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S1 Supplementary Text
S1.1 Chemicals
Chitosan (Aladdin, degree of deacetylation ≥ 95 %), Zn(CF3SO3)2 (Aladdin, ≥ 98 %), acetic acid (Tianjin Xinbote Chemical Co., Ltd, ≥ 95 %), Multi-CNTs (Shenzhen Nanoport Co., Ltd, > 97 %), V2O5 (Aladdin,> 99.99 %), Super P (TIMICAL), PVDF (Solef 5130), AlCl3 (Aladdin,> 99 %), 1-ethyl-3-methylimidazolium chloride (AIYAN, 97 %), NMP (Aladdin, ≥ 99.5 %) were used as received without any purification. Zn foil (100 μm, 20 μm), Cu foil (10 μm), Al foil (100 μm), Carbon paper (TGP-H-060, 0.19 mm).
[bookmark: _Hlk187700307][bookmark: OLE_LINK24]S1.2 Electrochemical testing
All battery tests were conducted using CR2032 model coin cells. Galvanostatic charge/discharge cycling, rate performance, nucleation overpotential, and coulombic efficiency were evaluated using a Neware electrochemical system. Cyclic voltammetry (CV) was performed at a scan rate of 0.1 mV s⁻1, and electrochemical impedance spectroscopy (EIS) was measured in the frequency range of 0.01-100 kHz (The potential control mode was employed to test the battery at its open-circuit potential). Chronoamperograms and linear polarization curves were obtained using an electrochemical workstation (CHI760E). All electrochemical tests except for temperature-variable impedance spectroscopy were conducted at room temperature.
The Zn²⁺ transference number was determined using the steady-state current method, with EIS measurements taken before and after the chronoamperometry. The value of Zn2+ transference number was calculated by the equation (S1) as follow:
     (S1)
where ΔV is the applied voltage polarization (10 mV), R0 and Rs represent the impedance before and after chronoamperometry test while I0 and Is represent initial and stable current during polarization.
[bookmark: _Hlk197026690]The ionic conductivity of the protective film was measured with EIS using a stainless steel electrode/protective film/stainless steel electrode system. The conductivity is calculated by the equation (S2) as follow:
     (S2)
where Rb represents the bulk resistance according to the EIS measurements, L represents the thickness of the protective film, and S is the contact area.
The activation energy Ea was calculated by Arrhenius equation (S3):
     (S3)
where A is the frequency factor, R is the gas constant, Rct is the interface resistance, and T is the absolute temperature (20-70°C).
Calculation of the depth of discharge (DOD) was done with the equation (S4) as follows:

where 𝝆 is the zinc density, Na is the Avogadro’s constant (Na = 6.02×1023), n is the number of electrons transferred for the Zn0 to Zn2+ conversion (n = 2), e is the electron electric charge (1.6×10-19 C) and l is the thickness of the zinc foil (l = 20 µm). X represent the areal capacity in each half cycle during Zn stripping/plating and M is the molecular mass of Zn (M = 65.38 g mol-1). According to this equation, the DOD = 42.8 % when the areal capacity is 5 mAh cm-2, while for an areal capacity of 10 mAh cm-2 the DOD = 85.6 %.
Equivalent circuit models for impedance data:
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GITT test method: 
The surface diffusion coefficient of Zn2+ is measured by Zn//V2O5 full batteries. The cells are charged and discharged intermittently with a current density of 0.2 A g-1, the charge-discharge time is 300 s, and the relaxation time is 30 min. The diffusion coefficient DZn2+ is obtained by the following formula:
DZn2+ = ( )     (S5)
where 𝜏 is the duration of the current pulse; 𝑚𝐵, 𝑉𝑀, 𝑀𝐵 and 𝑆 are the mass of the active material, the molar volume, the molar weight and the electrochemical active area respectively. ∆ES is the total voltage change caused by pulse and ∆E𝜏 is the voltage change of constant current charge/discharge.
S1.3 Theoretical calculations
Density Functional Theory (DFT) calculation. DFT was employed to calculate the energy levels of H₂O and chitosan molecules. The structures of H₂O, (CF₃SO₃)⁻, and chitosan were optimized using Gaussian 09 with the D1 method at the B3LYP/6-31G* level of theory. The structure of Zn2⁺ was optimized using Gaussian 09 with the D1 method at the B3LYP/SDD level of theory. The restrained electrostatic potential (RESP) atom charges and electrostatic potential (ESP) were calculated using Multiwfn 3.8 software [S1].
