Scalable and Sustainable Chitosan/Carbon Nanotubes Composite Protective Layer for Dendrite-Free and Long-Cycling Aqueous Zinc-Metal Batteries
Corresponding Author: Jian Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 326
Abstract
Rechargeable aqueous zinc (Zn)-metal batteries hold great promise for next-generation energy storage systems. However, their practical application is hindered by several challenges, including dendrite formation, corrosion, and the competing hydrogen evolution reaction. To address these issues, we designed and fabricated a composite protective layer for Zn anodes by integrating carbon nanotubes (CNTs) with chitosan through a simple and scalable scraping process. The CNTs ensure uniform electric field distribution due to their high electrical conductivity, while protonated chitosan regulates ion transport and suppresses dendrite formation at the anode interface. The chitosan/CNTs composite layer also facilitates smooth Zn2+ deposition, enhancing the stability and reversibility of the Zn anode. As a result, the chitosan/CNTs @ Zn anode demonstrates exceptional cycling stability, achieving over 3000 h of plating/stripping with minimal degradation. When paired with a V2O5 cathode, the composite-protected anode significantly improves the cycle stability and energy density of the full cell. Techno-economic analysis confirms that batteries incorporating the chitosan/CNTs protective layer outperform those with bare Zn anodes in terms of energy density and overall performance under optimized conditions. This work provides a scalable and sustainable strategy to overcome the critical challenges of aqueous Zn-metal batteries, paving the way for their practical application in next-generation energy storage systems.
Highlights:
1 A sustainable protective layer for Zn anodes integrating carbon nanotubes (CNTs) and chitosan via a simple scraping process to inhibit dendrite growth and side reactions.
2 Chitosan’s polar functional groups enhance Zn2+ transport, and the even distribution of CNTs lowers local current density, enabling a uniform electric field to regulate Zn deposition.
3 Benefiting from the chitosan/CNTs protective layer, the Zn//Zn and Zn//V2O5 cells showcase significantly enhanced electrochemical performance, and technical economic analyses demonstrate their practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Fan, R. Zheng, T. Zeng, H. Xu, X. Wen et al., Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries. Chem. Eng. J. 477, 147181 (2023). https://doi.org/10.1016/j.cej.2023.147181
- S. Liu, X. Yu, Y. Yan, T. Zeng, X. Wang et al., Dendrite-free lithium deposition enabled by interfacial regulation via dipole-dipole interaction in anode-free lithium metal batteries. Energy Storage Mater. 62, 102959 (2023). https://doi.org/10.1016/j.ensm.2023.102959
- S. Wang, X. Wen, Z. Huang, H. Xu, F. Fan et al., High-entropy strategy flattening lithium ion migration energy landscape to enhance the conductivity of garnet-type solid-state electrolytes. Adv. Funct. Mater. 35(9), 2416389 (2025). https://doi.org/10.1002/adfm.202416389
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- X. Xiao, X. Xiao, Y. Zhou, X. Zhao, G. Chen et al., An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7(49), eab13742 (2021). https://doi.org/10.1126/sciadv.abl3742
- T. Ma, C.-H. Li, R.M. Thakur, D.P. Tabor, J.L. Lutkenhaus, The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nat. Mater. 22(4), 495–502 (2023). https://doi.org/10.1038/s41563-023-01518-z
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
- X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
