Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells
Corresponding Author: Zhigang Zang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 17
Abstract
The interfacial defects and energy barrier are main reasons for interfacial nonradiative recombination. In addition, poor perovskite crystallization and incomplete conversion of PbI2 to perovskite restrict further enhancement of the photovoltaic performance of the devices using sequential deposition. Herein, a buried interface stabilization strategy that relies on the synergy of fluorine (F) and sulfonyl (S=O) functional groups is proposed. A series of potassium salts containing halide and non-halogen anions are employed to modify SnO2/perovskite buried interface. Multiple chemical bonds including hydrogen bond, coordination bond and ionic bond are realized, which strengthens interfacial contact and defect passivation effect. The chemical interaction between modification molecules and perovskite along with SnO2 heightens incessantly as the number of S=O and F augments. The chemical interaction strength between modifiers and perovskite as well as SnO2 gradually increases with the increase in the number of S=O and F. The defect passivation effect is positively correlated with the chemical interaction strength. The crystallization kinetics is regulated through the compromise between chemical interaction strength and wettability of substrates. Compared with Cl−, all non-halogen anions perform better in crystallization optimization, energy band regulation and defect passivation. The device with potassium bis (fluorosulfonyl) imide achieves a tempting efficiency of 24.17%.
Highlights:
1 An effective buried interface stabilization strategy based on synergistic effect of fluorine and sulfonyl functional groups is proposed.
2 The correlations between molecular structures, defect passivation, interfacial energy band alignment, perovskite crystallization and device performance are established.
3 The device with KFSI achieves an impressive efficiency of 24.17%.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
- T. Zhou, M. Wang, Z. Zang, L. Fang, Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation. Adv. Energy Mater. 9(29), 1900664 (2019). https://doi.org/10.1002/aenm.201900664
- R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14, 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
- M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302–306 (2022). https://doi.org/10.1126/science.abh1885
- M. Li, H. Li, Q. Zhuang, D. He, B. Liu et al., Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202206914
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- NREL, Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html
- J. Chen, N.G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5(8), 2742–2786 (2020). https://doi.org/10.1021/acsenergylett.0c01240
- J. Deng, H. Zhang, K. Wei, Y. Xiao, C. Zhang et al., Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202209516
- Z.W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12(20), 2104030 (2022). https://doi.org/10.1002/aenm.202104030
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
- X. Zuo, B. Kim, B. Liu, D. He, L. Bai et al., Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chem. Eng. J. 431, 133209 (2022). https://doi.org/10.1016/j.cej.2021.133209
- B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc Rev. 48, 3842–3867 (2019). https://doi.org/10.1039/C8CS00853A
- S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34(27), 2110438 (2022). https://doi.org/10.1002/adma.202110438
- Ç. Kılıç, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002). https://doi.org/10.1103/PhysRevLett.88.095501
- Y. Dong, W. Shen, W. Dong, C. Bai, J. Zhao et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 12(20), 2200417 (2022). https://doi.org/10.1002/aenm.202200417
- D. Gao, L. Yang, X. Ma, X. Shang, C. Wang et al., Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. J. Energy Chem. 69, 659–666 (2022). https://doi.org/10.1016/j.jechem.2022.02.016
- Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
- F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of macl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33(3), 2007126 (2021). https://doi.org/10.1002/adma.202007126
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- H. Bi, X. Zuo, B. Liu, D. He, L. Bai et al., Multifunctional organic ammonium salt-modified SnO2 nanops toward efficient and stable planar perovskite solar cells. J. Mater. Chem. A 9(7), 3940–3951 (2021). https://doi.org/10.1039/D0TA12612H
