Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries
Corresponding Author: Hao Liu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 12
Abstract
Lithium–sulfur (Li–S) batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost. Nevertheless, the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value. Many methods were proposed for inhibiting the shuttle effect of polysulfide, improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries. Here, we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries. First, the electrochemical principles/mechanism and origin of the shuttle effect are described in detail. Moreover, the efficient strategies, including boosting the sulfur conversion rate of sulfur, confining sulfur or lithium polysulfides (LPS) within cathode host, confining LPS in the shield layer, and preventing LPS from contacting the anode, will be discussed to suppress the shuttle effect. Then, recent advances in inhibition of shuttle effect in cathode, electrolyte, separator, and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries. Finally, we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries.
Highlights:
1 The electrochemical principles/mechanism of Li–S batteries and origin of the shuttle effect have been discussed.
2 The efficient strategies have been summarized to inhibit the shuttle effect.
3 The recent advances of inhibition of shuttle effect in Li–S batteries for all components from anode to cathode.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O–2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
- Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
- B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010). https://doi.org/10.1021/cm902696j
- A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015). https://doi.org/10.1038/nmat4170
- A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013). https://doi.org/10.1021/ar300179v
- Q. Lu, Y. Jie, X. Meng, A. Omar, D. Mikhailova et al., Carbon materials for stable li metal anodes: challenges, solutions, and outlook. Carbon Energy 3, 957–975 (2021). https://doi.org/10.1002/cey2.147
- L. Zeng, J. Zhu, P.K. Chu, L. Huang, J. Wang et al., Catalytic effects of electrodes and electrolytes in metal-sulfur batteries: progress and prospective. Adv. Mater. 34, e2204636 (2022). https://doi.org/10.1002/adma.202204636
- S. Evers, L.F. Nazar, New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
- J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631
- J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002). https://doi.org/10.1002/1521-4095(20020705)14:13/14
- S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
- Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 29, 1606817 (2017). https://doi.org/10.1002/adma.201606817
- Z. Xiao, Z. Yang, L. Wang, H. Nie, M.E. Zhong et al., A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv. Mater. 27, 2891–2898 (2015). https://doi.org/10.1002/adma.201405637
- Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing mwcnt interlayer. Chem. Commun. 48, 8817–8819 (2012). https://doi.org/10.1039/C2CC33945E
- S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117
- H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martínez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
- X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power. Sources 196, 9839–9843 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.027
- R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
- X.-B. Cheng, T.-Z. Hou, R. Zhang, H.-J. Peng, C.-Z. Zhao et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). https://doi.org/10.1002/adma.201506124
- Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu et al., Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113
- N.-W. Li, Y. Shi, Y.-X. Yin, X.-X. Zeng, J.-Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018). https://doi.org/10.1002/anie.201710806
- G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/C3EE43182G
- H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li et al., Graphene-wrapped sulfur ps as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011). https://doi.org/10.1021/nl200658a
- L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011). https://doi.org/10.1021/ja206955k
- Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu et al., Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014). https://doi.org/10.1038/ncomms6002
- H. Liu, X.X. Liu, W. Li, X. Guo, Y. Wang et al., Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 7, 1700283 (2017). https://doi.org/10.1002/aenm.201700283
- W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
- C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
- Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
- R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng et al., More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823
- Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the li/s battery system. J. Electrochem. Soc. 151, A1969 (2004). https://doi.org/10.1149/1.1806394
- S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power. Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
- Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
- N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011). https://doi.org/10.1002/anie.201100637
- F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011). https://doi.org/10.1002/adma.201003587
- X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li–S batteries. Energy Storage Mater. 24, 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
- J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013). https://doi.org/10.1039/C3EE41444B
- J.J. Huo, X.J. Cao, Y.P. Tian, L. Li, J.P. Qu et al., Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 15, 5448–5457 (2023). https://doi.org/10.1039/d2nr06096e
- Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi et al., Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li–S battery. Nano Energy 89, 106331 (2021). https://doi.org/10.1016/j.nanoen.2021.106331
- P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021). https://doi.org/10.1002/aenm.202002893
- S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium–sulfur battery. Nano-Micro Lett. 14, 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
- Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang et al., Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries. Nano Energy 86, 106111 (2021). https://doi.org/10.1016/j.nanoen.2021.106111
- P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem. Int. Ed. 60, 15563–15571 (2021). https://doi.org/10.1002/anie.202104053
- Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
- Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
- X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang et al., A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213
- X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
- H. Yang, C. Guo, J. Chen, A. Naveed, J. Yang et al., An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem. Int. Ed. 58, 791–795 (2019). https://doi.org/10.1002/anie.201811291
- X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
- L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513
- J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362
- Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
- J. Zheng, X. Fan, G. Ji, H. Wang, S. Hou et al., Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li–S batteries. Nano Energy 50, 431–440 (2018). https://doi.org/10.1016/j.nanoen.2018.05.065
- A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng et al., A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012). https://doi.org/10.1021/ja211766q
- B.D. Adams, E.V. Carino, J.G. Connell, K.S. Han, R. Cao et al., Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40, 607–617 (2017). https://doi.org/10.1016/j.nanoen.2017.09.015
- Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss et al., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0
- X. Li, J. Zheng, X. Ren, M.H. Engelhard, W. Zhao et al., Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv. Energy Mater. 8, 1703022 (2018). https://doi.org/10.1002/aenm.201703022
- X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
- X. Liu, Y. Li, X. Xu, L. Zhou, L. Mai, Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances. J. Energy Chem. 61, 104–134 (2021). https://doi.org/10.1016/j.jechem.2021.02.0282095-4956/