- H. He, H. Qin, J. Wu, X. Chen, R. Huang et al., Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater. 43, 317–336 (2021). https://doi.org/10.1016/j.ensm.2021.09.012
- B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- T. Wang, Q. Xi, Y. Li, H. Fu, Y. Hua et al., Regulating dendrite-free zinc deposition by red phosphorous-derived artificial protective layer for zinc metal batteries. Adv. Sci. 9(18), 2200155 (2022). https://doi.org/10.1002/advs.202200155
- C. Yan, F. He, L. Feng, L. Zhu, P. Li et al., Interfacial molecule engineering builds tri-functional bilayer silane films with hydrophobic ion channels for highly stable Zn metal anode. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503493
- Y. Zhou, G. Li, S. Feng, H. Qin, Q. Wang et al., Regulating Zn ion desolvation and deposition chemistry toward durable and fast rechargeable Zn metal batteries. Adv. Sci. 10(6), 2205874 (2023). https://doi.org/10.1002/advs.202205874
- Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
- J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei et al., Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22(3), 1017–1023 (2022). https://doi.org/10.1021/acs.nanolett.1c03917
- M. Zhang, C. Sun, G. Chen, Y. Kang, Z. Lv et al., Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells. Nat. Commun. 15(1), 9455 (2024). https://doi.org/10.1038/s41467-024-53831-z
- J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15(1), 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
- H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
- S. Yang, Y. Li, H. Du, Y. Liu, Y. Xiang et al., Copper nanop-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode. ACS Sustainable Chem. Eng. 10(38), 12630–12641 (2022). https://doi.org/10.1021/acssuschemeng.2c03328
- Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
- H. Qin, W. Kuang, D. Huang, X. Zhang, J. Liu et al., Achieving high-rate and high-capacity Zn metal anodes via a three-in-one carbon protective layer. J. Mater. Chem. A 10(34), 17440–17451 (2022). https://doi.org/10.1039/D2TA04875B
- H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14(1), 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
- H. Fan, M. Wang, Y. Yin, Q. Liu, B. Tang et al., Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Mater. 49, 380–389 (2022). https://doi.org/10.1016/j.ensm.2022.04.031
- L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13(13), 2203790 (2023). https://doi.org/10.1002/aenm.202203790
- B. Li, P. Ruan, X. Xu, Z. He, X. Zhu et al., Covalent organic framework with 3D ordered channel and multi-functional groups endows Zn anode with superior stability. Nano-Micro Lett. 16(1), 76 (2024). https://doi.org/10.1007/s40820-023-01278-0
- M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
- L. Kang, K. Yue, C. Ma, H. Yuan, J. Luo et al., Mediating Zn ions migration behavior via β-cyclodextrin modified carbon nanotube film for high-performance Zn anodes. Nano Lett. 24(14), 4150–4157 (2024). https://doi.org/10.1021/acs.nanolett.4c00016
- J.H. Park, C. Choi, J.B. Park, S. Yu, D.-W. Kim, Fortifying zinc metal anodes against uncontrollable side-reactions and dendrite growth for practical aqueous zinc ion batteries: a novel composition of anti-corrosive and Zn2+ regulating artificial protective layer. Adv. Energy Mater. 14(5), 2302493 (2024). https://doi.org/10.1002/aenm.202302493
- H. Zhang, L. Yang, H. Wang, B. Cui, J. Wang et al., Bulk-phase grain boundaries regulation enables highly reversible Zn anodes for rechargeable aqueous Zn-ion batteries. Adv. Funct. Mater. 34(11), 2312469 (2024). https://doi.org/10.1002/adfm.202312469
