Nitrogen-doped Carbon Nanospheres-Modified Graphitic Carbon Nitride with Outstanding Photocatalytic Activity
Corresponding Author: Shaomin Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 24
Abstract
Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation. However, there are many issues related to these metal-based catalysts for practical applications, such as high cost and detrimental environmental impact due to metal leaching. Carbon-based catalysts have the potential to overcome these limitations. In this study, monodisperse nitrogen-doped carbon nanospheres (NCs) were synthesized and loaded onto graphitic carbon nitride (g-C3N4, GCN) via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine (SCP). The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation. The nitrogen content in NC critically influences the physicochemical properties and performances of the resultant hybrids. The optimum nitrogen doping concentration was identified at 6.0 wt%. The SCP removal rates can be improved by a factor of 4.7 and 3.2, under UV and visible lights, by the GCN-NC composite due to the enhanced charge mobility and visible light harvesting. The mechanism of the improved photocatalytic performance and band structure alternation were further investigated by density functional theory (DFT) calculations. The DFT results confirm the high capability of the GCN-NC hybrids to activate the electron–hole pairs by reducing the band gap energy and efficiently separating electron/hole pairs. Superoxide and hydroxyl radicals are subsequently produced, leading to the efficient SCP removal.
Highlights:
1 Monodisperse nitrogen-doped carbon nanospheres were synthesized and loaded onto graphitic carbon nitride and the composites show outstanding photocatalytic activity.
2 Improved sulfachloropyridazine degradation is consistent with density functional theory calculation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Liu, X. Duan, H. Sun, Y. Wang, M.O. Tade, S. Wang, Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation. J. Phys. Chem. C 120(30), 16871–16878 (2016). https://doi.org/10.1021/acs.jpcc.6b05934
- L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, W. Jin, Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6(19), 7002–7023 (2016). https://doi.org/10.1039/c6cy01195k
- K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277–2289 (2010). https://doi.org/10.1039/B920539J
- Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
- E. Saputra, H. Zhang, Q. Liu, H. Sun, S. Wang, Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions. Chemosphere 159, 351–358 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.021
- Y.H. Seo, M. Sung, B. Kim, Y.-K. Oh, D.Y. Kim, J.-I. Han, Ferric chloride based downstream process for microalgae based biodiesel production. Bioresour. Technol. 181, 143–147 (2015). https://doi.org/10.1016/j.biortech.2015.01.004
- W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu et al., Frontispiece: single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56(32), 9440–9445 (2017). https://doi.org/10.1002/anie.201783261
- B. Ai, X. Duan, H. Sun, X. Qiu, S. Wang, Metal-free graphene-carbon nitride hybrids for photodegradation of organic pollutants in water. Catal. Today 258, 668–675 (2015). https://doi.org/10.1016/j.cattod.2015.01.024
- Y. Zhang, Y. Liu, W. Liu, X. Li, L. Mao, Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media. Appl. Surf. Sci. 407, 64–71 (2017). https://doi.org/10.1016/j.apsusc.2017.02.158
- R.S. Weatherup, H. Amara, R. Blume, B. Dlubak, B.C. Bayer et al., Interdependency of subsurface carbon distribution and graphene-catalyst interaction. J. Am. Chem. Soc. 136(39), 13698–13708 (2014). https://doi.org/10.1021/ja505454v
- B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, E. Reisner, Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J. Am. Chem. Soc. 137(18), 6018–6025 (2015). https://doi.org/10.1021/jacs.5b01650
- X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/NMAT2317
- S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17), 10397–10401 (2009). https://doi.org/10.1021/la900923z
- J. He, H. Sun, S. Indrawirawan, X. Duan, M. Tade, S. Wang, Novel polyoxometalate@ g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. J. Colloid Interf. Sci. 456, 15–21 (2015). https://doi.org/10.1016/j.jcis.2015.06.003