- H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- A. Manthiram, S.-H. Chung, C. Zu, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
- X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010). https://doi.org/10.1039/B925751A
- D. Bresser, S. Passerini, B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review. Chem. Commun. 49, 10545–10562 (2013). https://doi.org/10.1039/C3CC46131A
- H. Pan, Z.B. Cheng, Z.Y. Zhou, S.J. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
- Z. Bai, Z. Wang, R. Li, Z. Wu, P. Feng et al., Engineering triple-phase interfaces enabled by layered double perovskite oxide for boosting polysulfide redox conversion. Nano Lett. 23, 4908–4915 (2023). https://doi.org/10.1021/acs.nanolett.3c00566
- X. Li, L. Yuan, D. Liu, J. Xiang, Z. Li et al., Solid/quasi-solid phase conversion of sulfur in lithium–sulfur battery. Small 18, 2106970 (2022). https://doi.org/10.1002/smll.202106970
- M.L. Para, C.A. Calderón, S. Drvarič Talian, F. Fischer, G.L. Luque et al., Extending the conversion rate of sulfur infiltrated into microporous carbon in carbonate electrolytes. Batter. Supercaps 5, e202100374 (2022). https://doi.org/10.1002/batt.202100374
- X. Li, D.Z. Liu, Z.Y. Cao, Y.Q. Liao, Z.X. Cheng et al., Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries. J. Energy Chem. 84, 459–466 (2023). https://doi.org/10.1016/j.jechem.2023.05.0522095-4956
- Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu et al., Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4, 1301473 (2014). https://doi.org/10.1002/aenm.201301473
- S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou et al., Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012). https://doi.org/10.1021/ja308170k
- G.Y.J. Chmiola, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
- H. Maria Joseph, M. Fichtner, A.R. Munnangi, Perspective on ultramicroporous carbon as sulphur host for Li–S batteries. J. Energy Chem. 59, 242–256 (2021). https://doi.org/10.1016/j.jechem.2020.11.001
- S.S. Zhang, Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 7(7), 4588–4600 (2014). https://doi.org/10.3390/en7074588
- W. Wang, Z. Cao, G.A. Elia, Y. Wu, W. Wahyudi et al., Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries. ACS Energy Lett. 3, 2899–2907 (2018). https://doi.org/10.1021/acsenergylett.8b01945
- J.J. Ma, G.R. Xu, Y.C. Li, C.Y. Ge, X.B. Li, An in situ chemically and physically confined sulfur-polymer composite for lithium-sulfur batteries with carbonate-based electrolytes. Chem. Commun. 54, 14093–14096 (2018). https://doi.org/10.1039/c8cc07623e
- Y. Yi, W. Huang, X. Tian, B. Fang, Z. Wu et al., Graphdiyne-like porous organic framework as a solid-phase sulfur conversion cathodic host for stable Li–S batteries. ACS Appl. Mater. Interfaces 13, 59983–59992 (2021). https://doi.org/10.1021/acsami.1c19484
- H. Ye, L. Ma, Y. Zhou, L. Wang, N. Han et al., Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na-S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 13091–13096 (2017). https://doi.org/10.1073/pnas.1711917114
- Q. Fan, X. Lv, J. Lu, W. Guo, Y. Fu, Dynamic phase evolution of MoS3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery. Proc. Natl. Acad. Sci. U.S.A. 120, e2219395120 (2023). https://doi.org/10.1073/pnas.2219395120
- X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
- C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 9592–9595 (2012). https://doi.org/10.1002/anie.201205292
- B. He, Z. Rao, Z. Cheng, D. Liu, D. He et al., Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries. Adv. Energy Mater. 11, 2003690 (2021). https://doi.org/10.1002/aenm.202003690
- Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013). https://doi.org/10.1039/C2CS35256G
- Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries. Nano-Micro Lett. 15, 67 (2023). https://doi.org/10.1007/s40820-023-01037-1
- Y. Wu, M. Yang, S. Wang, S. Hou, Y. Zou et al., Sulfur-rich polymer/ketjen black composites as lithium-sulfur battery cathode with high cycling stability. J. Alloys Compd. 962, 171177 (2023). https://doi.org/10.1016/j.jallcom.2023.171177
- X. Liu, Q. Guo, Y. Li, Y. Ma, X. Ma et al., “Wane and wax” strategy: enhanced evolution kinetics of liquid phase Li2S4 to Li2S via mutually embedded cnt sponge/ni-porous carbon electrocatalysts. J. Colloid Interface Sci. 649, 481–491 (2023). https://doi.org/10.1016/j.jcis.2023.06.144
- Z. Kong, H. Xu, G. Xu, S. Jin, Y. Tong et al., Cobalt nanops & nitrogen-doped carbon nanotubes@hollow carbon with high catalytic ability for high-performance lithium sulfur batteries. J. Colloid Interface Sci. 648, 846–854 (2023). https://doi.org/10.1016/j.jcis.2023.06.017
- J.M. Park, S.H. Baek, W.I. Kim, S.J. Lee, G.S. Gund et al., Hierarchical hybrid architecture of carbon nanotube branches grown onto steam activated-reduced graphene oxide/Ni nanop for lithium-sulfur battery cathode. Electrochim. Acta 462, 142750 (2023). https://doi.org/10.1016/j.electacta.2023.142750
- H. Cheng, Z. Shen, W. Liu, M. Luo, F. Huo et al., Vanadium intercalation into niobium disulfide to enhance the catalytic activity for lithium–sulfur batteries. ACS Nano 17, 14695–14705 (2023). https://doi.org/10.1021/acsnano.3c02634
- Y. Jiang, S. Liu, X. Gao, G. Li, Morphology control of Li2S deposition via geometrical effect of cobalt-edged nickel alloy to improve performance of lithium–sulfur batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304965
- X. Du, C. Wen, Y. Luo, D. Luo, T. Yang et al., Manipulating redox kinetics using p-n heterojunction biservice matrix as both cathode sulfur immobilizer and anode lithium stabilizer for practical lithium–sulfur batteries. Small (2023). https://doi.org/10.1002/smll.202304131
- C. Huang, J. Yu, C. Li, Z.B. Cui, C.Q. Zhang et al., Combined defect and heterojunction engineering in ZnTe/CoTe2@NC sulfur hosts toward robust lithium-sulfur batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305624
- W. Shen, P. Li, Q. Zhang, E. Han, G. Gu et al., The structural and electronic engineering of molybdenum disulfide nanosheets as carbon-free sulfur hosts for boosting energy density and cycling life of lithium–sulfur batteries. Small (2023). https://doi.org/10.1002/smll.202304122
- W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao et al., Bronze TiO2 as a cathode host for lithium-sulfur batteries. J. Energy Chem. 48, 259–266 (2020). https://doi.org/10.1016/j.jechem.2020.01.022
- H.-E. Wang, K. Yin, X. Zhao, N. Qin, Y. Li et al., Coherent TiO2/BaTiO3 heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chem. Commun. 54, 12250–12253 (2018). https://doi.org/10.1039/C8CC06924G
- R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10, 24422–24433 (2022). https://doi.org/10.1039/D2TA06686F
- Q. Zhao, X. Bao, L. Meng, S. Dong, Y. Zhang et al., Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability. J. Colloid Interface Sci. 644, 546–555 (2023). https://doi.org/10.1016/j.jcis.2023.03.169
- J. Li, H. Zhang, L. Luo, H. Li, J. He et al., Blocking polysulfides with a janus Fe3C/n–CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9, 2205–2213 (2021). https://doi.org/10.1039/D0TA10515E
- G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011). https://doi.org/10.1021/nl2027684
- P.T. Cunningham, S.A. Johnson, E.J. Cairns, Phase equilibria in lithium-chalcogen systems: Ii. Lithium-sulfur. J. Electrochem. Soc. 119, 1448 (1972). https://doi.org/10.1149/1.2404020
- J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee et al., Spherical ordered mesoporous carbon nanops with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012). https://doi.org/10.1002/anie.201107817
- G. He, X. Ji, L. Nazar, High “c” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4, 2878 (2011). https://doi.org/10.1039/c1ee01219c
- A.D. Roberts, X. Li, H. Zhang, Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon 95, 268–278 (2015). https://doi.org/10.1016/j.carbon.2015.08.004
- J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288–4294 (2011). https://doi.org/10.1021/nl202297p
- H.-J. Peng, J.-Q. Huang, M.-Q. Zhao, Q. Zhang, X.-B. Cheng et al., Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 24, 2772–2781 (2014). https://doi.org/10.1002/adfm.201303296
- B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010). https://doi.org/10.1039/C002639E
- Z.H. Dong, X.Y. Lai, J.E. Halpert, N.L. Yang, L.X. Yi et al., Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012). https://doi.org/10.1002/adma.201104626
