Quasi-Solid Gel Electrolytes for Alkali Metal Battery Applications
Corresponding Author: Guoxiu Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 194
Abstract
Alkali metal batteries (AMBs) have undergone substantial development in portable devices due to their high energy density and durable cycle performance. However, with the rising demand for smart wearable electronic devices, a growing focus on safety and durability becomes increasingly apparent. An effective strategy to address these increased requirements involves employing the quasi-solid gel electrolytes (QSGEs). This review focuses on the application of QSGEs in AMBs, emphasizing four types of gel electrolytes and their influence on battery performance and stability. First, self-healing gels are discussed to prolong battery life and enhance safety through self-repair mechanisms. Then, flexible gels are explored for their mechanical flexibility, making them suitable for wearable devices and flexible electronics. In addition, biomimetic gels inspired by natural designs are introduced for high-performance AMBs. Furthermore, biomass materials gels are presented, derived from natural biomaterials, offering environmental friendliness and biocompatibility. Finally, the perspectives and challenges for future developments are discussed in terms of enhancing the ionic conductivity, mechanical strength, and environmental stability of novel gel materials. The review underscores the significant contributions of these QSGEs in enhancing AMBs performance, including increased lifespan, safety, and adaptability, providing new insights and directions for future research and applications in the field.
Highlights:
1 This review explores the application of quasi-solid gel electrolytes (QSGEs) in alkali metal batteries (AMBs), emphasizing self-healing gels, flexible gels, biomimetic gels, and biomass gels. Each of these gel types brings unique advantages to the performance of AMBs.
2 This review outlines future research directions, including synthesizing advanced QSGEs, in situ characterization techniques, and theoretical simulations to better understand and optimize these materials. It identifies critical areas for investigation, guiding researchers to optimize QSGEs in AMBs and enhance their application.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Chen, W. Zhang, S. Yi, Z. Su, Z. Zhao et al., Zinc Iso-plating/stripping: toward a practical Zn powder anode with ultra-long life over 5600 h. Energy Environ. Sci. 17, 3146–3156 (2024). https://doi.org/10.1039/D3EE04333A
- S. Liu, Z. Teng, H. Liu, T. Wang, G. Wang et al., A Ce-UiO-66 metal-organic framework-based graphene-embedded photocatalyst with controllable activation for solar ammonia fertilizer production. Angew. Chem. Int. Ed. 61, e202207026 (2022). https://doi.org/10.1002/anie.202207026
- J. Lu, P. Jaumaux, T. Wang, C. Wang, G. Wang, Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. J. Mater. Chem. A 9, 24175–24194 (2021). https://doi.org/10.1039/D1TA06606D
- J. Lu, T. Wang, J. Yang, X. Shen, H. Pang et al., Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew. Chem. Int. Ed. 63, e202409838 (2024). https://doi.org/10.1002/anie.202409838
- J. Lu, J. Yang, Z. Zhang, C. Wang, J. Xu et al., Silk fibroin coating enables dendrite-free zinc anode for long-life aqueous zinc-ion batteries. ChemSusChem 15, e202200656 (2022). https://doi.org/10.1002/cssc.202200656
- L. Ma, J. Tan, Y. Wang, Z. Liu, Y. Yang et al., Boron-based high-performance lithium batteries: recent progress, challenges, and perspectives. Adv. Energy Mater. 13, 2300042 (2023). https://doi.org/10.1002/aenm.202300042
- H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020). https://doi.org/10.1039/c9cs00906j
- X. Xiao, L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49, 301–331 (2020). https://doi.org/10.1039/c7cs00614d
- Z. Yao, Y. Kang, M. Hou, J. Huang, J. Zhang et al., Promoting homogeneous interfacial Li+ migration by using a facile N2 plasma strategy for all-solid-state lithium-metal batteries. Adv. Funct. Mater. 32, 2111919 (2022). https://doi.org/10.1002/adfm.202111919
- X. Zhou, T. Wang, H. Liu, L. Zhang, C. Zhang et al., Design of S-scheme heterojunction catalyst based on structural defects for photocatalytic oxidative desulfurization application. J. Photochem. Photobiol. A Chem. 433, 114162 (2022). https://doi.org/10.1016/j.jphotochem.2022.114162
- F. Liang, Y. Sun, Y. Yuan, J. Huang, M. Hou et al., Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Mater. Today 50, 418–441 (2021). https://doi.org/10.1016/j.mattod.2021.03.013
- T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux et al., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2
- P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
- J.-F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
- V.M. Leal, J.S. Ribeiro, E.L.D. Coelho, M.B.J.G. Freitas, Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. J. Energy Chem. 79, 118–134 (2023). https://doi.org/10.1016/j.jechem.2022.08.005
- Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10, 2201718 (2023). https://doi.org/10.1002/advs.202201718
- J. Zhang, B. Sun, Y. Zhao, A. Tkacheva, Z. Liu et al., A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 10, 602 (2019). https://doi.org/10.1038/s41467-019-08422-8
- F. Zhao, J. Xue, W. Shao, H. Yu, W. Huang et al., Toward high-sulfur-content, high-performance lithium-sulfur batteries: review of materials and technologies. J. Energy Chem. 80, 625–657 (2023). https://doi.org/10.1016/j.jechem.2023.02.009
- K.-Y. Zhang, Z.-Y. Gu, E.H. Ang, J.-Z. Guo, X.-T. Wang et al., Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater. Today 54, 189–201 (2022). https://doi.org/10.1016/j.mattod.2022.02.013
- J. Li, Z. Li, S. Tang, J. Hao, T. Wang et al., Improving the sodium storage performance of carbonaceous anode: synergistic coupling of pore structure and ordered domain engineering. Carbon 203, 469–478 (2023). https://doi.org/10.1016/j.carbon.2022.12.014
- C. Tang, W. Lu, Y. Zhang, W. Zhang, C. Cui et al., Toward ultrahigh rate and cycling performance of cathode materials of sodium ion battery by introducing a bicontinuous porous structure. Adv. Mater. 36, e2402005 (2024). https://doi.org/10.1002/adma.202402005
- D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
- C. Wang, A.C. Thenuwara, J. Luo, P.P. Shetty, M.T. McDowell et al., Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions. Nat. Commun. 13, 4934 (2022). https://doi.org/10.1038/s41467-022-32606-4
- Z. Bai, Q. Yao, M. Wang, W. Meng, S. Dou et al., Low-temperature sodium-ion batteries: challenges and progress. Adv. Energy Mater. 14, 2303788 (2024). https://doi.org/10.1002/aenm.202303788
- F. Li, M. Hou, L. Zhao, D. Zhang, B. Yang et al., Electrolyte and interface engineering for solid-state sodium batteries. Energy Storage Mater. 65, 103181 (2024). https://doi.org/10.1016/j.ensm.2024.103181
- Y. Wang, J. Liu, X. Chen, B. Kang, H.-E. Wang et al., Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 189, 46–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.051
- Y. Xu, Q. Li, H. Xue, H. Pang, Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 376, 292–318 (2018). https://doi.org/10.1016/j.ccr.2018.08.010
- S. Zheng, Q. Li, H. Xue, H. Pang, Q. Xu, A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 7, 305–314 (2020). https://doi.org/10.1093/nsr/nwz137
- X. Feng, H. Fang, N. Wu, P. Liu, P. Jena et al., Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule 6, 543–587 (2022). https://doi.org/10.1016/j.joule.2022.01.015
- H. Yin, C. Han, Q. Liu, F. Wu, F. Zhang et al., Recent advances and perspectives on the polymer electrolytes for sodium/potassium-ion batteries. Small 17, e2006627 (2021). https://doi.org/10.1002/smll.202006627
- W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. 8, 2004490 (2021). https://doi.org/10.1002/advs.202004490
- H. Gao, L. Xue, S. Xin, J.B. Goodenough, A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. Int. Ed. 57, 5449–5453 (2018). https://doi.org/10.1002/anie.201802248
- M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164, A54–A60 (2016). https://doi.org/10.1149/2.0211702jes
- R.M. de Souza, L.J. de Siqueira, M. Karttunen, L.G. Dias, Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries. J. Chem. Inf. Model. 60, 485–499 (2020). https://doi.org/10.1021/acs.jcim.9b00750
- H. Sun, P. Liang, G. Zhu, W.H. Hung, Y.Y. Li et al., A high-performance potassium metal battery using safe ionic liquid electrolyte. Proc. Natl. Acad. Sci. U.S.A. 117, 27847–27853 (2020). https://doi.org/10.1073/pnas.2012716117
- D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15, 550–578 (2022). https://doi.org/10.1039/d1ee01789f
- H. Wang, Z. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
- S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
- S. Cui, X. Wu, Y. Yang, M. Fei, S. Liu et al., Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries. ACS Energy Lett. 7, 42–52 (2022). https://doi.org/10.1021/acsenergylett.1c02233
- Y. Du, Y. Xie, X. Liu, H. Jiang, F. Wu et al., In-situ formed phosphorus modified gel polymer electrolyte with good flame retardancy and cycling stability for rechargeable lithium batteries. ACS Sustain. Chem. Eng. 11, 4498–4508 (2023). https://doi.org/10.1021/acssuschemeng.3c00077
- S. Fu, L.-L. Zuo, P.-S. Zhou, X.-J. Liu, Q. Ma et al., Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Mater. Chem. Front. 5, 5211–5232 (2021). https://doi.org/10.1039/d1qm00096a
- J. Qian, B. Jin, Y. Li, X. Zhan, Y. Hou et al., Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 56, 420–437 (2021). https://doi.org/10.1016/j.jechem.2020.08.026
- P. Hu, Y. Duan, D. Hu, B. Qin, J. Zhang et al., Rigid–flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl. Mater. Interfaces 7, 4720–4727 (2015). https://doi.org/10.1021/am5083683
- G. Hu, C. Xu, Z. Sun, S. Wang, H.-M. Cheng et al., 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 28, 1603–1609 (2016). https://doi.org/10.1002/adma.201504765