- Y. Wu, H. Wang, W. Tu, Y. Liu, S. Wu, Y.Z. Tan, J.W. Chew, Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance. Appl. Catal. B 233, 58–69 (2018). https://doi.org/10.1016/j.apcatb.2018.03.105
- Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5(5), 6717–6731 (2012). https://doi.org/10.1039/C2EE03479D
- J. Chen, Z. Hong, Y. Chen, B. Lin, B. Gao, One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 145, 129–132 (2015). https://doi.org/10.1016/j.matlet.2015.01.073
- P. Martín-Ramos, J. Martín-Gil, R.C. Dante, F. Vaquero, R.M. Navarro, J.L.G. Fierro, A simple approach to synthesize g-C3N4 with high visible light photoactivity for hydrogen production. Int. J. Hydrogen Energy 40(23), 7273–7281 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.063
- J. Tian, Q. Liu, A.M. Asiri, K.A. Alamry, X. Sun, Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7(8), 2125–2130 (2014). https://doi.org/10.1002/cssc.201402118
- Z. Sun, H. Wang, Z. Wu, L. Wang, g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 300, 160–172 (2017). https://doi.org/10.1016/j.cattod.2017.05.033
- A.Y. Liu, M.L. Cohen, Structural properties and electronic structure of low-compressibility materials: β-Si3N4 and hypothetical β-C3N4. Phys. Rev. B 41(15), 10727–10734 (1990). https://doi.org/10.1103/PhysRevB.41.10727
- J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 3(26), 13819–13826 (2015). https://doi.org/10.1039/c5ta02257f
- S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation. J. Colloid Interf. Sci. 431, 42–49 (2014). https://doi.org/10.1016/j.jcis.2014.05.023
- X.H. Song, L. Feng, S.L. Deng, S.Y. Xie, L.S. Zheng, Simultaneous exfoliation and modification of graphitic carbon nitride nanosheets. Adv. Mater. Interfaces 4(15), 1700339 (2017). https://doi.org/10.1002/admi.201700339
- G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26(5), 805–809 (2014). https://doi.org/10.1002/adma.201303611
- Z. Lin, X. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 52(6), 1735–1738 (2013). https://doi.org/10.1002/anie.201209017
- H. Sun, X. Zhou, H. Zhang, W. Tu, An efficient exfoliation method to obtain graphitic carbon nitride nanosheets with superior visible-light photocatalytic activity. Int. J. Hydrogen Energy 42(12), 7930–7937 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.080
- S. Hu, W. Zhang, J. Bai, G. Lu, L. Zhang, G. Wu, Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv. 6(31), 25695–25702 (2016). https://doi.org/10.1039/c5ra28123g
- R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, Gold nanoparticle modified graphitic carbon nitride/multi-walled carbon nanotube (g-C3N4/CNTs/Au) hybrid photocatalysts for effective water splitting and degradation. RSC Adv. 5(31), 24281–24292 (2015). https://doi.org/10.1039/c4ra15560b
- G. Rajender, B. Choudhury, P.K. Giri, In situ decoration of plasmonic au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance. Nanotechnology 28(39), 395703 (2017). https://doi.org/10.1088/1361-6528/aa810a
- Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46(26), 4740–4742 (2010). https://doi.org/10.1039/C001635G
- S. Liu, J. Ke, H. Sun, J. Liu, M.O. Tade, S. Wang, Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. Appl. Catal. B 204, 358–364 (2017). https://doi.org/10.1016/j.apcatb.2016.11.048
- G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48(49), 6178–6180 (2012). https://doi.org/10.1039/C2CC32181E
- D. Gao, Y. Liu, P. Liu, M. Si, D. Xue, Atomically thin B doped g-C3N4 nanosheets: high-temperature ferromagnetism and calculated half-metallicity. Sci. Rep. 6, 35768 (2016). https://doi.org/10.1038/srep35768
- J. Cao, X. Yin, L. Wang, M. Guo, J. Xu, Z. Chen, Enhanced electrocatalytic activity of platinum nanoparticles supported on nitrogen-modified mesoporous carbons for methanol electrooxidation. Int. J. Hydrogen Energy 40(7), 2971–2978 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.014
- J. Liu, Y. Song, H. Xu, J. Zhu, J. Lian et al., Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: facile synthesis and the enhanced visible-light photocatalytic activity. J. Colloid Interf. Sci. 494, 38–46 (2017). https://doi.org/10.1016/j.jcis.2017.01.010
- L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, H.Q. Yu, Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 115(23), 11466–11473 (2011). https://doi.org/10.1021/jp2023617