- X.Y. Lai, J. Li, B.A. Korgel, Z.H. Dong, Z.M. Li et al., General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50, 2738–2741 (2011). https://doi.org/10.1002/anie.201004900
- G. Zhou, Y. Zhao, A. Manthiram, Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv. Energy Mater. 5, 1402263 (2015). https://doi.org/10.1002/aenm.201402263
- W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
- J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
- J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu et al., Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014). https://doi.org/10.1021/nl404721h
- P. Zeng, H. Yu, X. Zhou, Z. Zhou, B. Li et al., Creating anion defects on hollow coxni1-xo concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chem. Eng. J. 427, 132024 (2022). https://doi.org/10.1016/j.cej.2021.132024
- R. Zhu, W.Q. Zheng, R. Yan, M. Wu, H.J. Zhou et al., Modulating bond interactions and interface microenvironments between polysulfide and catalysts toward advanced metal-sulfur batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202207021
- B. Wang, Y. Ren, Y. Zhu, S. Chen, S. Chang et al., Construction of Co3O4/ZnO heterojunctions in hollow n-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv. Sci. 10, e2300860 (2023). https://doi.org/10.1002/advs.202300860
- H. Liu, X. Yang, B. Jin, M. Cui, Y. Li et al., Coordinated immobilization and rapid conversion of polysulfide enabled by a hollow metal oxide/sulfide/nitrogen-doped carbon heterostructure for long-cycle-life lithium-sulfur batteries. Small (2023). https://doi.org/10.1002/smll.202300950
- Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012). https://doi.org/10.1002/aenm.201100795
- W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds et al., The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013). https://doi.org/10.1038/nchem.1624
- Z. Sun, M. Xiao, S. Wang, D. Han, S. Song et al., Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J. Mater. Chem. A 2, 9280–9286 (2014). https://doi.org/10.1039/C4TA00779D
- Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS(2) tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries. Small 17, e2102710 (2021). https://doi.org/10.1002/smll.202102710
- J. Liu, M. Zhu, Z. Shen, T. Han, T. Si et al., A polysulfides-confined all-in-one porous microcapsule lithium-sulfur battery cathode. Small 17, e2103051 (2021). https://doi.org/10.1002/smll.202103051
- J. Xu, H. Tang, S. Cao, X. Chen, Z. Chen et al., Sandwiched cathodes kinetically boosted by few-layered catalytic 1t-MoSe2 nanosheets for high-rate and long-cycling lithium-sulfur batteries. EcoMat 5, e12329 (2023). https://doi.org/10.1002/eom2.12329
- K.L. Bassett, Ö. Özgür Çapraz, B. Özdogru, A.A. Gewirth, N.R. Sottos, Cathode/electrolyte interface-dependent changes in stress and strain in lithium iron phosphate composite cathodes. J. Electrochem. Soc. 166, 2707 (2019). https://doi.org/10.1149/2.1391912jes
- E. Peled, S. Menkin, Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes
- Z. Shen, W. Zhang, S. Mao, S. Li, X. Wang et al., Tailored electrolytes enabling practical lithium–sulfur full batteries via interfacial protection. ACS Energy Lett. 6, 2673–2681 (2021). https://doi.org/10.1021/acsenergylett.1c01091
- S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal–sulfur battery cathodes based on pan–sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015). https://doi.org/10.1021/jacs.5b08113
- G.-L. Xu, H. Sun, C. Luo, L. Estevez, M. Zhuang et al., Solid-state lithium/selenium–sulfur chemistry enabled via a robust solid-electrolyte interphase. Adv. Energy Mater. 9, 1802235 (2019). https://doi.org/10.1002/aenm.201802235
- J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li–S batteries via sulfonate-rich cof-modified separator. Adv. Mater. 33, e2105178 (2021). https://doi.org/10.1002/adma.202105178
- T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2, 2091–2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
- J.Y. Wei, X.Q. Zhang, L.P. Hou, P. Shi, B.Q. Li et al., Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries. Adv. Mater. 32, e2003012 (2020). https://doi.org/10.1002/adma.202003012
- W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010
- G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
- N.-W. Li, Y.-X. Yin, C.-P. Yang, Y.-G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). https://doi.org/10.1002/adma.201504526
- W. Liu, J. Jiang, K.R. Yang, Y. Mi, P. Kumaravadivel et al., Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 3578–3583 (2017). https://doi.org/10.1073/pnas.1620809114
- Z. Li, J. Zhang, X.W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015). https://doi.org/10.1002/anie.201506972
- Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
- Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
- X. Fang, H. Peng, A revolution in electrodes: Recent progress in rechargeable lithium–sulfur batteries. Small 11, 1488–1511 (2015). https://doi.org/10.1002/smll.201402354
- Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang et al., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014). https://doi.org/10.1038/ncomms6017
- Y. Yi, F. Hai, X. Tian, Z. Wu, S. Zheng et al., A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion. Chem. Eng. J. 466, 143303 (2023). https://doi.org/10.1016/j.cej.2023.143303
- H. Li, X. Wu, S. Jiang, Q. Zhang, Y. Cao et al., A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host. Nano Res. 16, 8360–8367 (2022). https://doi.org/10.1007/s12274-022-5156-y
- X. Chen, H. Ji, Z. Rao, L. Yuan, Y. Shen et al., Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium–sulfur batteries. Adv. Energy Mater. 12, 2102774 (2022). https://doi.org/10.1002/aenm.202102774
- X. Chen, L. Yuan, Z. Li, S. Chen, H. Ji et al., Realizing an applicable “solid → solid” cathode process via a transplantable solid electrolyte interface for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11, 29830–29837 (2019). https://doi.org/10.1021/acsami.9b07787
- F. He, X. Wu, J. Qian, Y. Cao, H. Yang et al., Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 6, 23396–23407 (2018). https://doi.org/10.1039/C8TA08159J
- L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao et al., Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. 61, e202212151 (2022). https://doi.org/10.1002/anie.202212151
- S. Jiang, X.L. Li, D. Fang, W.Y. Lieu, C. Chen et al., Metal–organic-framework-derived 3D hierarchical matrixes for high-performance flexible Li–S batteries. ACS Appl. Mater. Interfaces 15, 20064–20074 (2023). https://doi.org/10.1021/acsami.2c22999
- X. Hu, J. Jian, Z. Fang, L. Zhong, Z. Yuan et al., Hierarchical assemblies of conjugated ultrathin cof nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019). https://doi.org/10.1016/j.ensm.2018.12.021
- Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, 2200102 (2022). https://doi.org/10.1002/adma.202200102
- K. Liu, X. Wang, S. Gu, H. Yuan, F. Jiang et al., N, S-coordinated co single atomic catalyst boosting adsorption and conversion of lithium polysulfides for lithium-sulfur batteries. Small 18, e2204707 (2022). https://doi.org/10.1002/smll.202204707
- H. Ye, J. Sun, S. Zhang, T. Zhang, Y. Zhao et al., Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. Chem. Eng. J. 410, 128284 (2021). https://doi.org/10.1016/j.cej.2020.128284
- Y. Li, Y. Zeng, Y. Chen, D. Luan, S. Gao et al., Mesoporous N-rich carbon with single-ni atoms as a multifunctional sulfur host for Li–S batteries. Angew. Chem. Int. Ed. 61, e202212680 (2022). https://doi.org/10.1002/anie.202212680
- T. Li, D. Cai, S. Yang, Y. Dong, S. Yu et al., Desolvation synergy of multiple H/Li-bonds on an iron-dextran-based catalyst stimulates lithium–sulfur cascade catalysis. Adv. Mater. 34, 2207074 (2022). https://doi.org/10.1002/adma.202207074
- F. Pei, S. Dai, B. Guo, H. Xie, C. Zhao et al., Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 14, 975–985 (2021). https://doi.org/10.1039/d0ee03005h
- D. Wang, D. Luo, Y. Zhang, Y. Zhao, G. Zhou et al., Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable li/s electrocatalytic behavior. Nano Energy 81, 105602 (2021). https://doi.org/10.1016/j.nanoen.2020.105602
- S. Yu, S. Yang, D. Cai, H. Nie, X. Zhou et al., Regulating f orbital of tb electronic reservoir to activate stepwise and dual-directional sulfur conversion reaction. InfoMat 5, e12381 (2022). https://doi.org/10.1002/inf2.12381