- J.I. Kim, Y. Choi, K.Y. Chung, J.H. Park, A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27, 1701768 (2017). https://doi.org/10.1002/adfm.201701768
- J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
- T. Mendes, X. Zhang, Y. Wu, P.C. Howlett, M. Forsyth et al., Supported ionic liquid gel membrane electrolytes for a safe and flexible sodium metal battery. ACS Sustain. Chem. Eng. 7, 3722–3726 (2019). https://doi.org/10.1021/acssuschemeng.8b06212
- Y. Lu, L. Lu, G. Qiu, C. Sun, Flexible quasi-solid-state sodium battery for storing pulse electricity harvested from triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12, 39342–39351 (2020). https://doi.org/10.1021/acsami.0c12052
- T. Liu, K.-T. Liu, J. Wang, X. Ji, P. Lan et al., Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater. 41, 133–140 (2021). https://doi.org/10.1016/j.ensm.2021.06.001
- N. Mittal, S. Tien, E. Lizundia, M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 18, e2107183 (2022). https://doi.org/10.1002/smll.202107183
- S. Yang, X. He, T. Hu, Y. He, S. Lv et al., A supertough, nonflammable, biomimetic gel with neuron-like nanoskeleton for puncture-tolerant safe lithium metal batteries. Adv. Funct. Mater. 33, 2304727 (2023). https://doi.org/10.1002/adfm.202304727
- B. Yang, Y. Pan, T. Li, A. Hu, K. Li et al., High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes. Energy Storage Mater. 65, 103124 (2024). https://doi.org/10.1016/j.ensm.2023.103124
- Y. Cui, J. Li, X. Yuan, J. Liu, H. Zhang et al., Emerging strategies for gel polymer electrolytes with improved dual-electrode side regulation mechanisms for lithium-sulfur batteries. Chem. Asian J. 17, e202200746 (2022). https://doi.org/10.1002/asia.202200746
- J. Pan, N. Wang, H.J. Fan, Gel polymer electrolytes design for Na-ion batteries. Small Meth. 6, 2201032 (2022). https://doi.org/10.1002/smtd.202201032
- Q. Yang, N. Deng, B. Cheng, W. Kang, Gel polymer electrolytes in lithium batteries. Prog. Chem. 33, 2270–2282 (2021). https://doi.org/10.7536/pc201145
- N.A. Johari, T.I.T. Kudin, A.M.M. Ali, M.Z.A. Yahya, Electrochemical studies of composite cellulose acetate-based polymer gel electrolytes for proton batteries. Proc. Natl. Acad. Sci India, Sect A. 82, 49–52 (2012). https://doi.org/10.1007/s40010-012-0005-0
- A. Manuel Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.017
- Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 8, 7197–7204 (2020). https://doi.org/10.1039/D0TA02148B
- X. Feng, N. Deng, W. Yu, Z. Peng, D. Su et al., Review: application of bionic-structured materials in solid-state electrolytes for high-performance lithium metal batteries. ACS Nano 18, 15387–15415 (2024). https://doi.org/10.1021/acsnano.4c02547
- Y. Zhang, D. Chen, W. He, J. Tan, Y. Yang et al., Bioinspired solid-state ion nanochannels: insight from channel fabrication and ion transport. Adv. Mater. Technol. 8, 2202014 (2023). https://doi.org/10.1002/admt.202202014
- T. Agnihotri, S. Ali Ahmed, E.B. Tamilarasan, R. Hasan, W.-N. Su et al., Transitioning towards asymmetric gel polymer electrolytes for lithium batteries: progress and prospects. Adv. Funct. Mater. 34, 2311215 (2024). https://doi.org/10.1002/adfm.202311215
- Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 1, 18–42 (2016). https://doi.org/10.1016/j.gee.2016.04.006
- M. Zhu, J. Wu, Y. Wang, M. Song, L. Long et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
- Q. Guo, Y. Han, H. Wang, S. Xiong, W. Sun et al., Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 122, 10334–10342 (2018). https://doi.org/10.1021/acs.jpcc.8b02693
- L. Han, C. Liao, Y. Liu, H. Yu, S. Zhang et al., Non-flammable sandwich-structured TPU gel polymer electrolyte without flame retardant addition for high performance lithium ion batteries. Energy Storage Mater. 52, 562–572 (2022). https://doi.org/10.1016/j.ensm.2022.08.013
- M. Yang, F. Feng, Z. Shi, J. Guo, R. Wang et al., Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Mater. 56, 611–620 (2023). https://doi.org/10.1016/j.ensm.2023.01.043
- J. Zheng, Y. Yang, W. Li, X. Feng, W. Chen et al., Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. J. Mater. Chem. A 8, 22962–22968 (2020). https://doi.org/10.1039/D0TA09490K
- T. Zhu, G. Liu, D. Chen, J. Chen, P. Qi et al., Constructing flame-retardant gel polymer electrolytes via multiscale free radical annihilating agents for Ni-rich lithium batteries. Energy Storage Mater. 50, 495–504 (2022). https://doi.org/10.1016/j.ensm.2022.05.051
- Z. Du, Y. Su, Y. Qu, L. Zhao, X. Jia et al., A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 299, 19–26 (2019). https://doi.org/10.1016/j.electacta.2018.12.173
- C. Fasciani, S. Panero, J. Hassoun, B. Scrosati, Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J. Power Sources 294, 180–186 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.068
- A. Swiderska-Mocek, I. Karczewska, A. Gabryelczyk, M. Popławski, D. Czarnecka-Komorowska, Gel polymer electrolytes with talc as a natural mineral filler and a biodegradable polymer matrix in sodium-ion batteries. ChemPhysChem 24, e202300090 (2023). https://doi.org/10.1002/cphc.202300090
- D. Wang, B. Jin, X. Yao, J. Huang, Y. Ren et al., Bio-inspired polydopamine-modified ZIF-90-supported gel polymer electrolyte for high-safety lithium metal batteries. ACS Appl. Energy Mater. 6, 11146–11156 (2023). https://doi.org/10.1021/acsaem.3c01958
- Y.S. Zhu, S.Y. Xiao, M.X. Li, Z. Chang, F.X. Wang et al., Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 288, 368–375 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.117
- Y. Jiang, Y. Song, X. Chen, H. Wang, L. Deng et al., In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries. Energy Storage Mater. 52, 514–523 (2022). https://doi.org/10.1016/j.ensm.2022.08.027
- Q. Li, Z. Zhang, Y. Li, H. Li, Z. Liu et al., Rapid self-healing gel electrolyte based on deep eutectic solvents for solid-state lithium batteries. ACS Appl. Mater. Interfaces 14, 49700–49708 (2022). https://doi.org/10.1021/acsami.2c12445
- C. Wang, R. Li, P. Chen, Y. Fu, X. Ma et al., Highly stretchable, non-flammable and Notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 9, 4758–4769 (2021). https://doi.org/10.1039/d0ta10745j
- L. Zhao, Y. Du, E. Zhao, C. Li, Z. Sun et al., Dynamic supramolecular polymer electrolyte to boost ion transport kinetics and interfacial stability for solid-state batteries. Adv. Funct. Mater. 33, 2214881 (2023). https://doi.org/10.1002/adfm.202214881
- C.Y. Chan, Z. Wang, H. Jia, P.F. Ng, L. Chow et al., Recent advances of hydrogel electrolytes in flexible energy storage devices. J. Mater. Chem. A 9, 2043–2069 (2021). https://doi.org/10.1039/D0TA09500A
- Y. Guo, J. Bae, F. Zhao, G. Yu, Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem. 1, 335–348 (2019). https://doi.org/10.1016/j.trechm.2019.03.005
- H. Li, Z. Xu, J. Yang, J. Wang, S.-I. Hirano, Polymer electrolytes for rechargeable lithium metal batteries. Sustain. Energy Fuels 4, 5469–5487 (2020). https://doi.org/10.1039/d0se01065k
- Y. Li, P. Ding, Y. Gu, S. Qian, Y. Pang et al., Self-healable gels in electrochemical energy storage devices. Nano Res. 17, 3302–3323 (2024). https://doi.org/10.1007/s12274-023-6063-6
- E. Parvini, A. Hajalilou, M. Tavakoli, A bright future of hydrogels in flexible batteries and supercapacitors storage systems: a review. Int. J. Energy Res. 46, 13276–13307 (2022). https://doi.org/10.1002/er.8149
- B. Zhou, T. Deng, C. Yang, M. Wang, H. Yan et al., Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition. Adv. Funct. Mater. 33, 2212005 (2023). https://doi.org/10.1002/adfm.202212005
- X. Lin, S. Xu, Y. Tong, X. Liu, Z. Liu et al., A self-healing polymerized-ionic-liquid-based polymer electrolyte enables a long lifespan and dendrite-free solid-state Li metal batteries at room temperature. Mater. Horiz. 10, 859–868 (2023). https://doi.org/10.1039/d2mh01289h
- S. Davino, D. Callegari, D. Pasini, M. Thomas, I. Nicotera et al., Cross-linked gel electrolytes with self-healing functionalities for smart lithium batteries. ACS Appl. Mater. Interfaces 14, 51941–51953 (2022). https://doi.org/10.1021/acsami.2c15011
- X. Zhu, Z. Fang, Q. Deng, Y. Zhou, X. Fu et al., Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustain. Chem. Eng. 10, 4173–4185 (2022). https://doi.org/10.1021/acssuschemeng.1c08306
- Y. Lin, X. Li, W. Zheng, Y. Gang, L. Liu et al., Effect of SiO2 microstructure on ionic transport behavior of self-healing composite electrolytes for sodium metal batteries. J. Membr. Sci. 672, 121442 (2023). https://doi.org/10.1016/j.memsci.2023.121442
- X. Fu, W.-H. Zhong, Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv. Energy Mater. 9, 1901774 (2019). https://doi.org/10.1002/aenm.201901774
- T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- C.S. Anju, B. Kandasubramanian, Hydrogel as an advanced energy material for flexible batteries. Polym. Plast. Technol. Mater. 62, 359–383 (2023). https://doi.org/10.1080/25740881.2022.2113893
- Z. Ji, L. Feng, Z. Zhu, X. Fu, W. Yang et al., Polymeric interface engineering in lithium-sulfur batteries. Chem. Eng. J. 455, 140462 (2023). https://doi.org/10.1016/j.cej.2022.140462
- M. Jia, T. Li, D. Yang, L. Lu, L. Duan et al., Polymer electrolytes for lithium-sulfur batteries: progress and challenges. Batteries 9, 488 (2023). https://doi.org/10.3390/batteries9100488
- C. Li, L. Li, B. He, Y. Ling, J. Pu et al., Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Mater. Sci. Eng. R. Rep. 148, 100671 (2022). https://doi.org/10.1016/j.mser.2022.100671
- Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan et al., Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv. Sci. 10, e2206978 (2023). https://doi.org/10.1002/advs.202206978
- L. Zhang, H. Gao, G. Jin, S. Liu, J. Wu et al., Cellulose-based electrolytes for advanced lithium-ion batteries: recent advances and future perspectives. ChemNanoMat 8, e202200142 (2022). https://doi.org/10.1002/cnma.202200142
- G. Lu, Y. Zhang, J. Zhang, X. Du, Z. Lv et al., Trade-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Energy 5, e287 (2023). https://doi.org/10.1002/cey2.287
- Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen et al., Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 64, 62–84 (2022). https://doi.org/10.1016/j.jechem.2021.04.007
- F. Mahdavian, A. Allahbakhsh, A.R. Bahramian, D. Rodrigue, M.K. Tiwari, Flexible polymer hydrogels for wearable energy storage applications. Adv. Mater. Technol. 8, 2202199 (2023). https://doi.org/10.1002/admt.202202199
- C.P. Teng, M.Y. Tan, J.P.W. Toh, Q.F. Lim, X. Wang et al., Advances in cellulose-based composites for energy applications. Materials 16, 3856 (2023). https://doi.org/10.3390/ma16103856
- M.S.M. Misenan, R. Hempelmann, M. Gallei, T. Eren, Phosphonium-based polyelectrolytes: preparation, properties, and usage in lithium-ion batteries. Polymers 15, 2920 (2023). https://doi.org/10.3390/polym15132920
- A. Shokrieh, A.H. Mirzaei, L. Mao, M.M. Shokrieh, Z. Wei, A review of the mechanical integrity and electrochemical performance of flexible lithium-ion batteries. Nano Res. 16, 12962–12982 (2023). https://doi.org/10.1007/s12274-023-6211-z
- Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15, 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
- Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao et al., Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 8, 1023–1033 (2023). https://doi.org/10.1038/s41560-023-01339-z
- X. Meng, Y. Liu, M. Guan, J. Qiu, Z. Wang, A high-energy and safe lithium battery enabled by solid-state redox chemistry in a fireproof gel electrolyte. Adv. Mater. 34, 2201981 (2022). https://doi.org/10.1002/adma.202201981
- Q. Kang, Z. Zhuang, Y. Liu, Z. Liu, Y. Li et al., Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 35, e2303460 (2023). https://doi.org/10.1002/adma.202303460
- C. Ding, Y. Liu, L.K. Ono, G. Tong, C. Zhang et al., Ion-regulating hybrid electrolyte interface for long-life and low N/P ratio lithium metal batteries. Energy Storage Mater. 50, 417–425 (2022). https://doi.org/10.1016/j.ensm.2022.05.035
- Z. Liu, K. Zhang, G. Huang, B. Xu, Y.L. Hong et al., Highly processable covalent organic framework gel electrolyte enabled by side-chain engineering for lithium-ion batteries. Angew. Chem. Int. Ed. 61, e202110695 (2022). https://doi.org/10.1002/anie.202110695
- X. Gao, W. Yuan, Y. Yang, Y. Wu, C. Wang et al., High-performance and highly safe solvate ionic liquid-based gel polymer electrolyte by rapid UV-curing for lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 43397–43406 (2022). https://doi.org/10.1021/acsami.2c13325
- J. Zheng, W. Li, J. Zhang, Y. Sun, W. Chen, Effects of flexible group length of phosphonate monomers on the performance of gel polymer electrolytes for sodium-ion batteries with ultralong cycling life. ACS Sustain. Chem. Eng. 10, 7158–7168 (2022). https://doi.org/10.1021/acssuschemeng.2c01531
- C.-D. Zhao, J.-Z. Guo, Z.-Y. Gu, X.-T. Wang, X.-X. Zhao et al., Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 15, 925–932 (2022). https://doi.org/10.1007/s12274-021-3577-7
- Y. Li, Z. Zhou, W. Deng, C. Li, X. Yuan et al., A superconcentrated water-in-salt hydrogel electrolyte for high-voltage aqueous potassium-ion batteries. ChemElectroChem 8, 1451–1454 (2021). https://doi.org/10.1002/celc.202001509
- H. Zhang, L. Qiao, M. Armand, Organic electrolyte design for rechargeable batteries: from lithium to magnesium. Angew. Chem. Int. Ed. 61, e202214054 (2022). https://doi.org/10.1002/anie.202214054
- D. Stuart-Fox, L. Ng, M.A. Elgar, K. Hölttä-Otto, G.E. Schröder-Turk et al., Bio-informed materials: three guiding principles for innovation informed by biology. Nat. Rev. Mater. 8, 565–567 (2023). https://doi.org/10.1038/s41578-023-00590-w
- D. Nepal, S. Kang, K.M. Adstedt, K. Kanhaiya, M.R. Bockstaller et al., Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023). https://doi.org/10.1038/s41563-022-01384-1
- F. Zhang, T. Liao, C. Yan, Z. Sun, Bioinspired designs in active metal-based batteries. Nano Res. 17, 587–601 (2024). https://doi.org/10.1007/s12274-023-6102-3
- X. Ni, J. Zhou, K. Long, P. Qing, T. Naren et al., Progress on application of covalent organic frameworks for advanced lithium metal batteries. Energy Storage Mater. 67, 103295 (2024). https://doi.org/10.1016/j.ensm.2024.103295
- Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, e2206970 (2022). https://doi.org/10.1002/adma.202206970
- Y. Hu, L. Yu, T. Meng, S. Zhou, X. Sui et al., Hybrid ionogel electrolytes for advanced lithium secondary batteries: developments and challenges. Chem. Asian J. 17, e202200794 (2022). https://doi.org/10.1002/asia.202200794
- J. Hwang, K. Matsumoto, C.-Y. Chen, R. Hagiwara, Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy Environ. Sci. 14, 5834–5863 (2021). https://doi.org/10.1039/d1ee02567h
- N. Chen, Y. Dai, Y. Xing, L. Wang, C. Guo et al., Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ. Sci. 10, 1660–1667 (2017). https://doi.org/10.1039/C7EE00988G
- Z. Wen, Y. Li, Z. Zhao, W. Qu, N. Chen et al., A leaf-like Al2O3-based quasi-solid electrolyte with a fast Li+ conductive interface for stable lithium metal anodes. J. Mater. Chem. A 8, 7280–7287 (2020). https://doi.org/10.1039/D0TA02098B
- M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13, 2203640 (2023). https://doi.org/10.1002/aenm.202203640
- W.J. Hyun, C.M. Thomas, N.S. Luu, M.C. Hersam, Layered heterostructure ionogel electrolytes for high-performance solid-state lithium-ion batteries. Adv. Mater. 33, e2007864 (2021). https://doi.org/10.1002/adma.202007864
- J. Li, T. Zhang, X. Hui, R. Zhu, Q. Sun et al., Competitive Li+ coordination in ionogel electrolytes for enhanced Li-ion transport kinetics. Adv. Sci. 10, 2300226 (2023). https://doi.org/10.1002/advs.202300226
- P. Zhai, W. He, C. Zeng, L. Li, W. Yang, Biomimetic plant-cell composite gel polymer electrolyte for boosting rate performance of lithium metal batteries. Chem. Eng. J. 451, 138414 (2023). https://doi.org/10.1016/j.cej.2022.138414
- A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, e1905517 (2020). https://doi.org/10.1002/adma.201905517
- Y. Xu, L. Gao, X. Wu, S. Zhang, X. Wang et al., Porous composite gel polymer electrolyte with interfacial transport pathways for flexible quasi solid lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 23743–23750 (2021). https://doi.org/10.1021/acsami.1c04113
- A.E. Abdelmaoula, L. Du, L. Xu, Y. Cheng, A.A. Mahdy et al., Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport. Sci. China Mater. 65, 1476–1484 (2022). https://doi.org/10.1007/s40843-021-1940-2
- Y. Liu, Q. Zeng, P. Chen, Z. Li, A. Chen et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries. Macromol. Chem. Phys. 223, 2100325 (2022). https://doi.org/10.1002/macp.202100325
- T. Hou, W. Xu, X. Pei, L. Jiang, O.M. Yaghi et al., Ionic conduction mechanism and design of metal–organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 144, 13446–13450 (2022). https://doi.org/10.1021/jacs.2c03710
- G. Lu, G. Meng, Q. Liu, L. Feng, J. Luo et al., Advanced strategies for solid electrolyte interface design with MOF materials. Adv. Powder Mater. 3, 100154 (2024). https://doi.org/10.1016/j.apmate.2023.100154
- D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang et al., Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal–organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018). https://doi.org/10.1002/aenm.201702769
- P. Dong, X. Zhang, W. Hiscox, J. Liu, J. Zamora et al., Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties. Adv. Mater. 35, e2211841 (2023). https://doi.org/10.1002/adma.202211841
- J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019). https://doi.org/10.1016/j.ensm.2019.01.024
- Z. Liu, W. Chen, F. Zhang, F. Wu, R. Chen et al., Hollow-ps quasi-solid-state electrolytes with biomimetic ion channels for high-performance lithium-metal batteries. Small 19, e2206655 (2023). https://doi.org/10.1002/smll.202206655
- Y. Zheng, N. Yang, R. Gao, Z. Li, H. Dou et al., “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 34, e2203417 (2022). https://doi.org/10.1002/adma.202203417
- Y. Yan, Z. Liu, T. Wan, W. Li, Z. Qiu et al., Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries. Nat. Commun. 14, 3066 (2023). https://doi.org/10.1038/s41467-023-38822-w
- X. He, Y. Ni, Y. Hou, Y. Lu, S. Jin et al., Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization. Angew. Chem. Int. Ed. 60, 22672–22677 (2021). https://doi.org/10.1002/anie.202107648
- Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028
- Y. Dong, P. Wen, H. Shi, Y. Yu, Z.-S. Wu, Solid-state electrolytes for sodium metal batteries: recent status and future opportunities. Adv. Funct. Mater. 34, 2213584 (2024). https://doi.org/10.1002/adfm.202213584
- W. Tian, Z. Li, L. Miao, Z. Sun, Q. Wang et al., Composite quasi-solid-state electrolytes with organic–inorganic interface engineering for fast ion transport in dendrite-free sodium metal batteries. Adv. Mater. 36, 2308586 (2024). https://doi.org/10.1002/adma.202308586
- H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14, 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
- W. Yang, W. Yang, J. Zeng, Y. Chen, Y. Huang et al., Biopolymer-based gel electrolytes for electrochemical energy storage: advances and prospects. Prog. Mater. Sci. 144, 101264 (2024). https://doi.org/10.1016/j.pmatsci.2024.101264
- H. Dong, J. Li, S. Zhao, Y. Jiao, J. Chen et al., Investigation of a biomass hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 745–754 (2021). https://doi.org/10.1021/acsami.0c20388
- S. Hadad, M. Hamrahjoo, E. Dehghani, M. Salami-Kalajahi, S.N. Eliseeva et al., Cellulose-based solid and gel polymer electrolytes with super high ionic conductivity and charge capacity for high performance lithium ion batteries. Sustain. Mater. Technol. 33, e00503 (2022). https://doi.org/10.1016/j.susmat.2022.e00503
- S. Wang, L. Zhang, Q. Zeng, X. Liu, W.-Y. Lai et al., Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery. ACS Sustain. Chem. Eng. 8, 3200–3207 (2020). https://doi.org/10.1021/acssuschemeng.9b06658
