (2020). https://doi.org/10.1016/j.corsci.2020.108866
L. Brigo, J.E.M. Schmidt, A. Gandin, N. Michieli, P. Colombo et al., 3D nanofabrication of SiOC ceramic structures. Adv. Sci. 5, 1800937 (2018). https://doi.org/10.1002/advs.201800937
E. Zanchetta, M. Cattaldo, G. Franchin, M. Schwentenwein, J. Homa et al., Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 28, 370–376 (2016). https://doi.org/10.1002/adma.201503470
X. Wu, T. Tu, Y. Dai, P. Tang, Y. Zhang et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 13, 148 (2021). https://doi.org/10.1007/s40820-021-00665-9
N. Emminghaus, C. Hoff, J. Hermsdorf, S. Kaierle, Residual oxygen content and powder recycling: effects on surface roughness and porosity of additively manufactured Ti-6Al-4V. Addit. Manuf. 46, 102093 (2021). https://doi.org/10.1016/j.addma.2021.102093
Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter et al., Additive manufacturing of polymer-derived ceramics. Science 351, 58–62 (2016). https://doi.org/10.1126/science.aad2688
C. He, C. Ma, X. Li, F. Hou, J. Liu et al., Polymer-derived SiOC ceramic lattice with thick struts prepared by digital light processing. Add. Manuf. 35, 101366 (2020). https://doi.org/10.1016/j.addma.2020.101366
K. Huang, H. Elsayed, G. Franchin, P. Colombo, 3D printing of polymer-derived SiOC with hierarchical and tunable porosity. Add. Manuf. 36, 101549 (2020). https://doi.org/10.1016/j.addma.2020.101549
Y. Lakhdar, C. Tuck, J. Binner, R. Goodridge, Additive manufacturing of advanced ceramic materials. Prog. Mater. Sci. 116, 100736 (2021). https://doi.org/10.1016/j.pmatsci.2020.100736
J. Xiao, D. Liu, H. Cheng, Y. Jia, S. Zhou et al., Carbon nanotubes as light absorbers in digital light processing three-dimensional printing of SiCN ceramics from preceramic polysilazane. Ceram. Int. 46, 19393–19400 (2020). https://doi.org/10.1016/j.ceramint.2020.04.282
R.C. Che, L.M. Peng, X.F. Duan, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004). https://doi.org/10.1002/adma.200306460
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky et al., Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev. 59, 326–355 (2014). https://doi.org/10.1179/1743280414Y.0000000037
J. Kong, X. Fan, G. Zhang, X. Xie, Q. Si et al., Synthesis and UV-curing behaviors of novel rapid UV-curable polyorganosilazanes. Polymer 47, 1519–1525 (2006). https://doi.org/10.1016/j.polymer.2006.01.007
X. Liu, Z. Zhang, Y. Wu, Absorption properties of carbon black/silicon carbide microwave absorbers. Compos. Part B-Eng. 42, 326–329 (2011). https://doi.org/10.1016/j.compositesb.2010.11.009
M. Cao, R. Qin, C. Qiu, J. Zhu, Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Design. 24, 391–396 (2003). https://doi.org/10.1016/S0261-3069(02)00119-X
X. Shi, W. You, Y. Zhao, X. Li, Z. Shao et al., Multi-scale magnetic coupling of Fe@ SiO2@C–Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale 11, 17270–17276 (2019). https://doi.org/10.1039/C9NR06629B
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
J. Liang, J. Chen, H. Shen, K. Hu, B. Zhao et al., Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33, 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734
C. Wang, Z. Lv, M.P. Mohan, Z. Cui, Z. Liu et al., Pangolin–inspired stretchable, microwave-invisible metascale. Adv. Mater. 33, 2102131 (2021). https://doi.org/10.1002/adma.202102131
Z. Yu, R. Zhou, M. Ma, R. Zhu, P. Miao et al., ZnO/nitrogen-doped carbon nanocomplex with controlled morphology for highly efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 114, 206–214 (2022). https://doi.org/10.1016/j.jmst.2021.11.021
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624