- Y. Zhou, J. Xia, J. Di, Z. Sun, L. Zhao et al., Ultrahigh-rate Zn stripping and plating by capacitive charge carriers enrichment boosting Zn-based energy storage. Adv. Energy Mater. 13(10), 2203165 (2023). https://doi.org/10.1002/aenm.202203165
- S. Chen, J. Chen, X. Liao, Y. Li, W. Wang et al., Enabling low-temperature and high-rate Zn metal batteries by activating Zn nucleation with single-atomic sites. ACS Energy Lett. 7(11), 4028–4035 (2022). https://doi.org/10.1021/acsenergylett.2c02042
- N. Hu, W. Lv, H. Tang, H. Qin, Y. Zhou et al., A bio-inspired electrolyte with in situ repair of Zn surface cracks and regulation of Zn ion solvation chemistry to enable long life and deep-cycling zinc metal batteries. J. Mater. Chem. A 11(27), 14921–14932 (2023). https://doi.org/10.1039/D3TA02804F
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). https://doi.org/10.1002/adma.201903675
- H. Li, Y. Ren, Y. Zhu, J. Tian, X. Sun et al., A bio-inspired trehalose additive for reversible zinc anodes with improved stability and kinetics. Angew. Chem. Int. Ed. 62(41), e202310143 (2023). https://doi.org/10.1002/anie.202310143
- T. Wang, P. Wang, L. Pan, Z. He, L. Dai et al., Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 13(5), 2370020 (2023). https://doi.org/10.1002/aenm.202370020
- M.P.H. Pedige, T.-A. Asoh, Y.-I. Hsu, H. Uyama, Stimuli-responsive composite hydrogels with three-dimensional stability prepared using oxidized cellulose nanofibers and chitosan. Carbohydr. Polym. 278, 118907 (2022). https://doi.org/10.1016/j.carbpol.2021.118907
- G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul et al., Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8(8), 2533–2541 (2007). https://doi.org/10.1021/bm070014y
- Q. Wang, S. Wang, Influence of protonation on dynamic mechanical behavior of chitosan solid film. J. Fujian Norm. Univ. (Natural Science Edition) 29, 68–74 (2013). https://link.cnki.net/urlid/35.1074.N.20130513.1007.014
- Y. Deng, H. Wang, M. Fan, B. Zhan, L.-J. Zuo et al., Nanomicellar electrolyte to control release ions and reconstruct hydrogen bonding network for ultrastable high-energy-density Zn-Mn battery. J. Am. Chem. Soc. 145(36), 20109–20120 (2023). https://doi.org/10.1021/jacs.3c07764
- R. Chen, Q. Liu, L. Xu, X. Zuo, F. Liu et al., Zwitterionic bifunctional layer for reversible Zn anode. ACS Energy Lett. 7(5), 1719–1727 (2022). https://doi.org/10.1021/acsenergylett.2c00124
- Y. Wang, T. Wang, Y. Mao, Z. Li, H. Yu et al., Reversible protonated electrolyte additive enabling dendrites-free Zn metal anode with high depth of discharge. Adv. Energy Mater. 14(23), 2400353 (2024). https://doi.org/10.1002/aenm.202400353
- D. Kong, C. Yuan, L. Zhi, Q. Zheng, Z. Yuan et al., N-CNTs-based composite membrane engineered by a partially embedded strategy: a facile route to high-performing zinc-based flow batteries. Adv. Funct. Mater. 33(34), 2301448 (2023). https://doi.org/10.1002/adfm.202301448
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/D2EE02931F
- Q. Wu, J. Huang, J. Zhang, S. Yang, Y. Li et al., Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh-rate and dendrite-free Zn anodes for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 63(14), e202319051 (2024). https://doi.org/10.1002/anie.202319051
- Y. Fang, P. Lei, H. Xing, W. Cai, Z. Fan et al., Quinone carbonyl activation for in situ constructing kinetic-boosted zincophilic polymer interphase toward high performance Zn metal anode. Energy Storage Mater. 65, 103097 (2024). https://doi.org/10.1016/j.ensm.2023.103097
- N. Wang, X. Chen, H. Wan, B. Zhang, K. Guan et al., Zincophobic electrolyte achieves highly reversible zinc-ion batteries. Adv. Funct. Mater. 33(27), 2300795 (2023). https://doi.org/10.1002/adfm.202300795