- H. Zhang, S. Wang, A. Wang, Y. Li, F. Yu et al., Polyethylene glycol-grafted cellulose-based gel polymer electrolyte for long-life Li-ion batteries. Appl. Surf. Sci. 593, 153411 (2022). https://doi.org/10.1016/j.apsusc.2022.153411
- L. Zhao, J. Fu, Z. Du, X. Jia, Y. Qu et al., High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 593, 117428 (2020). https://doi.org/10.1016/j.memsci.2019.117428
- T.C. Nirmale, I. Karbhal, R.S. Kalubarme, M.V. Shelke, A.J. Varma et al., Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Appl. Mater. Interfaces 9, 34773–34782 (2017). https://doi.org/10.1021/acsami.7b07020
- M.X. Li, X.W. Wang, Y.Q. Yang, Z. Chang, Y.P. Wu et al., A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J. Membr. Sci. 476, 112–118 (2015). https://doi.org/10.1016/j.memsci.2014.10.056
- F. Yu, H. Zhang, L. Zhao, Z. Sun, Y. Li et al., A flexible cellulose/methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium ion battery. Carbohydr. Polym. 246, 116622 (2020). https://doi.org/10.1016/j.carbpol.2020.116622
- K. Liu, M. Liu, J. Cheng, S. Dong, C. Wang et al., Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim. Acta 215, 261–266 (2016). https://doi.org/10.1016/j.electacta.2016.08.076
- M. Zhu, J. Lan, C. Tan, G. Sui, X. Yang, Degradable cellulose acetate/poly-L-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J. Mater. Chem. A 4, 12136–12143 (2016). https://doi.org/10.1039/C6TA05207J
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- J. Chen, C. Luo, Y. Huang, J. Liu, C. Li et al., Hydroxypropyl methyl cellulose-based gel polymer electrolyte provides a fast migration channel for sodium-ion batteries. J. Mater. Sci. 57, 4311–4322 (2022). https://doi.org/10.1007/s10853-022-06920-7
- Y. Huang, L. Zhang, J. Ji, C. Cai, Y. Fu, Temperature-dependent viscoelastic liquid MOFs based cellulose gel electrolyte for advanced lithium-sulfur batteries over an extensive temperature range. Energy Storage Mater. 64, 103065 (2024). https://doi.org/10.1016/j.ensm.2023.103065
- Y. Huang, Y. Wang, Y. Fu, All-cellulose gel electrolyte with black phosphorus based lithium ion conductors toward advanced lithium-sulfurized polyacrylonitrile batteries. Carbohydr. Polym. 296, 119950 (2022). https://doi.org/10.1016/j.carbpol.2022.119950
- F. Zeng, Y. Sun, B. Hui, Y. Xia, Y. Zou et al., Three-dimensional porous alginate fiber membrane reinforced peo-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 12, 43805–43812 (2020). https://doi.org/10.1021/acsami.0c13039
- Y.-Y. Sun, Y.-Y. Wang, G.-R. Li, S. Liu, X.-P. Gao, Metalophilic gel polymer electrolyte for in situ tailoring cathode/electrolyte interface of high-nickel oxide cathodes in quasi-solid-state Li-ion batteries. ACS Appl. Mater. Interfaces 11, 14830–14839 (2019). https://doi.org/10.1021/acsami.9b02440
- J.-Y. Han, Y. Huang, Y. Chen, A.-M. Song, X.-H. Deng et al., High-performance gel polymer electrolyte based on chitosan–lignocellulose for lithium-ion batteries. ChemElectroChem 7, 1213–1224 (2020). https://doi.org/10.1002/celc.202000007
- O. Sheng, C. Jin, T. Yang, Z. Ju, J. Luo et al., Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries. Energy Environ. Sci. 16, 2804–2824 (2023). https://doi.org/10.1039/d3ee01173a
- Z. Liu, R. Wang, Q. Ma, H. Kang, L. Zhang et al., Application of cellulose-based hydrogel electrolytes in flexible batteries. Carbon Neutralization 1, 126–139 (2022). https://doi.org/10.1002/cnl2.20
- A. Song, Y. Huang, X. Zhong, H. Cao, B. Liu et al., Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium–sulfur battery. J. Membr. Sci. 556, 203–213 (2018). https://doi.org/10.1016/j.memsci.2018.04.003
- S. Ahmed, P. Sharma, S. Bairagi, N.P. Rumjit, S. Garg et al., Nature-derived polymers and their composites for energy depository applications in batteries and supercapacitors: advances, prospects and sustainability. J. Energy Storage 66, 107391 (2023). https://doi.org/10.1016/j.est.2023.107391
- H. Liu, Q. Zhou, Q. Xia, Y. Lei, X.L. Huang et al., Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 77, 642–659 (2023). https://doi.org/10.1016/j.jechem.2022.11.028
- S. Mahalingam, A. Nugroho, D. Floresyona, K.S. Lau, A. Manap et al., Bio and non-bio materials-based quasi-solid state electrolytes in DSSC: A review. Int. J. Energy Res. 46, 5399–5422 (2022). https://doi.org/10.1002/er.7541
- M. Yan, W. Qu, Q. Su, S. Chen, Y. Xing et al., Biodegradable bacterial cellulose-supported quasi-solid electrolyte for lithium batteries. ACS Appl. Mater. Interfaces 12, 13950–13958 (2020). https://doi.org/10.1021/acsami.0c00621
- D. Wang, H. Xie, Q. Liu, K. Mu, Z. Song et al., Low-cost, high-strength cellulose-based quasi-solid polymer electrolyte for solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 62, e202302767 (2023). https://doi.org/10.1002/anie.202302767
- J.R. Nair, F. Bella, N. Angulakshmi, A.M. Stephan, C. Gerbaldi, Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Mater. 3, 69–76 (2016). https://doi.org/10.1016/j.ensm.2016.01.008
- D. Liu, G. Du, Y. Qi, Y. Niu, S.-J. Bao et al., Bacterial cellulose network based gel polymer electrolyte for quasi-solid-state sodium-ion battery. J. Mater. Sci. Mater. Electron. 33, 15313–15322 (2022). https://doi.org/10.1007/s10854-022-08395-3
- A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017). https://doi.org/10.1007/s11581-016-1908-6
- M. Forsyth, L. Porcarelli, X. Wang, N. Goujon, D. Mecerreyes, Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019). https://doi.org/10.1021/acs.accounts.8b00566
- Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31, e1808393 (2019). https://doi.org/10.1002/adma.201808393
- S. Li, S.-Q. Zhang, L. Shen, Q. Liu, J.-B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020). https://doi.org/10.1002/advs.201903088
- K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, Ionic liquids for high performance lithium metal batteries. J. Energy Chem. 59, 320–333 (2021). https://doi.org/10.1016/j.jechem.2020.11.017
- L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/c6ta02621d
- K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016). https://doi.org/10.1007/s11581-016-1756-4
- S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2021). https://doi.org/10.1002/aenm.202000802
- Y. Wang, W.-H. Zhong, Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem 2, 22–36 (2015). https://doi.org/10.1002/celc.201402277
- M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017). https://doi.org/10.1021/acs.chemrev.6b00504
- D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- A.N. Singh, A. Meena, K.-W. Nam, Gels in motion: recent advancements in energy applications. Gels 10, 122 (2024). https://doi.org/10.3390/gels10020122
- G. Du, D. Muhtar, J. Cao, Y. Zhang, G. Qian et al., Solid-state composite electrolytes: turning the natural moat into a thoroughfare. Mater. Chem. Front. 8, 1250–1281 (2024). https://doi.org/10.1039/d3qm00840a
- D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16, 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
- C. Ma, W. Cui, X. Liu, Y. Ding, Y. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 4, e12232 (2022). https://doi.org/10.1002/inf2.12232
- J. Xie, D. Lin, H. Lei, S. Wu, J. Li et al., Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv. Mater. 36, e2306508 (2024). https://doi.org/10.1002/adma.202306508
- J. Zou, T. Ben, Recent advances in porous polymers for solid-state rechargeable lithium batteries. Polymers 14, 4804 (2022). https://doi.org/10.3390/polym14224804
- H. Cavers, P. Molaiyan, M. Abdollahifar, U. Lassi, A. Kwade, Perspectives on improving the safety and sustainability of high voltage lithium-ion batteries through the electrolyte and separator region. Adv. Energy Mater. 12, 2200147 (2022). https://doi.org/10.1002/aenm.202200147
- S. Yamada, Recent progress in transient energy storage using biodegradable materials. Adv. Energy Sustain. Res. 4, 2300083 (2023). https://doi.org/10.1002/aesr.202300083
- E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31, 2005646 (2021). https://doi.org/10.1002/adfm.202005646
- J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 (2021). https://doi.org/10.1002/aenm.202003456
- W. Schlemmer, J. Selinger, M.A. Hobisch, S. Spirk, Polysaccharides for sustainable energy storage–A review. Carbohydr. Polym. 265, 118063 (2021). https://doi.org/10.1016/j.carbpol.2021.118063
- R. Singh, A.R. Polu, B. Bhattacharya, H.-W. Rhee, C. Varlikli et al., Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sustain. Energy Rev. 65, 1098–1117 (2016). https://doi.org/10.1016/j.rser.2016.06.026
- F. Baskoro, H.Q. Wong, H.-J. Yen, Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2, 3937–3971 (2019). https://doi.org/10.1021/acsaem.9b00295
- Y. Fu, L. Yang, M. Zhang, Z. Lin, Z. Shen, Recent advances in cellulose-based polymer electrolytes. Cellulose 29, 8997–9034 (2022). https://doi.org/10.1007/s10570-022-04834-w
- K.D. Owensby, R. Sahore, W.-Y. Tsai, X.C. Chen, Understanding and controlling lithium morphology in solid polymer and gel polymer systems: mechanisms, strategies, and gaps. Mater. Adv. 4, 5867–5881 (2023). https://doi.org/10.1039/D3MA00274H
- J. Xie, Q. Chen, H. Zhang, R. Song, T. Liu, Recent developments of nanocomposite ionogels as monolithic electrolyte membranes for lithium-based batteries. Battery Energy 3, 20230040 (2024). https://doi.org/10.1002/bte2.20230040
- J. Zheng, W. Li, X. Liu, J. Zhang, X. Feng et al., Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ. Mater. 6, e12422 (2023). https://doi.org/10.1002/eem2.12422
References
H. Chen, W. Zhang, S. Yi, Z. Su, Z. Zhao et al., Zinc Iso-plating/stripping: toward a practical Zn powder anode with ultra-long life over 5600 h. Energy Environ. Sci. 17, 3146–3156 (2024). https://doi.org/10.1039/D3EE04333A
S. Liu, Z. Teng, H. Liu, T. Wang, G. Wang et al., A Ce-UiO-66 metal-organic framework-based graphene-embedded photocatalyst with controllable activation for solar ammonia fertilizer production. Angew. Chem. Int. Ed. 61, e202207026 (2022). https://doi.org/10.1002/anie.202207026