- S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020). https://doi.org/10.1002/adma.202003990
- I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov et al., Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5, 2915–2933 (2021). https://doi.org/10.1016/j.joule.2021.07.016
- E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale et al., Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020). https://doi.org/10.1021/acsenergylett.0c01566
- K. Choi, J. Lee, H.I. Kim, C.W. Park, G.W. Kim et al., Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ. Sci. 11(11), 3238–3247 (2018). https://doi.org/10.1039/C8EE02242A
- J. Chen, X. Zhao, S.G. Kim, N.G. Park, Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 31(39), 1902902 (2019). https://doi.org/10.1002/adma.201902902
- H. Bi, B. Liu, D. He, L. Bai, W. Wang et al., Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem. Eng. J. 418, 129375 (2021). https://doi.org/10.1016/j.cej.2021.129375
- L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei et al., Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 11(20), 2100529 (2021). https://doi.org/10.1002/aenm.202100529
- Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu et al., Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells. Nano-Micro Lett. 14, 165 (2022). https://doi.org/10.1007/s40820-022-00918-1
- D. Bi, X. Li, J.V. Milic, D.J. Kubicki, N. Pellet et al., Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018). https://doi.org/10.1038/s41467-018-06709-w
- B. Liu, H. Bi, D. He, L. Bai, W. Wang et al., Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 6(7), 2526–2538 (2021). https://doi.org/10.1021/acsenergylett.1c00794
- J. Chen, N.G. Park, Nonhalide materials for efficient and stable perovskite solar cells. Small Method. 5(6), 2100311 (2021). https://doi.org/10.1002/smtd.202100311
- F.K. Aldibaja, L. Badia, E. Mas-Marzá, R.S. Sánchez, E.M. Barea et al., Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A 3(17), 9194–9200 (2015). https://doi.org/10.1039/C4TA06198E
- E. Jiang, Y. Ai, J. Yan, N. Li, L. Lin et al., Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl. Mater. Interface. 11(40), 36727–36734 (2019). https://doi.org/10.1021/acsami.9b11817
- J. Dagar, K. Hirselandt, A. Merdasa, A. Czudek, R. Munir et al., Alkali salts as interface modifiers in n-i-p hybrid perovskite solar cells. Sol. RRL 3, 1900088 (2019). https://doi.org/10.1002/solr.201900088
- J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
- W. Wang, Q. Zhou, D. He, B. Liu, L. Bai et al., Self-formed multifunctional grain boundary passivation layer achieving 22.4% efficient and stable perovskite solar cells. Sol. RRL 6, 2100893 (2022). https://doi.org/10.1002/solr.202100893
- C. Zhang, H. Wang, H. Li, Q. Zhuang, C. Gong et al., Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 63, 452–460 (2021). https://doi.org/10.1016/j.jechem.2021.07.011
- S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian et al., Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3, 190 (2019). https://doi.org/10.1002/solr.201900220
- Q. Han, Y. Bai, J. Liu, K.Z. Du, T. Li et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/C7EE02272G
- D. He, T. Zhou, B. Liu, L. Bai, W. Wang et al., Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: experimental and theoretical evidence. EcoMat 4, e12158 (2022). https://doi.org/10.1002/eom2.12158
- T. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur et al., Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers. Adv. Funct. Mater. 28(14), 1706287 (2018). https://doi.org/10.1002/adfm.201706287
- Q. Chen, G. Zhai, J. Ren, Y. Huo, Z. Yun et al., Surface passivation of perovskite films by potassium bis(fluorosulfonyl)imide for efficient solar cells. Org. Electron. 107, 106544 (2022). https://doi.org/10.1016/j.orgel.2022.106544
- Q. Zhuang, H. Wang, C. Zhang, C. Gong, H. Li et al., Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano Res. 15, 5114–5122 (2022). https://doi.org/10.1007/s12274-022-4135-7
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
- D.H. Kim, J. Park, Z. Li, M. Yang, J.S. Park et al., 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 29(23), 1606831 (2017). https://doi.org/10.1002/adma.201606831
- C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x
- C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
- Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu et al., Planar-structure perovskite solar cells with efficiency beyond 21. Adv. Mater. 29(46), 1703852 (2017). https://doi.org/10.1002/adma.201703852