- R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35(17), 2209288 (2023). https://doi.org/10.1002/adma.202209288
- L. Hong, J. Guan, Y. Tan, Y. Chen, Y.-S. Liu et al., An effective descriptor for the screening of electrolyte additives toward the stabilization of Zn metal anodes. Energy Environ. Sci. 17(9), 3157–3167 (2024). https://doi.org/10.1039/D4EE00199K
- J.H. Jo, Y. Aniskevich, J. Kim, J.U. Choi, H.J. Kim et al., New insight on open-structured sodium vanadium oxide as high-capacity and long life cathode for Zn–ion storage: structure, electrochemistry, and first-principles calculation. Adv. Energy Mater. 10(40), 2001595 (2020). https://doi.org/10.1002/aenm.202001595
- F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO3 for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35(23), e2208764 (2023). https://doi.org/10.1002/adma.202208764
- B.-B. Sui, L. Sha, P.-F. Wang, Z. Gong, Y.-H. Zhang et al., In situ zinc citrate on the surface of Zn anode improves the performance of aqueous zinc-ion batteries. J. Energy Storage 82, 110550 (2024). https://doi.org/10.1016/j.est.2024.110550
- J. Chen, W. Zhou, Y. Quan, B. Liu, M. Yang et al., Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Storage Mater. 53, 629–637 (2022). https://doi.org/10.1016/j.ensm.2022.10.004
- H. Peng, Y. Fang, J. Wang, P. Ruan, Y. Tang et al., Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter 5(12), 4363–4378 (2022). https://doi.org/10.1016/j.matt.2022.08.025
- L. Hong, X. Wu, L.-Y. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
- Y. Gao, N. Yang, F. Bu, Q. Cao, J. Pu et al., Double-sided engineering for space-confined reversible Zn anodes. Energy Environ. Sci. 17(5), 1894–1903 (2024). https://doi.org/10.1039/d3ee04292h
- D. Feng, Y. Jiao, P. Wu, Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes. Angew. Chem. Int. Ed. 62(51), e202314456 (2023). https://doi.org/10.1002/anie.202314456
- Y. Li, Z. Huang, P.K. Kalambate, Y. Zhong, Z. Huang et al., V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60, 752–759 (2019). https://doi.org/10.1016/j.nanoen.2019.04.009
References
F. Fan, R. Zheng, T. Zeng, H. Xu, X. Wen et al., Cation-ordered Ni-rich positive electrode material with superior chemical and structural stability enabled by atomic substitution for lithium-ion batteries. Chem. Eng. J. 477, 147181 (2023). https://doi.org/10.1016/j.cej.2023.147181
S. Liu, X. Yu, Y. Yan, T. Zeng, X. Wang et al., Dendrite-free lithium deposition enabled by interfacial regulation via dipole-dipole interaction in anode-free lithium metal batteries. Energy Storage Mater. 62, 102959 (2023). https://doi.org/10.1016/j.ensm.2023.102959
S. Wang, X. Wen, Z. Huang, H. Xu, F. Fan et al., High-entropy strategy flattening lithium ion migration energy landscape to enhance the conductivity of garnet-type solid-state electrolytes. Adv. Funct. Mater. 35(9), 2416389 (2025). https://doi.org/10.1002/adfm.202416389
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
X. Xiao, X. Xiao, Y. Zhou, X. Zhao, G. Chen et al., An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7(49), eab13742 (2021). https://doi.org/10.1126/sciadv.abl3742
T. Ma, C.-H. Li, R.M. Thakur, D.P. Tabor, J.L. Lutkenhaus, The role of the electrolyte in non-conjugated radical polymers for metal-free aqueous energy storage electrodes. Nat. Mater. 22(4), 495–502 (2023). https://doi.org/10.1038/s41563-023-01518-z
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
Y. Li, X. Zheng, E.Z. Carlson, X. Xiao, X. Chi et al., In situ formation of liquid crystal interphase in electrolytes with soft templating effects for aqueous dual-electrode-free batteries. Nat. Energy 9(11), 1350–1359 (2024). https://doi.org/10.1038/s41560-024-01638-z