- G. Wang, Y. Sun, D. Li, H.W. Liang, R. Dong, X. Feng, K. Müllen, Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica. Angew. Chem. Int. Ed. 54(50), 15191–15196 (2015). https://doi.org/10.1002/anie.201507735
- J. Clark Stewart, D. Segall Matthew, J. Pickard Chris, J. Hasnip Phil, I.J. Probert Matt, K. Refson, C. Payne Mike, First principles methods using CASTEP. Z. Kristall.-Cryst. Mater. 220(00), 567–570 (2005)
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
- A. Tkatchenko, M. Scheffler, Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005
- Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbonincorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99, 111–117 (2016). https://doi.org/10.1016/j.carbon.2015.12.008
- C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 8(4), 1199–1209 (2015). https://doi.org/10.1007/s12274-014-0600-2
- P. Tiong, H.O. Lintang, S. Endud, L. Yuliati, Improved interfacial charge transfer and visible light activity of reduced graphene oxide–graphitic carbon nitride photocatalysts. RSC Adv. 5(114), 94029–94039 (2015). https://doi.org/10.1039/c5ra17967j
- H. Wang, Y. Wu, M.B. Feng, W.G. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215–225 (2018). https://doi.org/10.1016/j.watres.2018.07.025
- M. Conde-Cid, D. Fernández-Calviño, J.C. Nóvoa-Muñoz, M. Arias-Estévez, M. Díaz-Raviña, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, Degradation of sulfadiazine, sulfachloropyridazine and sulfamethazine in aqueous media. J. Environ. Manage. 228, 239–248 (2018). https://doi.org/10.1016/j.jenvman.2018.09.025
- Y. Wu, H. Wang, W. Tu, S. Wu, J.W. Chew, Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1− 5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B 256, 117810 (2019). https://doi.org/10.1016/j.apcatb.2019.117810
- L.Y. Zang, K. Stone, W.A. Pryor, Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radical Biol. Med. 19(2), 161–167 (1995). https://doi.org/10.1016/0891-5849(94)00236-D
- G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution. J. Phys. Chem. Ref. Data 17(2), 513–886 (1988). https://doi.org/10.1063/1.555805
- B. Jing, Z. Ao, Z. Teng, C. Wang, J. Yi, T. An, Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications. Sustainable Mater. Technol. 16, 12–22 (2018). https://doi.org/10.1016/j.susmat.2018.04.001
- L.H. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res. 41, 2612–2626 (2007). https://doi.org/10.1016/j.watres.2007.02.026
- X.H. Sun, M.B. Feng, S.Y. Dong, Y. Qi, L. Sun, N. Nesnas, Vk Sharma, Removal of sulfachloropyridazine by ferrate (VI): kinetics reaction pathways biodegradation and toxicity evaluation. Chem. Eng. J. 372, 742–751 (2019). https://doi.org/10.1016/j.cej.2019.04.121
References
Q. Liu, X. Duan, H. Sun, Y. Wang, M.O. Tade, S. Wang, Size-tailored porous spheres of manganese oxides for catalytic oxidation via peroxymonosulfate activation. J. Phys. Chem. C 120(30), 16871–16878 (2016). https://doi.org/10.1021/acs.jpcc.6b05934
L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, W. Jin, Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6(19), 7002–7023 (2016). https://doi.org/10.1039/c6cy01195k
K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277–2289 (2010). https://doi.org/10.1039/B920539J
Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906–3924 (2010). https://doi.org/10.1002/adma.201001068
E. Saputra, H. Zhang, Q. Liu, H. Sun, S. Wang, Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions. Chemosphere 159, 351–358 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.021
Y.H. Seo, M. Sung, B. Kim, Y.-K. Oh, D.Y. Kim, J.-I. Han, Ferric chloride based downstream process for microalgae based biodiesel production. Bioresour. Technol. 181, 143–147 (2015). https://doi.org/10.1016/j.biortech.2015.01.004
W. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu et al., Frontispiece: single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56(32), 9440–9445 (2017). https://doi.org/10.1002/anie.201783261
B. Ai, X. Duan, H. Sun, X. Qiu, S. Wang, Metal-free graphene-carbon nitride hybrids for photodegradation of organic pollutants in water. Catal. Today 258, 668–675 (2015). https://doi.org/10.1016/j.cattod.2015.01.024