Finite-element simulations. The electrochemical reaction process of Zn2+ on the anodic deposition interface of zinc ion battery was simulated by finite element analysis method using the software COMSOL Multiphysics®. In these simplified simulations, the migration of Zn2+ driven by electric field and diffusion flow in liquid phase (electrolyte) and solid phase is considered. The length of the electrodes is 8 μm, and the distance between them is 5.5 μm. The bulge on the surface of the bare Zn anode is composed of five ellipses (radius is 0.1 μm), and the distance between the two semicircles is 1 μm. The cathode potential is set to 0.5 V, and the anode potential is set to 0 V. The concentration of Zn2+ was calculated by the Nernst-Planck equation. In this model, the voltage difference of the electrode was set to 0.5 V. The initial Zn2+ concentration was set to 2 M. The diffusion coefficient of Zn2+ in the electrolyte was set to 210-10m2 s-1. The average current density through the cell is set to 225 A m-2.
Simulations of battery cost and energy density. The evaluation of energy density and costs was conducted using the open-source BatPaC 5.0 software. A comprehensive overview of the BatPaC model is available in the associated report published by Argonne National Laboratory [S2]. This model is tailored for simulating battery packs with specific energy and power requirements, taking into consideration the costs of various elements, including active materials, conductive carbon, binders, separators, electrolytes, current collectors, casings, pack current collectors, cooling systems, labor, and overhead expenses. It also includes the capital costs associated with setting up the production site.
The battery pack simulated is intended for residential energy storage, with a power rating of 1 kW and an energy rating of 11.5 kWh. Each module contains 72 cells, arranged in a series of two modules, resulting in a total of 144 cells per battery pack. The production volume is targeted at 25,000 packs annually. The cathode active material cost was assumed in accordance with the current bulk prices of vanadium pentoxide [S3], while the rest of the costs and parameters was based on the work of Innocenti et al [S4]. The batteries were simulated using the voltage vs. specific capacity discharge curve of Fig. S31 (curves @ 0.1 A·g-1). The costs associated with the dry room and the production of the negative electrode were excluded for the rechargeable zinc battery. The aqueous electrolyte removes the need for a dry environment during materials and battery processing. Furthermore, the negative electrode, made from zinc metal foil, does not require coating or drying procedures. All primary parameters for the simulations are provided in Table S2, with the key results shown in Table S3.
The simulations are performed assuming a hypothetical optimized rechargeable zinc battery system, as the metrics reported in the main texts, such as the amount of active material in the cathode, zinc electrode utilization, and thickness of the components, are not suitable for a commercial system. Specifically:
The chosen electrode composition, electrode porosity, separator thickness are representative of typical commercial lithium-ion batteries.
 The electrolyte is assumed to be a 2 M ZnSO4 solution in water [S4]. In fact, the zinc triflate used as salt in the electrolyte, being a specialty chemical, is too expensive to be practically considered as electrolyte salt for these calculations [S4]. 
 No additional cost was assumed for the protective layer. This allows us to determine the maximum cost at which this extra treatment could be added without negating the cost benefits per kWh. Specifically, the cell cost decreases from $162 to $151 per kWh, meaning the protective layer should not exceed $11 per kWh to remain cost-effective. However, this calculation does not account for the substantial improvement in battery cycle life provided by this treatment.
We had to assume a maximum power output of 1 kW instead of 7 kW, as used in other studies simulating similar small battery packs. The relatively low average voltage of these zinc batteries (about 0.77 V) necessitates a much higher nominal cell current to deliver sufficient power. Stainless steel current collectors, commonly used in rechargeable aqueous zinc batteries, have a resistivity that is an order of magnitude higher than that of copper or aluminum used in lithium-ion batteries. This increased resistivity, coupled with the high current on the thin 20 µm sheets assumed in our calculations, would make it impractical to assume a 7 kW maximum power output. In that scenario, current collectors around 500 µm thick would be required to supply such power, but this would drastically reduce the cell’s energy density and specific energy.
S2 Supplementary Figures and Tables
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Fig. S1 Molecular orbital energies of H2O and chitosan molecules calculated by DFT
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Fig. S2 Chitosan amino protonation reaction formula
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Fig. S3 FT-IR spectrum of chitosan powder, chitosan and chitosan/CNTs protective layer
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[bookmark: _Hlk197270361]Fig. S4 Zeta potentials of acetic acid and chitosan dissolved in acetic acid
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Fig. S5 XPS spectra of N 1s for chitosan/CNTs protective layer
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[bookmark: OLE_LINK2]Fig. S6 Contact angles of 2 M Zn(CF3SO3)2 electrolyte on bare Zn and chitosan/CNTs @ Zn
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Fig. S7 Mechanical strength of the chitosan/CNTs protective layer
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Fig. S8 Optical microscopy images of zinc deposition on bare Zn at 10 mA cm-2.