- L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong et al., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016). https://doi.org/10.1016/j.ensm.2016.07.003
- J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019). https://doi.org/10.1002/aenm.201803774
- W.-J. Chen, C.-X. Zhao, B.-Q. Li, Q. Jin, X.-Q. Zhang et al., A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries. Energy Environ. Mater. 3, 160–165 (2020). https://doi.org/10.1002/eem2.12073
- Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou et al., Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021). https://doi.org/10.1016/j.joule.2021.06.009
- Y. Jo, D. Jin, M. Lim, H. Lee, H. An et al., Structural and chemical evolutions of Li/electrolyte interfaces in Li-metal batteries: Tracing compositional changes of electrolytes under practical conditions. Adv. Sci. 220, 4812 (2022). https://doi.org/10.1002/advs.202204812
- Y. He, P. Zou, S.-M. Bak, C. Wang, R. Zhang et al., Dual passivation of cathode and anode through electrode–electrolyte interface engineering enables long-lifespan Li metal–span batteries. ACS Energy Lett. 7, 2866–2875 (2022). https://doi.org/10.1021/acsenergylett.2c01093
- X. Kong, Y. Kong, Y. Zheng, L. He, D. Wang et al., Hydrofluoroether diluted dual-salts-based electrolytes for lithium-sulfur batteries with enhanced lithium anode protection. Small (2022). https://doi.org/10.1002/smll.202205017
- I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 55, 500–513 (2016). https://doi.org/10.1002/anie.201504971
- Z. Lin, X. Guo, H. Yu, Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy 41, 646–653 (2017). https://doi.org/10.1016/j.nanoen.2017.10.021
- H. Wu, Y. Cao, H. Su, C. Wang, Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew. Chem. Int. Ed. 57, 1361–1365 (2018). https://doi.org/10.1002/anie.201709774
- G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on pvdf-hfp-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 1801219 (2018). https://doi.org/10.1002/aenm.201801219
- M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
- T. Chen, W. Kong, Z. Zhang, L. Wang, Y. Hu et al., Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25 (2018). https://doi.org/10.1016/j.nanoen.2018.09.059
- J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019). https://doi.org/10.1016/j.ensm.2019.01.024
- J. Cao, L. Wang, Y. Shang, M. Fang, L. Deng et al., Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 111, 674–679 (2013). https://doi.org/10.1016/j.electacta.2013.08.048
- Y. Ren, A. Manthiram, A dual-phase electrolyte for high-energy lithium–sulfur batteries. Adv. Energy Mater. 12, 2202566 (2022). https://doi.org/10.1002/aenm.202202566
- W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu et al., Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021). https://doi.org/10.1038/s41467-021-23155-3
- W. Wang, K. Xi, B. Li, H. Li, S. Liu et al., A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium–sulfur batteries. Adv. Energy Mater. 12, 2200160 (2022). https://doi.org/10.1002/aenm.202200160
- W. Zhang, D. Hong, Z. Su, S. Yi, L. Tian et al., Tailored ZnO-ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li–s batteries. Energy Storage Mater. 53, 404–414 (2022). https://doi.org/10.1016/j.ensm.2022.09.018
- G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11, 2102058 (2021). https://doi.org/10.1002/aenm.202102058
- L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule. 3, 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
- Y.C. Jeong, J.H. Kim, S. Nam, C.R. Park, S.J. Yang, Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 28, 1707411 (2018). https://doi.org/10.1002/adfm.201707411
- Y. Pang, J.S. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight mwcnts/ncqds modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201702288
- G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. PNAS 114, 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
- Y.C. Tsao, M. Lee, E.C. Miller, G.P. Gao, J. Park et al., Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries. Joule 3, 872–884 (2019). https://doi.org/10.1016/j.joule.2018.12.018
- D. Tian, X.Q. Song, M.X. Wang, X. Wu, Y. Qiu et al., Mon supported on graphene as a bifunctional interlayer for advanced Li–S batteries. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201901940
- D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018). https://doi.org/10.1002/advs.201700270
- D.Q. He, J.T. Meng, X.Y. Chen, Y.Q. Liao, Z.X. Cheng et al., Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202001201
- X.H. Hu, L.F. Zhong, C.H. Shu, Z.S. Fang, M.J. Yang et al., Versatile, aqueous soluble C2N quantum dots with enriched active edges and oxygenated groups. J. Am. Chem. Soc. 142, 4621–4630 (2020). https://doi.org/10.1021/jacs.9b11169
- G.R. Li, F. Lu, X.Y. Dou, X. Wang, D. Luo et al., Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 142, 3583–3592 (2020). https://doi.org/10.1021/jacs.9b13303
- J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium–sulfur batteries. ACS Nano 15, 11491–11500 (2021). https://doi.org/10.1021/acsnano.1c01250
- A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021). https://doi.org/10.1039/d1ee00508a
- X. Li, M. Lv, Y. Tian, L. Gao, T. Liu et al., Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.106214
- K. Zhao, Q. Jin, L. Li, X. Zhang, L. Wu, Shielding polysulfides enabled by a biomimetic artificial protective layer in lithium-sulfur batteries. J. Colloid Interface Sci. 625, 119–127 (2022). https://doi.org/10.1016/j.jcis.2022.06.017
- P.-Y. Chen, C. Yan, P. Chen, R. Zhang, Y.-X. Yao et al., Selective permeable lithium-ion channels on lithium metal for practical lithium–sulfur pouch cells. Angew. Chem. Int. Ed. 60, 18031–18036 (2021). https://doi.org/10.1002/anie.202101958
- Y.X. Ren, L. Zeng, H.R. Jiang, W.Q. Ruan, Q. Chen et al., Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun. 10, 3249 (2019). https://doi.org/10.1038/s41467-019-11168-y
- C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, Q. Zhang, Lithium-anode protection in lithium–sulfur batteries. Trends Chem 1, 693–704 (2019). https://doi.org/10.1016/j.trechm.2019.06.007
- J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian et al., Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014). https://doi.org/10.1039/c3ee42223b
- X. Wang, X. Zhang, Y. Zhao, D. Luo, L. Shui et al., Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306901
- R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202309046
- Z. Chi, J. Ding, C. Ding, B. Cui, W. Wang et al., A heterostructured gel polymer electrolyte modified by MoS2 for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c07321
- Y. Li, T. Wang, J. Chen, X. Peng, M. Chen et al., An artificial interfacial layer with biomimetic ionic channels towards highly stable Li metal anodes. Sci. Bull. 68, 1379–1388 (2023). https://doi.org/10.1016/j.scib.2023.06.008
- S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020). https://doi.org/10.1038/s41467-020-14848-2
- H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
- Q. He, B. Yu, Z. Li, Y. Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019). https://doi.org/10.1002/eem2.12056
- S. Feng, Z.-H. Fu, X. Chen, Q. Zhang, A review on theoretical models for lithium–sulfur battery cathodes. InfoMat 4, e12304 (2022). https://doi.org/10.1002/inf2.12304
- M. Li, H. Chen, C. Guo, S. Qian, H. Li et al., Interfacial engineering on cathode and anode with iminated polyaniline@RGO-CNTs for robust and high-rate full lithium–sulfur batteries. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202300646
- T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 517 (2022). https://doi.org/10.20517/energymater.2022.46
- J. Sun, Z. Du, Y. Liu, W. Ai, K. Wang et al., State-of-the-art and future challenges in high energy lithium–selenium batteries. Adv. Mater. 33, 2003845 (2021). https://doi.org/10.1002/adma.202003845
- Q. Zou, Y. Sun, Z. Liang, W. Wang, Y.-C. Lu, Achieving efficient magnesium–sulfur battery chemistry via polysulfide mediation. Adv. Energy Mater. 11, 2101552 (2021). https://doi.org/10.1002/aenm.202101552
- Q. Zou, Y.-C. Lu, Liquid electrolyte design for metal-sulfur batteries: mechanistic understanding and perspective. EcoMat 3, e12115 (2021). https://doi.org/10.1002/eom2.12115