- Z. Xu, Z. Liu, N. Li, G. Tang, G. Zheng et al., A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Adv. Mater. 31(24), 1900390 (2019). https://doi.org/10.1002/adma.201900390
- J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8
References
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
T. Zhou, M. Wang, Z. Zang, L. Fang, Stable dynamics performance and high efficiency of ABX3-type super-alkali perovskites first obtained by introducing H5O2 cation. Adv. Energy Mater. 9(29), 1900664 (2019). https://doi.org/10.1002/aenm.201900664
R. Yuan, B. Cai, Y. Lv, X. Gao, J. Gu et al., Boosted charge extraction of NbOx-enveloped SnO2 nanocrystals enables 24% efficient planar perovskite solar cells. Energy Environ. Sci. 14, 5074–5083 (2021). https://doi.org/10.1039/D1EE01519B
M. Kim, J. Jeong, H. Lu, T.K. Lee, F.T. Eickemeyer et al., Conformal quantum dot SnO2 layers as electron transporters for efficient perovskite solar cells. Science 375(6578), 302–306 (2022). https://doi.org/10.1126/science.abh1885
M. Li, H. Li, Q. Zhuang, D. He, B. Liu et al., Stabilizing perovskite precursor by synergy of functional groups for NiOx-based inverted solar cells with 23.5% efficiency. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202206914
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
NREL, Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html
J. Chen, N.G. Park, Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 5(8), 2742–2786 (2020). https://doi.org/10.1021/acsenergylett.0c01240
J. Deng, H. Zhang, K. Wei, Y. Xiao, C. Zhang et al., Molecular bridge assisted bifacial defect healing enables low energy loss for efficient and stable perovskite solar cells. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202209516
Z.W. Gao, Y. Wang, W.C.H. Choy, Buried interface modification in perovskite solar cells: a materials perspective. Adv. Energy Mater. 12(20), 2104030 (2022). https://doi.org/10.1002/aenm.202104030
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
X. Zuo, B. Kim, B. Liu, D. He, L. Bai et al., Passivating buried interface via self-assembled novel sulfonium salt toward stable and efficient perovskite solar cells. Chem. Eng. J. 431, 133209 (2022). https://doi.org/10.1016/j.cej.2021.133209
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc Rev. 48, 3842–3867 (2019). https://doi.org/10.1039/C8CS00853A
S.Y. Park, K. Zhu, Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Adv. Mater. 34(27), 2110438 (2022). https://doi.org/10.1002/adma.202110438
Ç. Kılıç, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 095501 (2002). https://doi.org/10.1103/PhysRevLett.88.095501
Y. Dong, W. Shen, W. Dong, C. Bai, J. Zhao et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 12(20), 2200417 (2022). https://doi.org/10.1002/aenm.202200417
D. Gao, L. Yang, X. Ma, X. Shang, C. Wang et al., Passivating buried interface with multifunctional novel ionic liquid containing simultaneously fluorinated anion and cation yielding stable perovskite solar cells over 23% efficiency. J. Energy Chem. 69, 659–666 (2022). https://doi.org/10.1016/j.jechem.2022.02.016
Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu et al., Roles of macl in sequentially deposited bromine-free perovskite absorbers for efficient solar cells. Adv. Mater. 33(3), 2007126 (2021). https://doi.org/10.1002/adma.202007126
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
H. Bi, X. Zuo, B. Liu, D. He, L. Bai et al., Multifunctional organic ammonium salt-modified SnO2 nanops toward efficient and stable planar perovskite solar cells. J. Mater. Chem. A 9(7), 3940–3951 (2021). https://doi.org/10.1039/D0TA12612H
S. You, H. Zeng, Z. Ku, X. Wang, Z. Wang et al., Multifunctional polymer-regulated SnO2 nanocrystals enhance interface contact for efficient and stable planar perovskite solar cells. Adv. Mater. 32(43), 2003990 (2020). https://doi.org/10.1002/adma.202003990
I. Levine, A. Al-Ashouri, A. Musiienko, H. Hempel, A. Magomedov et al., Charge transfer rates and electron trapping at buried interfaces of perovskite solar cells. Joule 5, 2915–2933 (2021). https://doi.org/10.1016/j.joule.2021.07.016
E.H. Jung, B. Chen, K. Bertens, M. Vafaie, S. Teale et al., Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 5(9), 2796–2801 (2020). https://doi.org/10.1021/acsenergylett.0c01566
K. Choi, J. Lee, H.I. Kim, C.W. Park, G.W. Kim et al., Thermally stable, planar hybrid perovskite solar cells with high efficiency. Energy Environ. Sci. 11(11), 3238–3247 (2018). https://doi.org/10.1039/C8EE02242A
J. Chen, X. Zhao, S.G. Kim, N.G. Park, Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells. Adv. Mater. 31(39), 1902902 (2019). https://doi.org/10.1002/adma.201902902