J. Lu, P. Jaumaux, T. Wang, C. Wang, G. Wang, Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. J. Mater. Chem. A 9, 24175–24194 (2021). https://doi.org/10.1039/D1TA06606D
J. Lu, T. Wang, J. Yang, X. Shen, H. Pang et al., Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew. Chem. Int. Ed. 63, e202409838 (2024). https://doi.org/10.1002/anie.202409838
J. Lu, J. Yang, Z. Zhang, C. Wang, J. Xu et al., Silk fibroin coating enables dendrite-free zinc anode for long-life aqueous zinc-ion batteries. ChemSusChem 15, e202200656 (2022). https://doi.org/10.1002/cssc.202200656
L. Ma, J. Tan, Y. Wang, Z. Liu, Y. Yang et al., Boron-based high-performance lithium batteries: recent progress, challenges, and perspectives. Adv. Energy Mater. 13, 2300042 (2023). https://doi.org/10.1002/aenm.202300042
H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 49, 1414–1448 (2020). https://doi.org/10.1039/c9cs00906j
X. Xiao, L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications. Chem. Soc. Rev. 49, 301–331 (2020). https://doi.org/10.1039/c7cs00614d
Z. Yao, Y. Kang, M. Hou, J. Huang, J. Zhang et al., Promoting homogeneous interfacial Li+ migration by using a facile N2 plasma strategy for all-solid-state lithium-metal batteries. Adv. Funct. Mater. 32, 2111919 (2022). https://doi.org/10.1002/adfm.202111919
X. Zhou, T. Wang, H. Liu, L. Zhang, C. Zhang et al., Design of S-scheme heterojunction catalyst based on structural defects for photocatalytic oxidative desulfurization application. J. Photochem. Photobiol. A Chem. 433, 114162 (2022). https://doi.org/10.1016/j.jphotochem.2022.114162
F. Liang, Y. Sun, Y. Yuan, J. Huang, M. Hou et al., Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet. Mater. Today 50, 418–441 (2021). https://doi.org/10.1016/j.mattod.2021.03.013
T. Wang, Y. Li, J. Zhang, K. Yan, P. Jaumaux et al., Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 11, 5429 (2020). https://doi.org/10.1038/s41467-020-19246-2
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012). https://doi.org/10.1038/nmat3191
J.-F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao et al., Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021). https://doi.org/10.1002/anie.202101627
V.M. Leal, J.S. Ribeiro, E.L.D. Coelho, M.B.J.G. Freitas, Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications. J. Energy Chem. 79, 118–134 (2023). https://doi.org/10.1016/j.jechem.2022.08.005
Z. Li, J. Fu, X. Zhou, S. Gui, L. Wei et al., Ionic conduction in polymer-based solid electrolytes. Adv. Sci. 10, 2201718 (2023). https://doi.org/10.1002/advs.202201718
J. Zhang, B. Sun, Y. Zhao, A. Tkacheva, Z. Liu et al., A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries. Nat. Commun. 10, 602 (2019). https://doi.org/10.1038/s41467-019-08422-8
F. Zhao, J. Xue, W. Shao, H. Yu, W. Huang et al., Toward high-sulfur-content, high-performance lithium-sulfur batteries: review of materials and technologies. J. Energy Chem. 80, 625–657 (2023). https://doi.org/10.1016/j.jechem.2023.02.009
K.-Y. Zhang, Z.-Y. Gu, E.H. Ang, J.-Z. Guo, X.-T. Wang et al., Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater. Today 54, 189–201 (2022). https://doi.org/10.1016/j.mattod.2022.02.013
J. Li, Z. Li, S. Tang, J. Hao, T. Wang et al., Improving the sodium storage performance of carbonaceous anode: synergistic coupling of pore structure and ordered domain engineering. Carbon 203, 469–478 (2023). https://doi.org/10.1016/j.carbon.2022.12.014
C. Tang, W. Lu, Y. Zhang, W. Zhang, C. Cui et al., Toward ultrahigh rate and cycling performance of cathode materials of sodium ion battery by introducing a bicontinuous porous structure. Adv. Mater. 36, e2402005 (2024). https://doi.org/10.1002/adma.202402005
D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017). https://doi.org/10.1038/nnano.2017.16
C. Wang, A.C. Thenuwara, J. Luo, P.P. Shetty, M.T. McDowell et al., Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions. Nat. Commun. 13, 4934 (2022). https://doi.org/10.1038/s41467-022-32606-4
Z. Bai, Q. Yao, M. Wang, W. Meng, S. Dou et al., Low-temperature sodium-ion batteries: challenges and progress. Adv. Energy Mater. 14, 2303788 (2024). https://doi.org/10.1002/aenm.202303788
F. Li, M. Hou, L. Zhao, D. Zhang, B. Yang et al., Electrolyte and interface engineering for solid-state sodium batteries. Energy Storage Mater. 65, 103181 (2024). https://doi.org/10.1016/j.ensm.2024.103181
Y. Wang, J. Liu, X. Chen, B. Kang, H.-E. Wang et al., Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 189, 46–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.051
Y. Xu, Q. Li, H. Xue, H. Pang, Metal-organic frameworks for direct electrochemical applications. Coord. Chem. Rev. 376, 292–318 (2018). https://doi.org/10.1016/j.ccr.2018.08.010
S. Zheng, Q. Li, H. Xue, H. Pang, Q. Xu, A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 7, 305–314 (2020). https://doi.org/10.1093/nsr/nwz137
X. Feng, H. Fang, N. Wu, P. Liu, P. Jena et al., Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries. Joule 6, 543–587 (2022). https://doi.org/10.1016/j.joule.2022.01.015
H. Yin, C. Han, Q. Liu, F. Wu, F. Zhang et al., Recent advances and perspectives on the polymer electrolytes for sodium/potassium-ion batteries. Small 17, e2006627 (2021). https://doi.org/10.1002/smll.202006627
W. Zhou, M. Zhang, X. Kong, W. Huang, Q. Zhang, Recent advance in ionic-liquid-based electrolytes for rechargeable metal-ion batteries. Adv. Sci. 8, 2004490 (2021). https://doi.org/10.1002/advs.202004490
H. Gao, L. Xue, S. Xin, J.B. Goodenough, A high-energy-density potassium battery with a polymer-gel electrolyte and a polyaniline cathode. Angew. Chem. Int. Ed. 57, 5449–5453 (2018). https://doi.org/10.1002/anie.201802248
M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions. J. Electrochem. Soc. 164, A54–A60 (2016). https://doi.org/10.1149/2.0211702jes
R.M. de Souza, L.J. de Siqueira, M. Karttunen, L.G. Dias, Molecular dynamics simulations of polymer–ionic liquid (1-ethyl-3-methylimidazolium tetracyanoborate) ternary electrolyte for sodium and potassium ion batteries. J. Chem. Inf. Model. 60, 485–499 (2020). https://doi.org/10.1021/acs.jcim.9b00750
H. Sun, P. Liang, G. Zhu, W.H. Hung, Y.Y. Li et al., A high-performance potassium metal battery using safe ionic liquid electrolyte. Proc. Natl. Acad. Sci. U.S.A. 117, 27847–27853 (2020). https://doi.org/10.1073/pnas.2012716117
D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15, 550–578 (2022). https://doi.org/10.1039/d1ee01789f
H. Wang, Z. Yu, X. Kong, S.C. Kim, D.T. Boyle et al., Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022). https://doi.org/10.1016/j.joule.2021.12.018
S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102
S. Cui, X. Wu, Y. Yang, M. Fei, S. Liu et al., Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries. ACS Energy Lett. 7, 42–52 (2022). https://doi.org/10.1021/acsenergylett.1c02233
Y. Du, Y. Xie, X. Liu, H. Jiang, F. Wu et al., In-situ formed phosphorus modified gel polymer electrolyte with good flame retardancy and cycling stability for rechargeable lithium batteries. ACS Sustain. Chem. Eng. 11, 4498–4508 (2023). https://doi.org/10.1021/acssuschemeng.3c00077
S. Fu, L.-L. Zuo, P.-S. Zhou, X.-J. Liu, Q. Ma et al., Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Mater. Chem. Front. 5, 5211–5232 (2021). https://doi.org/10.1039/d1qm00096a
J. Qian, B. Jin, Y. Li, X. Zhan, Y. Hou et al., Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 56, 420–437 (2021). https://doi.org/10.1016/j.jechem.2020.08.026
P. Hu, Y. Duan, D. Hu, B. Qin, J. Zhang et al., Rigid–flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl. Mater. Interfaces 7, 4720–4727 (2015). https://doi.org/10.1021/am5083683
G. Hu, C. Xu, Z. Sun, S. Wang, H.-M. Cheng et al., 3D graphene-foam–reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li–S batteries. Adv. Mater. 28, 1603–1609 (2016). https://doi.org/10.1002/adma.201504765
J.I. Kim, Y. Choi, K.Y. Chung, J.H. Park, A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27, 1701768 (2017). https://doi.org/10.1002/adfm.201701768
J. Bae, Y. Li, J. Zhang, X. Zhou, F. Zhao et al., A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed. 57, 2096–2100 (2018). https://doi.org/10.1002/anie.201710841
T. Mendes, X. Zhang, Y. Wu, P.C. Howlett, M. Forsyth et al., Supported ionic liquid gel membrane electrolytes for a safe and flexible sodium metal battery. ACS Sustain. Chem. Eng. 7, 3722–3726 (2019). https://doi.org/10.1021/acssuschemeng.8b06212
Y. Lu, L. Lu, G. Qiu, C. Sun, Flexible quasi-solid-state sodium battery for storing pulse electricity harvested from triboelectric nanogenerators. ACS Appl. Mater. Interfaces 12, 39342–39351 (2020). https://doi.org/10.1021/acsami.0c12052
T. Liu, K.-T. Liu, J. Wang, X. Ji, P. Lan et al., Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery. Energy Storage Mater. 41, 133–140 (2021). https://doi.org/10.1016/j.ensm.2021.06.001
N. Mittal, S. Tien, E. Lizundia, M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 18, e2107183 (2022). https://doi.org/10.1002/smll.202107183
S. Yang, X. He, T. Hu, Y. He, S. Lv et al., A supertough, nonflammable, biomimetic gel with neuron-like nanoskeleton for puncture-tolerant safe lithium metal batteries. Adv. Funct. Mater. 33, 2304727 (2023). https://doi.org/10.1002/adfm.202304727
B. Yang, Y. Pan, T. Li, A. Hu, K. Li et al., High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes. Energy Storage Mater. 65, 103124 (2024). https://doi.org/10.1016/j.ensm.2023.103124
Y. Cui, J. Li, X. Yuan, J. Liu, H. Zhang et al., Emerging strategies for gel polymer electrolytes with improved dual-electrode side regulation mechanisms for lithium-sulfur batteries. Chem. Asian J. 17, e202200746 (2022). https://doi.org/10.1002/asia.202200746
J. Pan, N. Wang, H.J. Fan, Gel polymer electrolytes design for Na-ion batteries. Small Meth. 6, 2201032 (2022). https://doi.org/10.1002/smtd.202201032
Q. Yang, N. Deng, B. Cheng, W. Kang, Gel polymer electrolytes in lithium batteries. Prog. Chem. 33, 2270–2282 (2021). https://doi.org/10.7536/pc201145