- Q. Zou, Z. Liang, G.-Y. Du, C.-Y. Liu, E.Y. Li et al., Cation-directed selective polysulfide stabilization in alkali metal–sulfur batteries. J. Am. Chem. Soc. 140, 10740–10748 (2018). https://doi.org/10.1021/jacs.8b04536
- J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium–sulfur batteries: a critical review. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211168
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011). https://doi.org/10.1126/science.1212741
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O–2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016). https://doi.org/10.1039/c5cs00410a
B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010). https://doi.org/10.1021/cm902696j
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v
R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015). https://doi.org/10.1038/nmat4170
A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013). https://doi.org/10.1021/ar300179v
Q. Lu, Y. Jie, X. Meng, A. Omar, D. Mikhailova et al., Carbon materials for stable li metal anodes: challenges, solutions, and outlook. Carbon Energy 3, 957–975 (2021). https://doi.org/10.1002/cey2.147
L. Zeng, J. Zhu, P.K. Chu, L. Huang, J. Wang et al., Catalytic effects of electrodes and electrolytes in metal-sulfur batteries: progress and prospective. Adv. Mater. 34, e2204636 (2022). https://doi.org/10.1002/adma.202204636
S. Evers, L.F. Nazar, New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013). https://doi.org/10.1021/ar3001348
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017). https://doi.org/10.1038/ncomms14627
J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014). https://doi.org/10.1002/adfm.201302631
J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002). https://doi.org/10.1002/1521-4095(20020705)14:13/14
S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 29, 1606817 (2017). https://doi.org/10.1002/adma.201606817
Z. Xiao, Z. Yang, L. Wang, H. Nie, M.E. Zhong et al., A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv. Mater. 27, 2891–2898 (2015). https://doi.org/10.1002/adma.201405637
Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing mwcnt interlayer. Chem. Commun. 48, 8817–8819 (2012). https://doi.org/10.1039/C2CC33945E
S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015). https://doi.org/10.1002/aenm.201500117
H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martínez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power. Sources 196, 9839–9843 (2011). https://doi.org/10.1016/j.jpowsour.2011.08.027
R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017). https://doi.org/10.1002/anie.201702099
X.-B. Cheng, T.-Z. Hou, R. Zhang, H.-J. Peng, C.-Z. Zhao et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016). https://doi.org/10.1002/adma.201506124
Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu et al., Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. 113, 2862–2867 (2016). https://doi.org/10.1073/pnas.1518188113
N.-W. Li, Y. Shi, Y.-X. Yin, X.-X. Zeng, J.-Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018). https://doi.org/10.1002/anie.201710806
G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014). https://doi.org/10.1039/C3EE43182G
H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li et al., Graphene-wrapped sulfur ps as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011). https://doi.org/10.1021/nl200658a
L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011). https://doi.org/10.1021/ja206955k
Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu et al., Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014). https://doi.org/10.1038/ncomms6002
H. Liu, X.X. Liu, W. Li, X. Guo, Y. Wang et al., Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 7, 1700283 (2017). https://doi.org/10.1002/aenm.201700283
W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015). https://doi.org/10.1038/ncomms8436
C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015). https://doi.org/10.1038/ncomms9058
Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013). https://doi.org/10.1021/ja3091438
R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng et al., More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017). https://doi.org/10.1002/adma.201606823
Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the li/s battery system. J. Electrochem. Soc. 151, A1969 (2004). https://doi.org/10.1149/1.1806394
S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power. Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016). https://doi.org/10.1021/acs.nanolett.5b04166
N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011). https://doi.org/10.1002/anie.201100637
F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011). https://doi.org/10.1002/adma.201003587
X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li–S batteries. Energy Storage Mater. 24, 644–654 (2020). https://doi.org/10.1016/j.ensm.2019.06.009
J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013). https://doi.org/10.1039/C3EE41444B
J.J. Huo, X.J. Cao, Y.P. Tian, L. Li, J.P. Qu et al., Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 15, 5448–5457 (2023). https://doi.org/10.1039/d2nr06096e
Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi et al., Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li–S battery. Nano Energy 89, 106331 (2021). https://doi.org/10.1016/j.nanoen.2021.106331
P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021). https://doi.org/10.1002/aenm.202002893
S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium–sulfur battery. Nano-Micro Lett. 14, 196 (2022). https://doi.org/10.1007/s40820-022-00941-2
Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang et al., Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries. Nano Energy 86, 106111 (2021). https://doi.org/10.1016/j.nanoen.2021.106111
P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem. Int. Ed. 60, 15563–15571 (2021). https://doi.org/10.1002/anie.202104053
Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014). https://doi.org/10.1038/ncomms5759
Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang et al., A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213
X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018). https://doi.org/10.1016/j.chempr.2017.10.017
H. Yang, C. Guo, J. Chen, A. Naveed, J. Yang et al., An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem. Int. Ed. 58, 791–795 (2019). https://doi.org/10.1002/anie.201811291
X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019). https://doi.org/10.1038/s41560-019-0464-5
L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). https://doi.org/10.1038/ncomms2513
J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015). https://doi.org/10.1038/ncomms7362
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019). https://doi.org/10.1038/s41560-019-0336-z
J. Zheng, X. Fan, G. Ji, H. Wang, S. Hou et al., Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li–S batteries. Nano Energy 50, 431–440 (2018). https://doi.org/10.1016/j.nanoen.2018.05.065
A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng et al., A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012). https://doi.org/10.1021/ja211766q
B.D. Adams, E.V. Carino, J.G. Connell, K.S. Han, R. Cao et al., Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40, 607–617 (2017). https://doi.org/10.1016/j.nanoen.2017.09.015
Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss et al., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018). https://doi.org/10.1038/s41560-018-0214-0
X. Li, J. Zheng, X. Ren, M.H. Engelhard, W. Zhao et al., Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv. Energy Mater. 8, 1703022 (2018). https://doi.org/10.1002/aenm.201703022
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
X. Liu, Y. Li, X. Xu, L. Zhou, L. Mai, Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances. J. Energy Chem. 61, 104–134 (2021). https://doi.org/10.1016/j.jechem.2021.02.0282095-4956/
H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260
A. Manthiram, S.-H. Chung, C. Zu, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015). https://doi.org/10.1002/adma.201405115
X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010). https://doi.org/10.1039/B925751A
D. Bresser, S. Passerini, B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review. Chem. Commun. 49, 10545–10562 (2013). https://doi.org/10.1039/C3CC46131A