H. Bi, B. Liu, D. He, L. Bai, W. Wang et al., Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem. Eng. J. 418, 129375 (2021). https://doi.org/10.1016/j.cej.2021.129375
L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei et al., Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 11(20), 2100529 (2021). https://doi.org/10.1002/aenm.202100529
Z. Zhang, J. Liang, J. Wang, Y. Zheng, X. Wu et al., Resolving mixed intermediate phases in methylammonium-free Sn-Pb alloyed perovskites for high-performance solar cells. Nano-Micro Lett. 14, 165 (2022). https://doi.org/10.1007/s40820-022-00918-1
D. Bi, X. Li, J.V. Milic, D.J. Kubicki, N. Pellet et al., Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018). https://doi.org/10.1038/s41467-018-06709-w
B. Liu, H. Bi, D. He, L. Bai, W. Wang et al., Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells. ACS Energy Lett. 6(7), 2526–2538 (2021). https://doi.org/10.1021/acsenergylett.1c00794
J. Chen, N.G. Park, Nonhalide materials for efficient and stable perovskite solar cells. Small Method. 5(6), 2100311 (2021). https://doi.org/10.1002/smtd.202100311
F.K. Aldibaja, L. Badia, E. Mas-Marzá, R.S. Sánchez, E.M. Barea et al., Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A 3(17), 9194–9200 (2015). https://doi.org/10.1039/C4TA06198E
E. Jiang, Y. Ai, J. Yan, N. Li, L. Lin et al., Phosphate-passivated SnO2 electron transport layer for high-performance perovskite solar cells. ACS Appl. Mater. Interface. 11(40), 36727–36734 (2019). https://doi.org/10.1021/acsami.9b11817
J. Dagar, K. Hirselandt, A. Merdasa, A. Czudek, R. Munir et al., Alkali salts as interface modifiers in n-i-p hybrid perovskite solar cells. Sol. RRL 3, 1900088 (2019). https://doi.org/10.1002/solr.201900088
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5
W. Wang, Q. Zhou, D. He, B. Liu, L. Bai et al., Self-formed multifunctional grain boundary passivation layer achieving 22.4% efficient and stable perovskite solar cells. Sol. RRL 6, 2100893 (2022). https://doi.org/10.1002/solr.202100893
C. Zhang, H. Wang, H. Li, Q. Zhuang, C. Gong et al., Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J. Energy Chem. 63, 452–460 (2021). https://doi.org/10.1016/j.jechem.2021.07.011
S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian et al., Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3, 190 (2019). https://doi.org/10.1002/solr.201900220
Q. Han, Y. Bai, J. Liu, K.Z. Du, T. Li et al., Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 10, 2365–2371 (2017). https://doi.org/10.1039/C7EE02272G
D. He, T. Zhou, B. Liu, L. Bai, W. Wang et al., Interfacial defect passivation by novel phosphonium salts yields 22% efficiency perovskite solar cells: experimental and theoretical evidence. EcoMat 4, e12158 (2022). https://doi.org/10.1002/eom2.12158
T. Singh, S. Öz, A. Sasinska, R. Frohnhoven, S. Mathur et al., Sulfate-assisted interfacial engineering for high yield and efficiency of triple cation perovskite solar cells with alkali-doped TiO2 electron-transporting layers. Adv. Funct. Mater. 28(14), 1706287 (2018). https://doi.org/10.1002/adfm.201706287
Q. Chen, G. Zhai, J. Ren, Y. Huo, Z. Yun et al., Surface passivation of perovskite films by potassium bis(fluorosulfonyl)imide for efficient solar cells. Org. Electron. 107, 106544 (2022). https://doi.org/10.1016/j.orgel.2022.106544
Q. Zhuang, H. Wang, C. Zhang, C. Gong, H. Li et al., Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano Res. 15, 5114–5122 (2022). https://doi.org/10.1007/s12274-022-4135-7
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
D.H. Kim, J. Park, Z. Li, M. Yang, J.S. Park et al., 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment. Adv. Mater. 29(23), 1606831 (2017). https://doi.org/10.1002/adma.201606831
C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015). https://doi.org/10.1038/ncomms8747
Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu et al., Planar-structure perovskite solar cells with efficiency beyond 21. Adv. Mater. 29(46), 1703852 (2017). https://doi.org/10.1002/adma.201703852
Z. Xu, Z. Liu, N. Li, G. Tang, G. Zheng et al., A thermodynamically favored crystal orientation in mixed formamidinium/methylammonium perovskite for efficient solar cells. Adv. Mater. 31(24), 1900390 (2019). https://doi.org/10.1002/adma.201900390
J. Xu, J. Cui, S. Yang, Y. Han, X. Guo et al., Unraveling passivation mechanism of imidazolium-based ionic liquids on inorganic perovskite to achieve near-record-efficiency CsPbI2Br solar cells. Nano-Micro Lett. 14, 7 (2021). https://doi.org/10.1007/s40820-021-00763-8