Y. Zhang, Y. Liu, W. Liu, X. Li, L. Mao, Synthesis of honeycomb-like mesoporous nitrogen-doped carbon nanospheres as Pt catalyst supports for methanol oxidation in alkaline media. Appl. Surf. Sci. 407, 64–71 (2017). https://doi.org/10.1016/j.apsusc.2017.02.158
R.S. Weatherup, H. Amara, R. Blume, B. Dlubak, B.C. Bayer et al., Interdependency of subsurface carbon distribution and graphene-catalyst interaction. J. Am. Chem. Soc. 136(39), 13698–13708 (2014). https://doi.org/10.1021/ja505454v
B.C.M. Martindale, G.A.M. Hutton, C.A. Caputo, E. Reisner, Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J. Am. Chem. Soc. 137(18), 6018–6025 (2015). https://doi.org/10.1021/jacs.5b01650
X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/NMAT2317
S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17), 10397–10401 (2009). https://doi.org/10.1021/la900923z
J. He, H. Sun, S. Indrawirawan, X. Duan, M. Tade, S. Wang, Novel polyoxometalate@ g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. J. Colloid Interf. Sci. 456, 15–21 (2015). https://doi.org/10.1016/j.jcis.2015.06.003
Y. Wu, H. Wang, W. Tu, Y. Liu, S. Wu, Y.Z. Tan, J.W. Chew, Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance. Appl. Catal. B 233, 58–69 (2018). https://doi.org/10.1016/j.apcatb.2018.03.105
Y. Zheng, J. Liu, J. Liang, M. Jaroniec, S. Qiao, Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5(5), 6717–6731 (2012). https://doi.org/10.1039/C2EE03479D
J. Chen, Z. Hong, Y. Chen, B. Lin, B. Gao, One-step synthesis of sulfur-doped and nitrogen-deficient g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light. Mater. Lett. 145, 129–132 (2015). https://doi.org/10.1016/j.matlet.2015.01.073
P. Martín-Ramos, J. Martín-Gil, R.C. Dante, F. Vaquero, R.M. Navarro, J.L.G. Fierro, A simple approach to synthesize g-C3N4 with high visible light photoactivity for hydrogen production. Int. J. Hydrogen Energy 40(23), 7273–7281 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.063
J. Tian, Q. Liu, A.M. Asiri, K.A. Alamry, X. Sun, Ultrathin graphitic C3N4 nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction. Chemsuschem 7(8), 2125–2130 (2014). https://doi.org/10.1002/cssc.201402118
Z. Sun, H. Wang, Z. Wu, L. Wang, g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catal. Today 300, 160–172 (2017). https://doi.org/10.1016/j.cattod.2017.05.033
A.Y. Liu, M.L. Cohen, Structural properties and electronic structure of low-compressibility materials: β-Si3N4 and hypothetical β-C3N4. Phys. Rev. B 41(15), 10727–10734 (1990). https://doi.org/10.1103/PhysRevB.41.10727
J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 3(26), 13819–13826 (2015). https://doi.org/10.1039/c5ta02257f
S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation. J. Colloid Interf. Sci. 431, 42–49 (2014). https://doi.org/10.1016/j.jcis.2014.05.023
X.H. Song, L. Feng, S.L. Deng, S.Y. Xie, L.S. Zheng, Simultaneous exfoliation and modification of graphitic carbon nitride nanosheets. Adv. Mater. Interfaces 4(15), 1700339 (2017). https://doi.org/10.1002/admi.201700339
G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, X. Wang, Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26(5), 805–809 (2014). https://doi.org/10.1002/adma.201303611
Z. Lin, X. Wang, Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chem. Int. Ed. 52(6), 1735–1738 (2013). https://doi.org/10.1002/anie.201209017
H. Sun, X. Zhou, H. Zhang, W. Tu, An efficient exfoliation method to obtain graphitic carbon nitride nanosheets with superior visible-light photocatalytic activity. Int. J. Hydrogen Energy 42(12), 7930–7937 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.080
S. Hu, W. Zhang, J. Bai, G. Lu, L. Zhang, G. Wu, Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv. 6(31), 25695–25702 (2016). https://doi.org/10.1039/c5ra28123g
R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, Gold nanoparticle modified graphitic carbon nitride/multi-walled carbon nanotube (g-C3N4/CNTs/Au) hybrid photocatalysts for effective water splitting and degradation. RSC Adv. 5(31), 24281–24292 (2015). https://doi.org/10.1039/c4ra15560b
G. Rajender, B. Choudhury, P.K. Giri, In situ decoration of plasmonic au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance. Nanotechnology 28(39), 395703 (2017). https://doi.org/10.1088/1361-6528/aa810a
Y. Sun, C. Li, Y. Xu, H. Bai, Z. Yao, G. Shi, Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chem. Commun. 46(26), 4740–4742 (2010). https://doi.org/10.1039/C001635G