H. Pan, Z.B. Cheng, Z.Y. Zhou, S.J. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023). https://doi.org/10.1007/s40820-023-01137-y
Z. Bai, Z. Wang, R. Li, Z. Wu, P. Feng et al., Engineering triple-phase interfaces enabled by layered double perovskite oxide for boosting polysulfide redox conversion. Nano Lett. 23, 4908–4915 (2023). https://doi.org/10.1021/acs.nanolett.3c00566
X. Li, L. Yuan, D. Liu, J. Xiang, Z. Li et al., Solid/quasi-solid phase conversion of sulfur in lithium–sulfur battery. Small 18, 2106970 (2022). https://doi.org/10.1002/smll.202106970
M.L. Para, C.A. Calderón, S. Drvarič Talian, F. Fischer, G.L. Luque et al., Extending the conversion rate of sulfur infiltrated into microporous carbon in carbonate electrolytes. Batter. Supercaps 5, e202100374 (2022). https://doi.org/10.1002/batt.202100374
X. Li, D.Z. Liu, Z.Y. Cao, Y.Q. Liao, Z.X. Cheng et al., Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries. J. Energy Chem. 84, 459–466 (2023). https://doi.org/10.1016/j.jechem.2023.05.0522095-4956
Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu et al., Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4, 1301473 (2014). https://doi.org/10.1002/aenm.201301473
S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou et al., Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012). https://doi.org/10.1021/ja308170k
G.Y.J. Chmiola, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006). https://doi.org/10.1126/science.1132195
H. Maria Joseph, M. Fichtner, A.R. Munnangi, Perspective on ultramicroporous carbon as sulphur host for Li–S batteries. J. Energy Chem. 59, 242–256 (2021). https://doi.org/10.1016/j.jechem.2020.11.001
S.S. Zhang, Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 7(7), 4588–4600 (2014). https://doi.org/10.3390/en7074588
W. Wang, Z. Cao, G.A. Elia, Y. Wu, W. Wahyudi et al., Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries. ACS Energy Lett. 3, 2899–2907 (2018). https://doi.org/10.1021/acsenergylett.8b01945
J.J. Ma, G.R. Xu, Y.C. Li, C.Y. Ge, X.B. Li, An in situ chemically and physically confined sulfur-polymer composite for lithium-sulfur batteries with carbonate-based electrolytes. Chem. Commun. 54, 14093–14096 (2018). https://doi.org/10.1039/c8cc07623e
Y. Yi, W. Huang, X. Tian, B. Fang, Z. Wu et al., Graphdiyne-like porous organic framework as a solid-phase sulfur conversion cathodic host for stable Li–S batteries. ACS Appl. Mater. Interfaces 13, 59983–59992 (2021). https://doi.org/10.1021/acsami.1c19484
H. Ye, L. Ma, Y. Zhou, L. Wang, N. Han et al., Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na-S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 13091–13096 (2017). https://doi.org/10.1073/pnas.1711917114
Q. Fan, X. Lv, J. Lu, W. Guo, Y. Fu, Dynamic phase evolution of MoS3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery. Proc. Natl. Acad. Sci. U.S.A. 120, e2219395120 (2023). https://doi.org/10.1073/pnas.2219395120
X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460
C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 9592–9595 (2012). https://doi.org/10.1002/anie.201205292
B. He, Z. Rao, Z. Cheng, D. Liu, D. He et al., Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries. Adv. Energy Mater. 11, 2003690 (2021). https://doi.org/10.1002/aenm.202003690
Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013). https://doi.org/10.1039/C2CS35256G
Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries. Nano-Micro Lett. 15, 67 (2023). https://doi.org/10.1007/s40820-023-01037-1
Y. Wu, M. Yang, S. Wang, S. Hou, Y. Zou et al., Sulfur-rich polymer/ketjen black composites as lithium-sulfur battery cathode with high cycling stability. J. Alloys Compd. 962, 171177 (2023). https://doi.org/10.1016/j.jallcom.2023.171177
X. Liu, Q. Guo, Y. Li, Y. Ma, X. Ma et al., “Wane and wax” strategy: enhanced evolution kinetics of liquid phase Li2S4 to Li2S via mutually embedded cnt sponge/ni-porous carbon electrocatalysts. J. Colloid Interface Sci. 649, 481–491 (2023). https://doi.org/10.1016/j.jcis.2023.06.144
Z. Kong, H. Xu, G. Xu, S. Jin, Y. Tong et al., Cobalt nanops & nitrogen-doped carbon nanotubes@hollow carbon with high catalytic ability for high-performance lithium sulfur batteries. J. Colloid Interface Sci. 648, 846–854 (2023). https://doi.org/10.1016/j.jcis.2023.06.017
J.M. Park, S.H. Baek, W.I. Kim, S.J. Lee, G.S. Gund et al., Hierarchical hybrid architecture of carbon nanotube branches grown onto steam activated-reduced graphene oxide/Ni nanop for lithium-sulfur battery cathode. Electrochim. Acta 462, 142750 (2023). https://doi.org/10.1016/j.electacta.2023.142750
H. Cheng, Z. Shen, W. Liu, M. Luo, F. Huo et al., Vanadium intercalation into niobium disulfide to enhance the catalytic activity for lithium–sulfur batteries. ACS Nano 17, 14695–14705 (2023). https://doi.org/10.1021/acsnano.3c02634
Y. Jiang, S. Liu, X. Gao, G. Li, Morphology control of Li2S deposition via geometrical effect of cobalt-edged nickel alloy to improve performance of lithium–sulfur batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202304965
X. Du, C. Wen, Y. Luo, D. Luo, T. Yang et al., Manipulating redox kinetics using p-n heterojunction biservice matrix as both cathode sulfur immobilizer and anode lithium stabilizer for practical lithium–sulfur batteries. Small (2023). https://doi.org/10.1002/smll.202304131
C. Huang, J. Yu, C. Li, Z.B. Cui, C.Q. Zhang et al., Combined defect and heterojunction engineering in ZnTe/CoTe2@NC sulfur hosts toward robust lithium-sulfur batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305624
W. Shen, P. Li, Q. Zhang, E. Han, G. Gu et al., The structural and electronic engineering of molybdenum disulfide nanosheets as carbon-free sulfur hosts for boosting energy density and cycling life of lithium–sulfur batteries. Small (2023). https://doi.org/10.1002/smll.202304122
W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao et al., Bronze TiO2 as a cathode host for lithium-sulfur batteries. J. Energy Chem. 48, 259–266 (2020). https://doi.org/10.1016/j.jechem.2020.01.022
H.-E. Wang, K. Yin, X. Zhao, N. Qin, Y. Li et al., Coherent TiO2/BaTiO3 heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chem. Commun. 54, 12250–12253 (2018). https://doi.org/10.1039/C8CC06924G
R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10, 24422–24433 (2022). https://doi.org/10.1039/D2TA06686F
Q. Zhao, X. Bao, L. Meng, S. Dong, Y. Zhang et al., Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability. J. Colloid Interface Sci. 644, 546–555 (2023). https://doi.org/10.1016/j.jcis.2023.03.169
J. Li, H. Zhang, L. Luo, H. Li, J. He et al., Blocking polysulfides with a janus Fe3C/n–CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9, 2205–2213 (2021). https://doi.org/10.1039/D0TA10515E
G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011). https://doi.org/10.1021/nl2027684
P.T. Cunningham, S.A. Johnson, E.J. Cairns, Phase equilibria in lithium-chalcogen systems: Ii. Lithium-sulfur. J. Electrochem. Soc. 119, 1448 (1972). https://doi.org/10.1149/1.2404020
J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee et al., Spherical ordered mesoporous carbon nanops with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012). https://doi.org/10.1002/anie.201107817
G. He, X. Ji, L. Nazar, High “c” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4, 2878 (2011). https://doi.org/10.1039/c1ee01219c
A.D. Roberts, X. Li, H. Zhang, Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon 95, 268–278 (2015). https://doi.org/10.1016/j.carbon.2015.08.004
J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288–4294 (2011). https://doi.org/10.1021/nl202297p
H.-J. Peng, J.-Q. Huang, M.-Q. Zhao, Q. Zhang, X.-B. Cheng et al., Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 24, 2772–2781 (2014). https://doi.org/10.1002/adfm.201303296
B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010). https://doi.org/10.1039/C002639E
Z.H. Dong, X.Y. Lai, J.E. Halpert, N.L. Yang, L.X. Yi et al., Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012). https://doi.org/10.1002/adma.201104626
X.Y. Lai, J. Li, B.A. Korgel, Z.H. Dong, Z.M. Li et al., General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50, 2738–2741 (2011). https://doi.org/10.1002/anie.201004900
G. Zhou, Y. Zhao, A. Manthiram, Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv. Energy Mater. 5, 1402263 (2015). https://doi.org/10.1002/aenm.201402263