X. Liu, Y. Guo, F. Ning, Y. Liu, S. Shi et al., Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study. Nano-Micro Lett. 16(1), 111 (2024). https://doi.org/10.1007/s40820-024-01337-0
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
H. He, H. Qin, J. Wu, X. Chen, R. Huang et al., Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater. 43, 317–336 (2021). https://doi.org/10.1016/j.ensm.2021.09.012
B. Li, X. Zhang, T. Wang, Z. He, B. Lu et al., Interfacial engineering strategy for high-performance Zn metal anodes. Nano-Micro Lett. 14(1), 6 (2021). https://doi.org/10.1007/s40820-021-00764-7
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14(1), 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
T. Wang, Q. Xi, Y. Li, H. Fu, Y. Hua et al., Regulating dendrite-free zinc deposition by red phosphorous-derived artificial protective layer for zinc metal batteries. Adv. Sci. 9(18), 2200155 (2022). https://doi.org/10.1002/advs.202200155
C. Yan, F. He, L. Feng, L. Zhu, P. Li et al., Interfacial molecule engineering builds tri-functional bilayer silane films with hydrophobic ion channels for highly stable Zn metal anode. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202503493
Y. Zhou, G. Li, S. Feng, H. Qin, Q. Wang et al., Regulating Zn ion desolvation and deposition chemistry toward durable and fast rechargeable Zn metal batteries. Adv. Sci. 10(6), 2205874 (2023). https://doi.org/10.1002/advs.202205874
Y. Chen, Z. Deng, Y. Sun, Y. Li, H. Zhang et al., Ultrathin zincophilic interphase regulated electric double layer enabling highly stable aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 96 (2024). https://doi.org/10.1007/s40820-023-01312-1
J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei et al., Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22(3), 1017–1023 (2022). https://doi.org/10.1021/acs.nanolett.1c03917
M. Zhang, C. Sun, G. Chen, Y. Kang, Z. Lv et al., Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells. Nat. Commun. 15(1), 9455 (2024). https://doi.org/10.1038/s41467-024-53831-z
J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15(1), 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
H. Meng, Q. Ran, T.-Y. Dai, H. Shi, S.-P. Zeng et al., Surface-alloyed nanoporous zinc as reversible and stable anodes for high-performance aqueous zinc-ion battery. Nano-Micro Lett. 14(1), 128 (2022). https://doi.org/10.1007/s40820-022-00867-9
S. Yang, Y. Li, H. Du, Y. Liu, Y. Xiang et al., Copper nanop-modified carbon nanofiber for seeded zinc deposition enables stable Zn metal anode. ACS Sustainable Chem. Eng. 10(38), 12630–12641 (2022). https://doi.org/10.1021/acssuschemeng.2c03328
Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14(1), 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
H. Qin, W. Kuang, D. Huang, X. Zhang, J. Liu et al., Achieving high-rate and high-capacity Zn metal anodes via a three-in-one carbon protective layer. J. Mater. Chem. A 10(34), 17440–17451 (2022). https://doi.org/10.1039/D2TA04875B
H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14(1), 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
H. Fan, M. Wang, Y. Yin, Q. Liu, B. Tang et al., Tailoring interfacial Zn2+ coordination via a robust cation conductive film enables high performance zinc metal battery. Energy Storage Mater. 49, 380–389 (2022). https://doi.org/10.1016/j.ensm.2022.04.031
L. Zhang, J. Huang, H. Guo, L. Ge, Z. Tian et al., Tuning ion transport at the anode-electrolyte interface via a sulfonate-rich ion-exchange layer for durable zinc-iodine batteries. Adv. Energy Mater. 13(13), 2203790 (2023). https://doi.org/10.1002/aenm.202203790