N.A. Johari, T.I.T. Kudin, A.M.M. Ali, M.Z.A. Yahya, Electrochemical studies of composite cellulose acetate-based polymer gel electrolytes for proton batteries. Proc. Natl. Acad. Sci India, Sect A. 82, 49–52 (2012). https://doi.org/10.1007/s40010-012-0005-0
A. Manuel Stephan, Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006). https://doi.org/10.1016/j.eurpolymj.2005.09.017
Q. Liu, B. Cai, S. Li, Q. Yu, F. Lv et al., Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte. J. Mater. Chem. A 8, 7197–7204 (2020). https://doi.org/10.1039/D0TA02148B
X. Feng, N. Deng, W. Yu, Z. Peng, D. Su et al., Review: application of bionic-structured materials in solid-state electrolytes for high-performance lithium metal batteries. ACS Nano 18, 15387–15415 (2024). https://doi.org/10.1021/acsnano.4c02547
Y. Zhang, D. Chen, W. He, J. Tan, Y. Yang et al., Bioinspired solid-state ion nanochannels: insight from channel fabrication and ion transport. Adv. Mater. Technol. 8, 2202014 (2023). https://doi.org/10.1002/admt.202202014
T. Agnihotri, S. Ali Ahmed, E.B. Tamilarasan, R. Hasan, W.-N. Su et al., Transitioning towards asymmetric gel polymer electrolytes for lithium batteries: progress and prospects. Adv. Funct. Mater. 34, 2311215 (2024). https://doi.org/10.1002/adfm.202311215
Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 1, 18–42 (2016). https://doi.org/10.1016/j.gee.2016.04.006
M. Zhu, J. Wu, Y. Wang, M. Song, L. Long et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
Q. Guo, Y. Han, H. Wang, S. Xiong, W. Sun et al., Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 122, 10334–10342 (2018). https://doi.org/10.1021/acs.jpcc.8b02693
L. Han, C. Liao, Y. Liu, H. Yu, S. Zhang et al., Non-flammable sandwich-structured TPU gel polymer electrolyte without flame retardant addition for high performance lithium ion batteries. Energy Storage Mater. 52, 562–572 (2022). https://doi.org/10.1016/j.ensm.2022.08.013
M. Yang, F. Feng, Z. Shi, J. Guo, R. Wang et al., Facile design of asymmetric flame-retardant gel polymer electrolyte with excellent interfacial stability for sodium metal batteries. Energy Storage Mater. 56, 611–620 (2023). https://doi.org/10.1016/j.ensm.2023.01.043
J. Zheng, Y. Yang, W. Li, X. Feng, W. Chen et al., Novel flame retardant rigid spirocyclic biphosphate based copolymer gel electrolytes for sodium ion batteries with excellent high-temperature performance. J. Mater. Chem. A 8, 22962–22968 (2020). https://doi.org/10.1039/D0TA09490K
T. Zhu, G. Liu, D. Chen, J. Chen, P. Qi et al., Constructing flame-retardant gel polymer electrolytes via multiscale free radical annihilating agents for Ni-rich lithium batteries. Energy Storage Mater. 50, 495–504 (2022). https://doi.org/10.1016/j.ensm.2022.05.051
Z. Du, Y. Su, Y. Qu, L. Zhao, X. Jia et al., A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 299, 19–26 (2019). https://doi.org/10.1016/j.electacta.2018.12.173
C. Fasciani, S. Panero, J. Hassoun, B. Scrosati, Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries. J. Power Sources 294, 180–186 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.068
A. Swiderska-Mocek, I. Karczewska, A. Gabryelczyk, M. Popławski, D. Czarnecka-Komorowska, Gel polymer electrolytes with talc as a natural mineral filler and a biodegradable polymer matrix in sodium-ion batteries. ChemPhysChem 24, e202300090 (2023). https://doi.org/10.1002/cphc.202300090
D. Wang, B. Jin, X. Yao, J. Huang, Y. Ren et al., Bio-inspired polydopamine-modified ZIF-90-supported gel polymer electrolyte for high-safety lithium metal batteries. ACS Appl. Energy Mater. 6, 11146–11156 (2023). https://doi.org/10.1021/acsaem.3c01958
Y.S. Zhu, S.Y. Xiao, M.X. Li, Z. Chang, F.X. Wang et al., Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. J. Power Sources 288, 368–375 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.117
Y. Jiang, Y. Song, X. Chen, H. Wang, L. Deng et al., In situ formed self-healable quasi-solid hybrid electrolyte network coupled with eutectic mixture towards ultra-long cycle life lithium metal batteries. Energy Storage Mater. 52, 514–523 (2022). https://doi.org/10.1016/j.ensm.2022.08.027
Q. Li, Z. Zhang, Y. Li, H. Li, Z. Liu et al., Rapid self-healing gel electrolyte based on deep eutectic solvents for solid-state lithium batteries. ACS Appl. Mater. Interfaces 14, 49700–49708 (2022). https://doi.org/10.1021/acsami.2c12445
C. Wang, R. Li, P. Chen, Y. Fu, X. Ma et al., Highly stretchable, non-flammable and Notch-insensitive intrinsic self-healing solid-state polymer electrolyte for stable and safe flexible lithium batteries. J. Mater. Chem. A 9, 4758–4769 (2021). https://doi.org/10.1039/d0ta10745j
L. Zhao, Y. Du, E. Zhao, C. Li, Z. Sun et al., Dynamic supramolecular polymer electrolyte to boost ion transport kinetics and interfacial stability for solid-state batteries. Adv. Funct. Mater. 33, 2214881 (2023). https://doi.org/10.1002/adfm.202214881
C.Y. Chan, Z. Wang, H. Jia, P.F. Ng, L. Chow et al., Recent advances of hydrogel electrolytes in flexible energy storage devices. J. Mater. Chem. A 9, 2043–2069 (2021). https://doi.org/10.1039/D0TA09500A
Y. Guo, J. Bae, F. Zhao, G. Yu, Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem. 1, 335–348 (2019). https://doi.org/10.1016/j.trechm.2019.03.005
H. Li, Z. Xu, J. Yang, J. Wang, S.-I. Hirano, Polymer electrolytes for rechargeable lithium metal batteries. Sustain. Energy Fuels 4, 5469–5487 (2020). https://doi.org/10.1039/d0se01065k
Y. Li, P. Ding, Y. Gu, S. Qian, Y. Pang et al., Self-healable gels in electrochemical energy storage devices. Nano Res. 17, 3302–3323 (2024). https://doi.org/10.1007/s12274-023-6063-6
E. Parvini, A. Hajalilou, M. Tavakoli, A bright future of hydrogels in flexible batteries and supercapacitors storage systems: a review. Int. J. Energy Res. 46, 13276–13307 (2022). https://doi.org/10.1002/er.8149
B. Zhou, T. Deng, C. Yang, M. Wang, H. Yan et al., Self-healing and recyclable polymer electrolyte enabled with boronic ester transesterification for stabilizing ion deposition. Adv. Funct. Mater. 33, 2212005 (2023). https://doi.org/10.1002/adfm.202212005
X. Lin, S. Xu, Y. Tong, X. Liu, Z. Liu et al., A self-healing polymerized-ionic-liquid-based polymer electrolyte enables a long lifespan and dendrite-free solid-state Li metal batteries at room temperature. Mater. Horiz. 10, 859–868 (2023). https://doi.org/10.1039/d2mh01289h
S. Davino, D. Callegari, D. Pasini, M. Thomas, I. Nicotera et al., Cross-linked gel electrolytes with self-healing functionalities for smart lithium batteries. ACS Appl. Mater. Interfaces 14, 51941–51953 (2022). https://doi.org/10.1021/acsami.2c15011
X. Zhu, Z. Fang, Q. Deng, Y. Zhou, X. Fu et al., Poly(ionic liquid)@PEGMA block polymer initiated microphase separation architecture in poly(ethylene oxide)-based solid-state polymer electrolyte for flexible and self-healing lithium batteries. ACS Sustain. Chem. Eng. 10, 4173–4185 (2022). https://doi.org/10.1021/acssuschemeng.1c08306
Y. Lin, X. Li, W. Zheng, Y. Gang, L. Liu et al., Effect of SiO2 microstructure on ionic transport behavior of self-healing composite electrolytes for sodium metal batteries. J. Membr. Sci. 672, 121442 (2023). https://doi.org/10.1016/j.memsci.2023.121442
X. Fu, W.-H. Zhong, Biomaterials for high-energy lithium-based batteries: strategies, challenges, and perspectives. Adv. Energy Mater. 9, 1901774 (2019). https://doi.org/10.1002/aenm.201901774
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
C.S. Anju, B. Kandasubramanian, Hydrogel as an advanced energy material for flexible batteries. Polym. Plast. Technol. Mater. 62, 359–383 (2023). https://doi.org/10.1080/25740881.2022.2113893
Z. Ji, L. Feng, Z. Zhu, X. Fu, W. Yang et al., Polymeric interface engineering in lithium-sulfur batteries. Chem. Eng. J. 455, 140462 (2023). https://doi.org/10.1016/j.cej.2022.140462
M. Jia, T. Li, D. Yang, L. Lu, L. Duan et al., Polymer electrolytes for lithium-sulfur batteries: progress and challenges. Batteries 9, 488 (2023). https://doi.org/10.3390/batteries9100488
C. Li, L. Li, B. He, Y. Ling, J. Pu et al., Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Mater. Sci. Eng. R. Rep. 148, 100671 (2022). https://doi.org/10.1016/j.mser.2022.100671
Y. Liu, Q. Zeng, Z. Li, A. Chen, J. Guan et al., Recent development in topological polymer electrolytes for rechargeable lithium batteries. Adv. Sci. 10, e2206978 (2023). https://doi.org/10.1002/advs.202206978
L. Zhang, H. Gao, G. Jin, S. Liu, J. Wu et al., Cellulose-based electrolytes for advanced lithium-ion batteries: recent advances and future perspectives. ChemNanoMat 8, e202200142 (2022). https://doi.org/10.1002/cnma.202200142
G. Lu, Y. Zhang, J. Zhang, X. Du, Z. Lv et al., Trade-offs between ion-conducting and mechanical properties: the case of polyacrylate electrolytes. Carbon Energy 5, e287 (2023). https://doi.org/10.1002/cey2.287
Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen et al., Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 64, 62–84 (2022). https://doi.org/10.1016/j.jechem.2021.04.007
F. Mahdavian, A. Allahbakhsh, A.R. Bahramian, D. Rodrigue, M.K. Tiwari, Flexible polymer hydrogels for wearable energy storage applications. Adv. Mater. Technol. 8, 2202199 (2023). https://doi.org/10.1002/admt.202202199
C.P. Teng, M.Y. Tan, J.P.W. Toh, Q.F. Lim, X. Wang et al., Advances in cellulose-based composites for energy applications. Materials 16, 3856 (2023). https://doi.org/10.3390/ma16103856
M.S.M. Misenan, R. Hempelmann, M. Gallei, T. Eren, Phosphonium-based polyelectrolytes: preparation, properties, and usage in lithium-ion batteries. Polymers 15, 2920 (2023). https://doi.org/10.3390/polym15132920
A. Shokrieh, A.H. Mirzaei, L. Mao, M.M. Shokrieh, Z. Wei, A review of the mechanical integrity and electrochemical performance of flexible lithium-ion batteries. Nano Res. 16, 12962–12982 (2023). https://doi.org/10.1007/s12274-023-6211-z
Y. Su, F. Xu, X. Zhang, Y. Qiu, H. Wang, Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Lett. 15, 82 (2023). https://doi.org/10.1007/s40820-023-01055-z