W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/C8CS00324F
J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu et al., Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014). https://doi.org/10.1021/nl404721h
P. Zeng, H. Yu, X. Zhou, Z. Zhou, B. Li et al., Creating anion defects on hollow coxni1-xo concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chem. Eng. J. 427, 132024 (2022). https://doi.org/10.1016/j.cej.2021.132024
R. Zhu, W.Q. Zheng, R. Yan, M. Wu, H.J. Zhou et al., Modulating bond interactions and interface microenvironments between polysulfide and catalysts toward advanced metal-sulfur batteries. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202207021
B. Wang, Y. Ren, Y. Zhu, S. Chen, S. Chang et al., Construction of Co3O4/ZnO heterojunctions in hollow n-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv. Sci. 10, e2300860 (2023). https://doi.org/10.1002/advs.202300860
H. Liu, X. Yang, B. Jin, M. Cui, Y. Li et al., Coordinated immobilization and rapid conversion of polysulfide enabled by a hollow metal oxide/sulfide/nitrogen-doped carbon heterostructure for long-cycle-life lithium-sulfur batteries. Small (2023). https://doi.org/10.1002/smll.202300950
Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012). https://doi.org/10.1002/aenm.201100795
W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds et al., The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013). https://doi.org/10.1038/nchem.1624
Z. Sun, M. Xiao, S. Wang, D. Han, S. Song et al., Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J. Mater. Chem. A 2, 9280–9286 (2014). https://doi.org/10.1039/C4TA00779D
Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS(2) tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries. Small 17, e2102710 (2021). https://doi.org/10.1002/smll.202102710
J. Liu, M. Zhu, Z. Shen, T. Han, T. Si et al., A polysulfides-confined all-in-one porous microcapsule lithium-sulfur battery cathode. Small 17, e2103051 (2021). https://doi.org/10.1002/smll.202103051
J. Xu, H. Tang, S. Cao, X. Chen, Z. Chen et al., Sandwiched cathodes kinetically boosted by few-layered catalytic 1t-MoSe2 nanosheets for high-rate and long-cycling lithium-sulfur batteries. EcoMat 5, e12329 (2023). https://doi.org/10.1002/eom2.12329
K.L. Bassett, Ö. Özgür Çapraz, B. Özdogru, A.A. Gewirth, N.R. Sottos, Cathode/electrolyte interface-dependent changes in stress and strain in lithium iron phosphate composite cathodes. J. Electrochem. Soc. 166, 2707 (2019). https://doi.org/10.1149/2.1391912jes
E. Peled, S. Menkin, Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017). https://doi.org/10.1149/2.1441707jes
Z. Shen, W. Zhang, S. Mao, S. Li, X. Wang et al., Tailored electrolytes enabling practical lithium–sulfur full batteries via interfacial protection. ACS Energy Lett. 6, 2673–2681 (2021). https://doi.org/10.1021/acsenergylett.1c01091
S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal–sulfur battery cathodes based on pan–sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015). https://doi.org/10.1021/jacs.5b08113
G.-L. Xu, H. Sun, C. Luo, L. Estevez, M. Zhuang et al., Solid-state lithium/selenium–sulfur chemistry enabled via a robust solid-electrolyte interphase. Adv. Energy Mater. 9, 1802235 (2019). https://doi.org/10.1002/aenm.201802235
J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li–S batteries via sulfonate-rich cof-modified separator. Adv. Mater. 33, e2105178 (2021). https://doi.org/10.1002/adma.202105178
T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2, 2091–2104 (2018). https://doi.org/10.1016/j.joule.2018.07.022
J.Y. Wei, X.Q. Zhang, L.P. Hou, P. Shi, B.Q. Li et al., Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries. Adv. Mater. 32, e2003012 (2020). https://doi.org/10.1002/adma.202003012
W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019). https://doi.org/10.1016/j.ensm.2018.08.010
G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
N.-W. Li, Y.-X. Yin, C.-P. Yang, Y.-G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016). https://doi.org/10.1002/adma.201504526
W. Liu, J. Jiang, K.R. Yang, Y. Mi, P. Kumaravadivel et al., Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 3578–3583 (2017). https://doi.org/10.1073/pnas.1620809114
Z. Li, J. Zhang, X.W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015). https://doi.org/10.1002/anie.201506972
Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013). https://doi.org/10.1038/ncomms2327
Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015). https://doi.org/10.1021/acs.nanolett.5b00367
X. Fang, H. Peng, A revolution in electrodes: Recent progress in rechargeable lithium–sulfur batteries. Small 11, 1488–1511 (2015). https://doi.org/10.1002/smll.201402354
Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang et al., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014). https://doi.org/10.1038/ncomms6017
Y. Yi, F. Hai, X. Tian, Z. Wu, S. Zheng et al., A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion. Chem. Eng. J. 466, 143303 (2023). https://doi.org/10.1016/j.cej.2023.143303
H. Li, X. Wu, S. Jiang, Q. Zhang, Y. Cao et al., A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host. Nano Res. 16, 8360–8367 (2022). https://doi.org/10.1007/s12274-022-5156-y
X. Chen, H. Ji, Z. Rao, L. Yuan, Y. Shen et al., Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium–sulfur batteries. Adv. Energy Mater. 12, 2102774 (2022). https://doi.org/10.1002/aenm.202102774
X. Chen, L. Yuan, Z. Li, S. Chen, H. Ji et al., Realizing an applicable “solid → solid” cathode process via a transplantable solid electrolyte interface for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11, 29830–29837 (2019). https://doi.org/10.1021/acsami.9b07787
F. He, X. Wu, J. Qian, Y. Cao, H. Yang et al., Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 6, 23396–23407 (2018). https://doi.org/10.1039/C8TA08159J
L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao et al., Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. 61, e202212151 (2022). https://doi.org/10.1002/anie.202212151
S. Jiang, X.L. Li, D. Fang, W.Y. Lieu, C. Chen et al., Metal–organic-framework-derived 3D hierarchical matrixes for high-performance flexible Li–S batteries. ACS Appl. Mater. Interfaces 15, 20064–20074 (2023). https://doi.org/10.1021/acsami.2c22999
X. Hu, J. Jian, Z. Fang, L. Zhong, Z. Yuan et al., Hierarchical assemblies of conjugated ultrathin cof nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019). https://doi.org/10.1016/j.ensm.2018.12.021
Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, 2200102 (2022). https://doi.org/10.1002/adma.202200102
K. Liu, X. Wang, S. Gu, H. Yuan, F. Jiang et al., N, S-coordinated co single atomic catalyst boosting adsorption and conversion of lithium polysulfides for lithium-sulfur batteries. Small 18, e2204707 (2022). https://doi.org/10.1002/smll.202204707
H. Ye, J. Sun, S. Zhang, T. Zhang, Y. Zhao et al., Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. Chem. Eng. J. 410, 128284 (2021). https://doi.org/10.1016/j.cej.2020.128284
Y. Li, Y. Zeng, Y. Chen, D. Luan, S. Gao et al., Mesoporous N-rich carbon with single-ni atoms as a multifunctional sulfur host for Li–S batteries. Angew. Chem. Int. Ed. 61, e202212680 (2022). https://doi.org/10.1002/anie.202212680
T. Li, D. Cai, S. Yang, Y. Dong, S. Yu et al., Desolvation synergy of multiple H/Li-bonds on an iron-dextran-based catalyst stimulates lithium–sulfur cascade catalysis. Adv. Mater. 34, 2207074 (2022). https://doi.org/10.1002/adma.202207074
F. Pei, S. Dai, B. Guo, H. Xie, C. Zhao et al., Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 14, 975–985 (2021). https://doi.org/10.1039/d0ee03005h
D. Wang, D. Luo, Y. Zhang, Y. Zhao, G. Zhou et al., Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable li/s electrocatalytic behavior. Nano Energy 81, 105602 (2021). https://doi.org/10.1016/j.nanoen.2020.105602
S. Yu, S. Yang, D. Cai, H. Nie, X. Zhou et al., Regulating f orbital of tb electronic reservoir to activate stepwise and dual-directional sulfur conversion reaction. InfoMat 5, e12381 (2022). https://doi.org/10.1002/inf2.12381
L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong et al., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016). https://doi.org/10.1016/j.ensm.2016.07.003
J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019). https://doi.org/10.1002/aenm.201803774