B. Li, P. Ruan, X. Xu, Z. He, X. Zhu et al., Covalent organic framework with 3D ordered channel and multi-functional groups endows Zn anode with superior stability. Nano-Micro Lett. 16(1), 76 (2024). https://doi.org/10.1007/s40820-023-01278-0
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14(1), 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
L. Kang, K. Yue, C. Ma, H. Yuan, J. Luo et al., Mediating Zn ions migration behavior via β-cyclodextrin modified carbon nanotube film for high-performance Zn anodes. Nano Lett. 24(14), 4150–4157 (2024). https://doi.org/10.1021/acs.nanolett.4c00016
J.H. Park, C. Choi, J.B. Park, S. Yu, D.-W. Kim, Fortifying zinc metal anodes against uncontrollable side-reactions and dendrite growth for practical aqueous zinc ion batteries: a novel composition of anti-corrosive and Zn2+ regulating artificial protective layer. Adv. Energy Mater. 14(5), 2302493 (2024). https://doi.org/10.1002/aenm.202302493
H. Zhang, L. Yang, H. Wang, B. Cui, J. Wang et al., Bulk-phase grain boundaries regulation enables highly reversible Zn anodes for rechargeable aqueous Zn-ion batteries. Adv. Funct. Mater. 34(11), 2312469 (2024). https://doi.org/10.1002/adfm.202312469
Y. Zhou, J. Xia, J. Di, Z. Sun, L. Zhao et al., Ultrahigh-rate Zn stripping and plating by capacitive charge carriers enrichment boosting Zn-based energy storage. Adv. Energy Mater. 13(10), 2203165 (2023). https://doi.org/10.1002/aenm.202203165
S. Chen, J. Chen, X. Liao, Y. Li, W. Wang et al., Enabling low-temperature and high-rate Zn metal batteries by activating Zn nucleation with single-atomic sites. ACS Energy Lett. 7(11), 4028–4035 (2022). https://doi.org/10.1021/acsenergylett.2c02042
N. Hu, W. Lv, H. Tang, H. Qin, Y. Zhou et al., A bio-inspired electrolyte with in situ repair of Zn surface cracks and regulation of Zn ion solvation chemistry to enable long life and deep-cycling zinc metal batteries. J. Mater. Chem. A 11(27), 14921–14932 (2023). https://doi.org/10.1039/D3TA02804F
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31(36), 1903675 (2019). https://doi.org/10.1002/adma.201903675
H. Li, Y. Ren, Y. Zhu, J. Tian, X. Sun et al., A bio-inspired trehalose additive for reversible zinc anodes with improved stability and kinetics. Angew. Chem. Int. Ed. 62(41), e202310143 (2023). https://doi.org/10.1002/anie.202310143
T. Wang, P. Wang, L. Pan, Z. He, L. Dai et al., Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv. Energy Mater. 13(5), 2370020 (2023). https://doi.org/10.1002/aenm.202370020
M.P.H. Pedige, T.-A. Asoh, Y.-I. Hsu, H. Uyama, Stimuli-responsive composite hydrogels with three-dimensional stability prepared using oxidized cellulose nanofibers and chitosan. Carbohydr. Polym. 278, 118907 (2022). https://doi.org/10.1016/j.carbpol.2021.118907
G. Lawrie, I. Keen, B. Drew, A. Chandler-Temple, L. Rintoul et al., Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromol 8(8), 2533–2541 (2007). https://doi.org/10.1021/bm070014y
Q. Wang, S. Wang, Influence of protonation on dynamic mechanical behavior of chitosan solid film. J. Fujian Norm. Univ. (Natural Science Edition) 29, 68–74 (2013). https://link.cnki.net/urlid/35.1074.N.20130513.1007.014
Y. Deng, H. Wang, M. Fan, B. Zhan, L.-J. Zuo et al., Nanomicellar electrolyte to control release ions and reconstruct hydrogen bonding network for ultrastable high-energy-density Zn-Mn battery. J. Am. Chem. Soc. 145(36), 20109–20120 (2023). https://doi.org/10.1021/jacs.3c07764
R. Chen, Q. Liu, L. Xu, X. Zuo, F. Liu et al., Zwitterionic bifunctional layer for reversible Zn anode. ACS Energy Lett. 7(5), 1719–1727 (2022). https://doi.org/10.1021/acsenergylett.2c00124