Y. Meng, D. Zhou, R. Liu, Y. Tian, Y. Gao et al., Designing phosphazene-derivative electrolyte matrices to enable high-voltage lithium metal batteries for extreme working conditions. Nat. Energy 8, 1023–1033 (2023). https://doi.org/10.1038/s41560-023-01339-z
X. Meng, Y. Liu, M. Guan, J. Qiu, Z. Wang, A high-energy and safe lithium battery enabled by solid-state redox chemistry in a fireproof gel electrolyte. Adv. Mater. 34, 2201981 (2022). https://doi.org/10.1002/adma.202201981
Q. Kang, Z. Zhuang, Y. Liu, Z. Liu, Y. Li et al., Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 35, e2303460 (2023). https://doi.org/10.1002/adma.202303460
C. Ding, Y. Liu, L.K. Ono, G. Tong, C. Zhang et al., Ion-regulating hybrid electrolyte interface for long-life and low N/P ratio lithium metal batteries. Energy Storage Mater. 50, 417–425 (2022). https://doi.org/10.1016/j.ensm.2022.05.035
Z. Liu, K. Zhang, G. Huang, B. Xu, Y.L. Hong et al., Highly processable covalent organic framework gel electrolyte enabled by side-chain engineering for lithium-ion batteries. Angew. Chem. Int. Ed. 61, e202110695 (2022). https://doi.org/10.1002/anie.202110695
X. Gao, W. Yuan, Y. Yang, Y. Wu, C. Wang et al., High-performance and highly safe solvate ionic liquid-based gel polymer electrolyte by rapid UV-curing for lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 43397–43406 (2022). https://doi.org/10.1021/acsami.2c13325
J. Zheng, W. Li, J. Zhang, Y. Sun, W. Chen, Effects of flexible group length of phosphonate monomers on the performance of gel polymer electrolytes for sodium-ion batteries with ultralong cycling life. ACS Sustain. Chem. Eng. 10, 7158–7168 (2022). https://doi.org/10.1021/acssuschemeng.2c01531
C.-D. Zhao, J.-Z. Guo, Z.-Y. Gu, X.-T. Wang, X.-X. Zhao et al., Flexible quasi-solid-state sodium-ion full battery with ultralong cycle life, high energy density and high-rate capability. Nano Res. 15, 925–932 (2022). https://doi.org/10.1007/s12274-021-3577-7
Y. Li, Z. Zhou, W. Deng, C. Li, X. Yuan et al., A superconcentrated water-in-salt hydrogel electrolyte for high-voltage aqueous potassium-ion batteries. ChemElectroChem 8, 1451–1454 (2021). https://doi.org/10.1002/celc.202001509
H. Zhang, L. Qiao, M. Armand, Organic electrolyte design for rechargeable batteries: from lithium to magnesium. Angew. Chem. Int. Ed. 61, e202214054 (2022). https://doi.org/10.1002/anie.202214054
D. Stuart-Fox, L. Ng, M.A. Elgar, K. Hölttä-Otto, G.E. Schröder-Turk et al., Bio-informed materials: three guiding principles for innovation informed by biology. Nat. Rev. Mater. 8, 565–567 (2023). https://doi.org/10.1038/s41578-023-00590-w
D. Nepal, S. Kang, K.M. Adstedt, K. Kanhaiya, M.R. Bockstaller et al., Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023). https://doi.org/10.1038/s41563-022-01384-1
F. Zhang, T. Liao, C. Yan, Z. Sun, Bioinspired designs in active metal-based batteries. Nano Res. 17, 587–601 (2024). https://doi.org/10.1007/s12274-023-6102-3
X. Ni, J. Zhou, K. Long, P. Qing, T. Naren et al., Progress on application of covalent organic frameworks for advanced lithium metal batteries. Energy Storage Mater. 67, 103295 (2024). https://doi.org/10.1016/j.ensm.2024.103295
Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, e2206970 (2022). https://doi.org/10.1002/adma.202206970
Y. Hu, L. Yu, T. Meng, S. Zhou, X. Sui et al., Hybrid ionogel electrolytes for advanced lithium secondary batteries: developments and challenges. Chem. Asian J. 17, e202200794 (2022). https://doi.org/10.1002/asia.202200794
J. Hwang, K. Matsumoto, C.-Y. Chen, R. Hagiwara, Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy Environ. Sci. 14, 5834–5863 (2021). https://doi.org/10.1039/d1ee02567h
N. Chen, Y. Dai, Y. Xing, L. Wang, C. Guo et al., Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries. Energy Environ. Sci. 10, 1660–1667 (2017). https://doi.org/10.1039/C7EE00988G
Z. Wen, Y. Li, Z. Zhao, W. Qu, N. Chen et al., A leaf-like Al2O3-based quasi-solid electrolyte with a fast Li+ conductive interface for stable lithium metal anodes. J. Mater. Chem. A 8, 7280–7287 (2020). https://doi.org/10.1039/D0TA02098B
M. Yao, Q. Ruan, S. Pan, H. Zhang, S. Zhang, An ultrathin asymmetric solid polymer electrolyte with intensified ion transport regulated by biomimetic channels enabling wide-temperature high-voltage lithium-metal battery. Adv. Energy Mater. 13, 2203640 (2023). https://doi.org/10.1002/aenm.202203640
W.J. Hyun, C.M. Thomas, N.S. Luu, M.C. Hersam, Layered heterostructure ionogel electrolytes for high-performance solid-state lithium-ion batteries. Adv. Mater. 33, e2007864 (2021). https://doi.org/10.1002/adma.202007864
J. Li, T. Zhang, X. Hui, R. Zhu, Q. Sun et al., Competitive Li+ coordination in ionogel electrolytes for enhanced Li-ion transport kinetics. Adv. Sci. 10, 2300226 (2023). https://doi.org/10.1002/advs.202300226
P. Zhai, W. He, C. Zeng, L. Li, W. Yang, Biomimetic plant-cell composite gel polymer electrolyte for boosting rate performance of lithium metal batteries. Chem. Eng. J. 451, 138414 (2023). https://doi.org/10.1016/j.cej.2022.138414
A. Li, X. Liao, H. Zhang, L. Shi, P. Wang et al., Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries. Adv. Mater. 32, e1905517 (2020). https://doi.org/10.1002/adma.201905517
Y. Xu, L. Gao, X. Wu, S. Zhang, X. Wang et al., Porous composite gel polymer electrolyte with interfacial transport pathways for flexible quasi solid lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 23743–23750 (2021). https://doi.org/10.1021/acsami.1c04113
A.E. Abdelmaoula, L. Du, L. Xu, Y. Cheng, A.A. Mahdy et al., Biomimetic brain-like nanostructures for solid polymer electrolytes with fast ion transport. Sci. China Mater. 65, 1476–1484 (2022). https://doi.org/10.1007/s40843-021-1940-2
Y. Liu, Q. Zeng, P. Chen, Z. Li, A. Chen et al., Modified MOF-based composite all-solid-state polymer electrolyte with improved comprehensive performance for dendrite-free Li-ion batteries. Macromol. Chem. Phys. 223, 2100325 (2022). https://doi.org/10.1002/macp.202100325
T. Hou, W. Xu, X. Pei, L. Jiang, O.M. Yaghi et al., Ionic conduction mechanism and design of metal–organic framework based quasi-solid-state electrolytes. J. Am. Chem. Soc. 144, 13446–13450 (2022). https://doi.org/10.1021/jacs.2c03710
G. Lu, G. Meng, Q. Liu, L. Feng, J. Luo et al., Advanced strategies for solid electrolyte interface design with MOF materials. Adv. Powder Mater. 3, 100154 (2024). https://doi.org/10.1016/j.apmate.2023.100154
D. Xu, D. Chao, H. Wang, Y. Gong, R. Wang et al., Flexible quasi-solid-state sodium-ion capacitors developed using 2D metal–organic-framework array as reactor. Adv. Energy Mater. 8, 1702769 (2018). https://doi.org/10.1002/aenm.201702769
P. Dong, X. Zhang, W. Hiscox, J. Liu, J. Zamora et al., Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties. Adv. Mater. 35, e2211841 (2023). https://doi.org/10.1002/adma.202211841
J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019). https://doi.org/10.1016/j.ensm.2019.01.024
Z. Liu, W. Chen, F. Zhang, F. Wu, R. Chen et al., Hollow-ps quasi-solid-state electrolytes with biomimetic ion channels for high-performance lithium-metal batteries. Small 19, e2206655 (2023). https://doi.org/10.1002/smll.202206655
Y. Zheng, N. Yang, R. Gao, Z. Li, H. Dou et al., “Tree-trunk” design for flexible quasi-solid-state electrolytes with hierarchical ion-channels enabling ultralong-life lithium-metal batteries. Adv. Mater. 34, e2203417 (2022). https://doi.org/10.1002/adma.202203417
Y. Yan, Z. Liu, T. Wan, W. Li, Z. Qiu et al., Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries. Nat. Commun. 14, 3066 (2023). https://doi.org/10.1038/s41467-023-38822-w
X. He, Y. Ni, Y. Hou, Y. Lu, S. Jin et al., Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization. Angew. Chem. Int. Ed. 60, 22672–22677 (2021). https://doi.org/10.1002/anie.202107648
Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018). https://doi.org/10.1016/j.joule.2018.07.028
Y. Dong, P. Wen, H. Shi, Y. Yu, Z.-S. Wu, Solid-state electrolytes for sodium metal batteries: recent status and future opportunities. Adv. Funct. Mater. 34, 2213584 (2024). https://doi.org/10.1002/adfm.202213584
W. Tian, Z. Li, L. Miao, Z. Sun, Q. Wang et al., Composite quasi-solid-state electrolytes with organic–inorganic interface engineering for fast ion transport in dendrite-free sodium metal batteries. Adv. Mater. 36, 2308586 (2024). https://doi.org/10.1002/adma.202308586
H. Lu, J. Hu, X. Wei, K. Zhang, X. Xiao et al., A recyclable biomass electrolyte towards green zinc-ion batteries. Nat. Commun. 14, 4435 (2023). https://doi.org/10.1038/s41467-023-40178-0
W. Yang, W. Yang, J. Zeng, Y. Chen, Y. Huang et al., Biopolymer-based gel electrolytes for electrochemical energy storage: advances and prospects. Prog. Mater. Sci. 144, 101264 (2024). https://doi.org/10.1016/j.pmatsci.2024.101264
H. Dong, J. Li, S. Zhao, Y. Jiao, J. Chen et al., Investigation of a biomass hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 745–754 (2021). https://doi.org/10.1021/acsami.0c20388
S. Hadad, M. Hamrahjoo, E. Dehghani, M. Salami-Kalajahi, S.N. Eliseeva et al., Cellulose-based solid and gel polymer electrolytes with super high ionic conductivity and charge capacity for high performance lithium ion batteries. Sustain. Mater. Technol. 33, e00503 (2022). https://doi.org/10.1016/j.susmat.2022.e00503
S. Wang, L. Zhang, Q. Zeng, X. Liu, W.-Y. Lai et al., Cellulose microcrystals with brush-like architectures as flexible all-solid-state polymer electrolyte for lithium-ion battery. ACS Sustain. Chem. Eng. 8, 3200–3207 (2020). https://doi.org/10.1021/acssuschemeng.9b06658
H. Zhang, S. Wang, A. Wang, Y. Li, F. Yu et al., Polyethylene glycol-grafted cellulose-based gel polymer electrolyte for long-life Li-ion batteries. Appl. Surf. Sci. 593, 153411 (2022). https://doi.org/10.1016/j.apsusc.2022.153411
L. Zhao, J. Fu, Z. Du, X. Jia, Y. Qu et al., High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 593, 117428 (2020). https://doi.org/10.1016/j.memsci.2019.117428