S. Liu, J. Ke, H. Sun, J. Liu, M.O. Tade, S. Wang, Size dependence of uniformed carbon spheres in promoting graphitic carbon nitride toward enhanced photocatalysis. Appl. Catal. B 204, 358–364 (2017). https://doi.org/10.1016/j.apcatb.2016.11.048
G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48(49), 6178–6180 (2012). https://doi.org/10.1039/C2CC32181E
D. Gao, Y. Liu, P. Liu, M. Si, D. Xue, Atomically thin B doped g-C3N4 nanosheets: high-temperature ferromagnetism and calculated half-metallicity. Sci. Rep. 6, 35768 (2016). https://doi.org/10.1038/srep35768
J. Cao, X. Yin, L. Wang, M. Guo, J. Xu, Z. Chen, Enhanced electrocatalytic activity of platinum nanoparticles supported on nitrogen-modified mesoporous carbons for methanol electrooxidation. Int. J. Hydrogen Energy 40(7), 2971–2978 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.014
J. Liu, Y. Song, H. Xu, J. Zhu, J. Lian et al., Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: facile synthesis and the enhanced visible-light photocatalytic activity. J. Colloid Interf. Sci. 494, 38–46 (2017). https://doi.org/10.1016/j.jcis.2017.01.010
L. Jia, D.H. Wang, Y.X. Huang, A.W. Xu, H.Q. Yu, Highly durable N-doped graphene/CdS nanocomposites with enhanced photocatalytic hydrogen evolution from water under visible light irradiation. J. Phys. Chem. C 115(23), 11466–11473 (2011). https://doi.org/10.1021/jp2023617
G. Wang, Y. Sun, D. Li, H.W. Liang, R. Dong, X. Feng, K. Müllen, Controlled synthesis of N-doped carbon nanospheres with tailored mesopores through self-assembly of colloidal silica. Angew. Chem. Int. Ed. 54(50), 15191–15196 (2015). https://doi.org/10.1002/anie.201507735
J. Clark Stewart, D. Segall Matthew, J. Pickard Chris, J. Hasnip Phil, I.J. Probert Matt, K. Refson, C. Payne Mike, First principles methods using CASTEP. Z. Kristall.-Cryst. Mater. 220(00), 567–570 (2005)
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
A. Tkatchenko, M. Scheffler, Accurate molecular van der waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005
Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbonincorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light. Carbon 99, 111–117 (2016). https://doi.org/10.1016/j.carbon.2015.12.008
C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation. Nano Res. 8(4), 1199–1209 (2015). https://doi.org/10.1007/s12274-014-0600-2
P. Tiong, H.O. Lintang, S. Endud, L. Yuliati, Improved interfacial charge transfer and visible light activity of reduced graphene oxide–graphitic carbon nitride photocatalysts. RSC Adv. 5(114), 94029–94039 (2015). https://doi.org/10.1039/c5ra17967j
H. Wang, Y. Wu, M.B. Feng, W.G. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215–225 (2018). https://doi.org/10.1016/j.watres.2018.07.025
M. Conde-Cid, D. Fernández-Calviño, J.C. Nóvoa-Muñoz, M. Arias-Estévez, M. Díaz-Raviña, A. Núñez-Delgado, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, Degradation of sulfadiazine, sulfachloropyridazine and sulfamethazine in aqueous media. J. Environ. Manage. 228, 239–248 (2018). https://doi.org/10.1016/j.jenvman.2018.09.025
Y. Wu, H. Wang, W. Tu, S. Wu, J.W. Chew, Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1− 5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B 256, 117810 (2019). https://doi.org/10.1016/j.apcatb.2019.117810
L.Y. Zang, K. Stone, W.A. Pryor, Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radical Biol. Med. 19(2), 161–167 (1995). https://doi.org/10.1016/0891-5849(94)00236-D
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution. J. Phys. Chem. Ref. Data 17(2), 513–886 (1988). https://doi.org/10.1063/1.555805
B. Jing, Z. Ao, Z. Teng, C. Wang, J. Yi, T. An, Density functional theory study on the effects of oxygen groups on band gap tuning of graphitic carbon nitrides for possible photocatalytic applications. Sustainable Mater. Technol. 16, 12–22 (2018). https://doi.org/10.1016/j.susmat.2018.04.001
L.H. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res. 41, 2612–2626 (2007). https://doi.org/10.1016/j.watres.2007.02.026
X.H. Sun, M.B. Feng, S.Y. Dong, Y. Qi, L. Sun, N. Nesnas, Vk Sharma, Removal of sulfachloropyridazine by ferrate (VI): kinetics reaction pathways biodegradation and toxicity evaluation. Chem. Eng. J. 372, 742–751 (2019). https://doi.org/10.1016/j.cej.2019.04.121