Y. Wang, T. Wang, Y. Mao, Z. Li, H. Yu et al., Reversible protonated electrolyte additive enabling dendrites-free Zn metal anode with high depth of discharge. Adv. Energy Mater. 14(23), 2400353 (2024). https://doi.org/10.1002/aenm.202400353
D. Kong, C. Yuan, L. Zhi, Q. Zheng, Z. Yuan et al., N-CNTs-based composite membrane engineered by a partially embedded strategy: a facile route to high-performing zinc-based flow batteries. Adv. Funct. Mater. 33(34), 2301448 (2023). https://doi.org/10.1002/adfm.202301448
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/D2EE02931F
Q. Wu, J. Huang, J. Zhang, S. Yang, Y. Li et al., Multifunctional cellulose nanocrystals electrolyte additive enable ultrahigh-rate and dendrite-free Zn anodes for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 63(14), e202319051 (2024). https://doi.org/10.1002/anie.202319051
Y. Fang, P. Lei, H. Xing, W. Cai, Z. Fan et al., Quinone carbonyl activation for in situ constructing kinetic-boosted zincophilic polymer interphase toward high performance Zn metal anode. Energy Storage Mater. 65, 103097 (2024). https://doi.org/10.1016/j.ensm.2023.103097
N. Wang, X. Chen, H. Wan, B. Zhang, K. Guan et al., Zincophobic electrolyte achieves highly reversible zinc-ion batteries. Adv. Funct. Mater. 33(27), 2300795 (2023). https://doi.org/10.1002/adfm.202300795
R. Zhao, X. Dong, P. Liang, H. Li, T. Zhang et al., Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater. 35(17), 2209288 (2023). https://doi.org/10.1002/adma.202209288
L. Hong, J. Guan, Y. Tan, Y. Chen, Y.-S. Liu et al., An effective descriptor for the screening of electrolyte additives toward the stabilization of Zn metal anodes. Energy Environ. Sci. 17(9), 3157–3167 (2024). https://doi.org/10.1039/D4EE00199K
J.H. Jo, Y. Aniskevich, J. Kim, J.U. Choi, H.J. Kim et al., New insight on open-structured sodium vanadium oxide as high-capacity and long life cathode for Zn–ion storage: structure, electrochemistry, and first-principles calculation. Adv. Energy Mater. 10(40), 2001595 (2020). https://doi.org/10.1002/aenm.202001595
F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO3 for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35(23), e2208764 (2023). https://doi.org/10.1002/adma.202208764
B.-B. Sui, L. Sha, P.-F. Wang, Z. Gong, Y.-H. Zhang et al., In situ zinc citrate on the surface of Zn anode improves the performance of aqueous zinc-ion batteries. J. Energy Storage 82, 110550 (2024). https://doi.org/10.1016/j.est.2024.110550
J. Chen, W. Zhou, Y. Quan, B. Liu, M. Yang et al., Ionic liquid additive enabling anti-freezing aqueous electrolyte and dendrite-free Zn metal electrode with organic/inorganic hybrid solid electrolyte interphase layer. Energy Storage Mater. 53, 629–637 (2022). https://doi.org/10.1016/j.ensm.2022.10.004
H. Peng, Y. Fang, J. Wang, P. Ruan, Y. Tang et al., Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries. Matter 5(12), 4363–4378 (2022). https://doi.org/10.1016/j.matt.2022.08.025
L. Hong, X. Wu, L.-Y. Wang, M. Zhong, P. Zhang et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS Nano 16(4), 6906–6915 (2022). https://doi.org/10.1021/acsnano.2c02370
Y. Gao, N. Yang, F. Bu, Q. Cao, J. Pu et al., Double-sided engineering for space-confined reversible Zn anodes. Energy Environ. Sci. 17(5), 1894–1903 (2024). https://doi.org/10.1039/d3ee04292h
D. Feng, Y. Jiao, P. Wu, Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes. Angew. Chem. Int. Ed. 62(51), e202314456 (2023). https://doi.org/10.1002/anie.202314456
Y. Li, Z. Huang, P.K. Kalambate, Y. Zhong, Z. Huang et al., V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60, 752–759 (2019). https://doi.org/10.1016/j.nanoen.2019.04.009