T.C. Nirmale, I. Karbhal, R.S. Kalubarme, M.V. Shelke, A.J. Varma et al., Facile synthesis of unique cellulose triacetate based flexible and high performance gel polymer electrolyte for lithium ion batteries. ACS Appl. Mater. Interfaces 9, 34773–34782 (2017). https://doi.org/10.1021/acsami.7b07020
M.X. Li, X.W. Wang, Y.Q. Yang, Z. Chang, Y.P. Wu et al., A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J. Membr. Sci. 476, 112–118 (2015). https://doi.org/10.1016/j.memsci.2014.10.056
F. Yu, H. Zhang, L. Zhao, Z. Sun, Y. Li et al., A flexible cellulose/methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium ion battery. Carbohydr. Polym. 246, 116622 (2020). https://doi.org/10.1016/j.carbpol.2020.116622
K. Liu, M. Liu, J. Cheng, S. Dong, C. Wang et al., Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim. Acta 215, 261–266 (2016). https://doi.org/10.1016/j.electacta.2016.08.076
M. Zhu, J. Lan, C. Tan, G. Sui, X. Yang, Degradable cellulose acetate/poly-L-lactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes. J. Mater. Chem. A 4, 12136–12143 (2016). https://doi.org/10.1039/C6TA05207J
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
J. Chen, C. Luo, Y. Huang, J. Liu, C. Li et al., Hydroxypropyl methyl cellulose-based gel polymer electrolyte provides a fast migration channel for sodium-ion batteries. J. Mater. Sci. 57, 4311–4322 (2022). https://doi.org/10.1007/s10853-022-06920-7
Y. Huang, L. Zhang, J. Ji, C. Cai, Y. Fu, Temperature-dependent viscoelastic liquid MOFs based cellulose gel electrolyte for advanced lithium-sulfur batteries over an extensive temperature range. Energy Storage Mater. 64, 103065 (2024). https://doi.org/10.1016/j.ensm.2023.103065
Y. Huang, Y. Wang, Y. Fu, All-cellulose gel electrolyte with black phosphorus based lithium ion conductors toward advanced lithium-sulfurized polyacrylonitrile batteries. Carbohydr. Polym. 296, 119950 (2022). https://doi.org/10.1016/j.carbpol.2022.119950
F. Zeng, Y. Sun, B. Hui, Y. Xia, Y. Zou et al., Three-dimensional porous alginate fiber membrane reinforced peo-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 12, 43805–43812 (2020). https://doi.org/10.1021/acsami.0c13039
Y.-Y. Sun, Y.-Y. Wang, G.-R. Li, S. Liu, X.-P. Gao, Metalophilic gel polymer electrolyte for in situ tailoring cathode/electrolyte interface of high-nickel oxide cathodes in quasi-solid-state Li-ion batteries. ACS Appl. Mater. Interfaces 11, 14830–14839 (2019). https://doi.org/10.1021/acsami.9b02440
J.-Y. Han, Y. Huang, Y. Chen, A.-M. Song, X.-H. Deng et al., High-performance gel polymer electrolyte based on chitosan–lignocellulose for lithium-ion batteries. ChemElectroChem 7, 1213–1224 (2020). https://doi.org/10.1002/celc.202000007
O. Sheng, C. Jin, T. Yang, Z. Ju, J. Luo et al., Designing biomass-integrated solid polymer electrolytes for safe and energy-dense lithium metal batteries. Energy Environ. Sci. 16, 2804–2824 (2023). https://doi.org/10.1039/d3ee01173a
Z. Liu, R. Wang, Q. Ma, H. Kang, L. Zhang et al., Application of cellulose-based hydrogel electrolytes in flexible batteries. Carbon Neutralization 1, 126–139 (2022). https://doi.org/10.1002/cnl2.20
A. Song, Y. Huang, X. Zhong, H. Cao, B. Liu et al., Novel lignocellulose based gel polymer electrolyte with higher comprehensive performances for rechargeable lithium–sulfur battery. J. Membr. Sci. 556, 203–213 (2018). https://doi.org/10.1016/j.memsci.2018.04.003
S. Ahmed, P. Sharma, S. Bairagi, N.P. Rumjit, S. Garg et al., Nature-derived polymers and their composites for energy depository applications in batteries and supercapacitors: advances, prospects and sustainability. J. Energy Storage 66, 107391 (2023). https://doi.org/10.1016/j.est.2023.107391
H. Liu, Q. Zhou, Q. Xia, Y. Lei, X.L. Huang et al., Interface challenges and optimization strategies for aqueous zinc-ion batteries. J. Energy Chem. 77, 642–659 (2023). https://doi.org/10.1016/j.jechem.2022.11.028
S. Mahalingam, A. Nugroho, D. Floresyona, K.S. Lau, A. Manap et al., Bio and non-bio materials-based quasi-solid state electrolytes in DSSC: A review. Int. J. Energy Res. 46, 5399–5422 (2022). https://doi.org/10.1002/er.7541
M. Yan, W. Qu, Q. Su, S. Chen, Y. Xing et al., Biodegradable bacterial cellulose-supported quasi-solid electrolyte for lithium batteries. ACS Appl. Mater. Interfaces 12, 13950–13958 (2020). https://doi.org/10.1021/acsami.0c00621
D. Wang, H. Xie, Q. Liu, K. Mu, Z. Song et al., Low-cost, high-strength cellulose-based quasi-solid polymer electrolyte for solid-state lithium-metal batteries. Angew. Chem. Int. Ed. 62, e202302767 (2023). https://doi.org/10.1002/anie.202302767
J.R. Nair, F. Bella, N. Angulakshmi, A.M. Stephan, C. Gerbaldi, Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Mater. 3, 69–76 (2016). https://doi.org/10.1016/j.ensm.2016.01.008
D. Liu, G. Du, Y. Qi, Y. Niu, S.-J. Bao et al., Bacterial cellulose network based gel polymer electrolyte for quasi-solid-state sodium-ion battery. J. Mater. Sci. Mater. Electron. 33, 15313–15322 (2022). https://doi.org/10.1007/s10854-022-08395-3
A. Arya, A.L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017). https://doi.org/10.1007/s11581-016-1908-6
M. Forsyth, L. Porcarelli, X. Wang, N. Goujon, D. Mecerreyes, Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019). https://doi.org/10.1021/acs.accounts.8b00566
Y. Huang, L. Zhao, L. Li, M. Xie, F. Wu et al., Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application. Adv. Mater. 31, e1808393 (2019). https://doi.org/10.1002/adma.201808393
S. Li, S.-Q. Zhang, L. Shen, Q. Liu, J.-B. Ma et al., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 7, 1903088 (2020). https://doi.org/10.1002/advs.201903088
K. Liu, Z. Wang, L. Shi, S. Jungsuttiwong, S. Yuan, Ionic liquids for high performance lithium metal batteries. J. Energy Chem. 59, 320–333 (2021). https://doi.org/10.1016/j.jechem.2020.11.017
L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016). https://doi.org/10.1039/c6ta02621d
K.S. Ngai, S. Ramesh, K. Ramesh, J.C. Juan, A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22, 1259–1279 (2016). https://doi.org/10.1007/s11581-016-1756-4
S. Tang, W. Guo, Y. Fu, Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 11, 2000802 (2021). https://doi.org/10.1002/aenm.202000802
Y. Wang, W.-H. Zhong, Development of electrolytes towards achieving safe and high-performance energy-storage devices: a review. ChemElectroChem 2, 22–36 (2015). https://doi.org/10.1002/celc.201402277
M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117, 7190–7239 (2017). https://doi.org/10.1021/acs.chemrev.6b00504
D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019). https://doi.org/10.1016/j.chempr.2019.05.009
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan et al., Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018). https://doi.org/10.1002/adfm.201804560
A.N. Singh, A. Meena, K.-W. Nam, Gels in motion: recent advancements in energy applications. Gels 10, 122 (2024). https://doi.org/10.3390/gels10020122
G. Du, D. Muhtar, J. Cao, Y. Zhang, G. Qian et al., Solid-state composite electrolytes: turning the natural moat into a thoroughfare. Mater. Chem. Front. 8, 1250–1281 (2024). https://doi.org/10.1039/d3qm00840a
D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro Lett. 16, 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
C. Ma, W. Cui, X. Liu, Y. Ding, Y. Wang, In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat 4, e12232 (2022). https://doi.org/10.1002/inf2.12232
J. Xie, D. Lin, H. Lei, S. Wu, J. Li et al., Electrolyte and interphase engineering of aqueous batteries beyond “water-in-salt” strategy. Adv. Mater. 36, e2306508 (2024). https://doi.org/10.1002/adma.202306508
J. Zou, T. Ben, Recent advances in porous polymers for solid-state rechargeable lithium batteries. Polymers 14, 4804 (2022). https://doi.org/10.3390/polym14224804
H. Cavers, P. Molaiyan, M. Abdollahifar, U. Lassi, A. Kwade, Perspectives on improving the safety and sustainability of high voltage lithium-ion batteries through the electrolyte and separator region. Adv. Energy Mater. 12, 2200147 (2022). https://doi.org/10.1002/aenm.202200147
S. Yamada, Recent progress in transient energy storage using biodegradable materials. Adv. Energy Sustain. Res. 4, 2300083 (2023). https://doi.org/10.1002/aesr.202300083
E. Lizundia, D. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 31, 2005646 (2021). https://doi.org/10.1002/adfm.202005646
J. Piątek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen et al., Sustainable Li-ion batteries: chemistry and recycling. Adv. Energy Mater. 11, 2003456 (2021). https://doi.org/10.1002/aenm.202003456
W. Schlemmer, J. Selinger, M.A. Hobisch, S. Spirk, Polysaccharides for sustainable energy storage–A review. Carbohydr. Polym. 265, 118063 (2021). https://doi.org/10.1016/j.carbpol.2021.118063
R. Singh, A.R. Polu, B. Bhattacharya, H.-W. Rhee, C. Varlikli et al., Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application. Renew. Sustain. Energy Rev. 65, 1098–1117 (2016). https://doi.org/10.1016/j.rser.2016.06.026
F. Baskoro, H.Q. Wong, H.-J. Yen, Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2, 3937–3971 (2019). https://doi.org/10.1021/acsaem.9b00295
Y. Fu, L. Yang, M. Zhang, Z. Lin, Z. Shen, Recent advances in cellulose-based polymer electrolytes. Cellulose 29, 8997–9034 (2022). https://doi.org/10.1007/s10570-022-04834-w
K.D. Owensby, R. Sahore, W.-Y. Tsai, X.C. Chen, Understanding and controlling lithium morphology in solid polymer and gel polymer systems: mechanisms, strategies, and gaps. Mater. Adv. 4, 5867–5881 (2023). https://doi.org/10.1039/D3MA00274H
J. Xie, Q. Chen, H. Zhang, R. Song, T. Liu, Recent developments of nanocomposite ionogels as monolithic electrolyte membranes for lithium-based batteries. Battery Energy 3, 20230040 (2024). https://doi.org/10.1002/bte2.20230040
J. Zheng, W. Li, X. Liu, J. Zhang, X. Feng et al., Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ. Mater. 6, e12422 (2023). https://doi.org/10.1002/eem2.12422