W.-J. Chen, C.-X. Zhao, B.-Q. Li, Q. Jin, X.-Q. Zhang et al., A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries. Energy Environ. Mater. 3, 160–165 (2020). https://doi.org/10.1002/eem2.12073
Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou et al., Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021). https://doi.org/10.1016/j.joule.2021.06.009
Y. Jo, D. Jin, M. Lim, H. Lee, H. An et al., Structural and chemical evolutions of Li/electrolyte interfaces in Li-metal batteries: Tracing compositional changes of electrolytes under practical conditions. Adv. Sci. 220, 4812 (2022). https://doi.org/10.1002/advs.202204812
Y. He, P. Zou, S.-M. Bak, C. Wang, R. Zhang et al., Dual passivation of cathode and anode through electrode–electrolyte interface engineering enables long-lifespan Li metal–span batteries. ACS Energy Lett. 7, 2866–2875 (2022). https://doi.org/10.1021/acsenergylett.2c01093
X. Kong, Y. Kong, Y. Zheng, L. He, D. Wang et al., Hydrofluoroether diluted dual-salts-based electrolytes for lithium-sulfur batteries with enhanced lithium anode protection. Small (2022). https://doi.org/10.1002/smll.202205017
I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 55, 500–513 (2016). https://doi.org/10.1002/anie.201504971
Z. Lin, X. Guo, H. Yu, Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy 41, 646–653 (2017). https://doi.org/10.1016/j.nanoen.2017.10.021
H. Wu, Y. Cao, H. Su, C. Wang, Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew. Chem. Int. Ed. 57, 1361–1365 (2018). https://doi.org/10.1002/anie.201709774
G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on pvdf-hfp-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 1801219 (2018). https://doi.org/10.1002/aenm.201801219
M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
T. Chen, W. Kong, Z. Zhang, L. Wang, Y. Hu et al., Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25 (2018). https://doi.org/10.1016/j.nanoen.2018.09.059
J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019). https://doi.org/10.1016/j.ensm.2019.01.024
J. Cao, L. Wang, Y. Shang, M. Fang, L. Deng et al., Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 111, 674–679 (2013). https://doi.org/10.1016/j.electacta.2013.08.048
Y. Ren, A. Manthiram, A dual-phase electrolyte for high-energy lithium–sulfur batteries. Adv. Energy Mater. 12, 2202566 (2022). https://doi.org/10.1002/aenm.202202566
W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu et al., Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021). https://doi.org/10.1038/s41467-021-23155-3
W. Wang, K. Xi, B. Li, H. Li, S. Liu et al., A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium–sulfur batteries. Adv. Energy Mater. 12, 2200160 (2022). https://doi.org/10.1002/aenm.202200160
W. Zhang, D. Hong, Z. Su, S. Yi, L. Tian et al., Tailored ZnO-ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li–s batteries. Energy Storage Mater. 53, 404–414 (2022). https://doi.org/10.1016/j.ensm.2022.09.018
G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11, 2102058 (2021). https://doi.org/10.1002/aenm.202102058
L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule. 3, 361–386 (2019). https://doi.org/10.1016/j.joule.2019.01.003
Y.C. Jeong, J.H. Kim, S. Nam, C.R. Park, S.J. Yang, Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 28, 1707411 (2018). https://doi.org/10.1002/adfm.201707411
Y. Pang, J.S. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight mwcnts/ncqds modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201702288
G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. PNAS 114, 840–845 (2017). https://doi.org/10.1073/pnas.1615837114
Y.C. Tsao, M. Lee, E.C. Miller, G.P. Gao, J. Park et al., Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries. Joule 3, 872–884 (2019). https://doi.org/10.1016/j.joule.2018.12.018
D. Tian, X.Q. Song, M.X. Wang, X. Wu, Y. Qiu et al., Mon supported on graphene as a bifunctional interlayer for advanced Li–S batteries. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201901940
D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018). https://doi.org/10.1002/advs.201700270
D.Q. He, J.T. Meng, X.Y. Chen, Y.Q. Liao, Z.X. Cheng et al., Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202001201
X.H. Hu, L.F. Zhong, C.H. Shu, Z.S. Fang, M.J. Yang et al., Versatile, aqueous soluble C2N quantum dots with enriched active edges and oxygenated groups. J. Am. Chem. Soc. 142, 4621–4630 (2020). https://doi.org/10.1021/jacs.9b11169
G.R. Li, F. Lu, X.Y. Dou, X. Wang, D. Luo et al., Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 142, 3583–3592 (2020). https://doi.org/10.1021/jacs.9b13303
J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium–sulfur batteries. ACS Nano 15, 11491–11500 (2021). https://doi.org/10.1021/acsnano.1c01250
A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021). https://doi.org/10.1039/d1ee00508a
X. Li, M. Lv, Y. Tian, L. Gao, T. Liu et al., Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy (2021). https://doi.org/10.1016/j.nanoen.2021.106214
K. Zhao, Q. Jin, L. Li, X. Zhang, L. Wu, Shielding polysulfides enabled by a biomimetic artificial protective layer in lithium-sulfur batteries. J. Colloid Interface Sci. 625, 119–127 (2022). https://doi.org/10.1016/j.jcis.2022.06.017
P.-Y. Chen, C. Yan, P. Chen, R. Zhang, Y.-X. Yao et al., Selective permeable lithium-ion channels on lithium metal for practical lithium–sulfur pouch cells. Angew. Chem. Int. Ed. 60, 18031–18036 (2021). https://doi.org/10.1002/anie.202101958
Y.X. Ren, L. Zeng, H.R. Jiang, W.Q. Ruan, Q. Chen et al., Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun. 10, 3249 (2019). https://doi.org/10.1038/s41467-019-11168-y
C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, Q. Zhang, Lithium-anode protection in lithium–sulfur batteries. Trends Chem 1, 693–704 (2019). https://doi.org/10.1016/j.trechm.2019.06.007
J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian et al., Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014). https://doi.org/10.1039/c3ee42223b
X. Wang, X. Zhang, Y. Zhao, D. Luo, L. Shui et al., Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306901
R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202309046
Z. Chi, J. Ding, C. Ding, B. Cui, W. Wang et al., A heterostructured gel polymer electrolyte modified by MoS2 for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c07321
Y. Li, T. Wang, J. Chen, X. Peng, M. Chen et al., An artificial interfacial layer with biomimetic ionic channels towards highly stable Li metal anodes. Sci. Bull. 68, 1379–1388 (2023). https://doi.org/10.1016/j.scib.2023.06.008
S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020). https://doi.org/10.1038/s41467-020-14848-2
H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
Q. He, B. Yu, Z. Li, Y. Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019). https://doi.org/10.1002/eem2.12056
S. Feng, Z.-H. Fu, X. Chen, Q. Zhang, A review on theoretical models for lithium–sulfur battery cathodes. InfoMat 4, e12304 (2022). https://doi.org/10.1002/inf2.12304
M. Li, H. Chen, C. Guo, S. Qian, H. Li et al., Interfacial engineering on cathode and anode with iminated polyaniline@RGO-CNTs for robust and high-rate full lithium–sulfur batteries. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202300646
T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 517 (2022). https://doi.org/10.20517/energymater.2022.46
J. Sun, Z. Du, Y. Liu, W. Ai, K. Wang et al., State-of-the-art and future challenges in high energy lithium–selenium batteries. Adv. Mater. 33, 2003845 (2021). https://doi.org/10.1002/adma.202003845
Q. Zou, Y. Sun, Z. Liang, W. Wang, Y.-C. Lu, Achieving efficient magnesium–sulfur battery chemistry via polysulfide mediation. Adv. Energy Mater. 11, 2101552 (2021). https://doi.org/10.1002/aenm.202101552
Q. Zou, Y.-C. Lu, Liquid electrolyte design for metal-sulfur batteries: mechanistic understanding and perspective. EcoMat 3, e12115 (2021). https://doi.org/10.1002/eom2.12115
Q. Zou, Z. Liang, G.-Y. Du, C.-Y. Liu, E.Y. Li et al., Cation-directed selective polysulfide stabilization in alkali metal–sulfur batteries. J. Am. Chem. Soc. 140, 10740–10748 (2018). https://doi.org/10.1021/jacs.8b04536
J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium–sulfur batteries: a critical review. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211168