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Fig. S9 SEM of bare Zn after 20 cycles under 1 mA cm-2,1 mAh cm-2
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[bookmark: _GoBack]Fig. S10 3D optical image of bare Zn after 20 cycles under 1 mA cm-2, 1 mAh cm-2
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[bookmark: OLE_LINK3]Fig. S11 In situ CT before and after cycling of bare Zn
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[bookmark: _Hlk197026100]Fig. S12 Zn//Zn symmetric beaker batteries digital camera images (a) chitosan/CNTs @ Zn and (b) bare Zn anode. Cycle performance of Zn // Zn symmetric beaker batteries (c) chitosan/CNTs @ Zn and (d) bare Zn anode
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Fig. S13 SEM of different anodes after cycling in Zn//Zn symmetrical beaker batteries (a) chitosan/CNTs @ Zn (b) bare Zn
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[bookmark: _Hlk170317313][bookmark: _Hlk170284230]Fig. S14 Nucleation overpotential for Zn//Cu batteries with chitosan/CNTs @ Zn and bare Zn anodes at 1 mA cm-2, 1 mAh cm-2
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Fig. S15 Current–time curve of (a) chitosan/CNTs @ Zn and (b) bare Zn symmetric batteries in 2 M Zn(CF3SO3)2 at 10 mV. Inset: the electrochemical impedance spectroscopy (EIS) spectra of the chitosan/CNTs @ Zn and bare Zn symmetric batteries before and after the CA test
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Fig. S16 Electrochemical impedance spectra of (a) chitosan/CNTs and (b) chitosan protective layer
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[bookmark: _Hlk170284782]Fig. S17 (a) Exchange current density comparison of chitosan/CNTs @ Zn and bare Zn anodes. The (b) bare Zn (c) chitosan/CNTs @ Zn symmetrical battery was cycled for 10 cycles at 0.2 mA cm-2 to 10 mA cm-2
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[bookmark: _Hlk197013594]Fig. S18 EIS spectra at different temperatures of Zn//Zn symmetric batteries with (a) chitosan/CNTs @ Zn and (b) bare Zn anode. (c) The calculated activation energy of different anodes
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Fig. S19 CV curves of symmetric bare Zn and chitosan/CNTs @ Zn batteries at a scan rate of 1 mV s−1
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[bookmark: _Hlk176370461][bookmark: _Hlk197268891][bookmark: _Hlk170285460]Fig. S20 Two-dimensional and three-dimensional in-situ Raman spectra of -OH (a,b) chitosan/CNTs @ Zn (c,d) bare Zn on symmetrical batteries in 2 M Zn(CF3SO3)2
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[bookmark: _Hlk197098194]Fig. S21 XRD patterns of chitosan/CNTs @ Zn and bare Zn anodes after 20 cycles under 1 mA cm-2, 1 mAh cm-2
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[bookmark: _Hlk170286077]Fig. S22 Cycling performance of chitosan/CNTs @ Zn symmetrical battery with different CNTs at 1 mA cm-2, 1 mAh cm-2
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[bookmark: OLE_LINK22]Fig. S23 Cycling performance of symmetric batteries with different anodes at 0.5 mA cm-2, 0.25 mAh cm-2
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[bookmark: _Hlk197097070]Fig. S24 Cycling performance of symmetric batteries with different anodes in 2 M ZnSO4 at 1 mA cm-2, 1 mAh cm-2
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Fig. S25 Rate performance of symmetric batteries with different anodes and the corresponding voltage hysteresis was obtained at different current densities from 0.5 to 10 mA cm-2
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[bookmark: _Hlk197718118]Fig. S26 (a) Coulombic efficiencies of Zn//Cu and chitosan/CNTs @ Zn//Cu half batteries during cycles at 1 mA cm-2. Corresponding voltage profiles of the asymmetric (b) chitosan/CNTs @ Zn//Cu and (c) bare Zn//Cu batteries
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[bookmark: OLE_LINK1]Fig. S27 GCD profiles of the asymmetric (a) chitosan/CNTs @ Zn//Cu and (b) bare Zn @ Cu batteries at 1 mA cm-2, 1 mAh cm-2
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[bookmark: _Hlk197265616]Fig. S28 Rate performance at different rates of bare Zn// V2O5 and chitosan/CNTs @ Zn//V2O5 batteries
[image: ]
[bookmark: _Hlk198235759][bookmark: OLE_LINK8][bookmark: _Hlk197507529]Fig. S29 GITT curves and corresponding diffusion coefficient of (a) chitosan / CNTs @ Zn//V2O5 and (b) bare Zn//V2O5 batteries
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[bookmark: OLE_LINK10]Fig. S30 Bare Zn// V2O5 and chitosan/CNTs @ Zn//V2O5 batteries annual cost assessment of production materials. Noted: Total cost of cell materials herein is excluding the cost of the chitosan/CNTs layer. Noted: Total cost of cell materials herein is excluding the cost of the chitosan/CNTs protective layer
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Fig. S31 The 3st GCD of bare Zn// V2O5 and chitosan/CNTs @ Zn//V2O5 batteries
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[bookmark: _Hlk197019754]Fig. S32 Cycling performance of bare Al and chitosan/CNTs @ Al symmetric batteries at 0.1 mA cm-2,0.1 mAh cm-2
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Fig. S33 TEM of commercial CNTs
Table S1 Comparison in electrochemical performance of Zn//Zn symmetric batteries with different anodes
	Modified strategies
	Current density, (mA cm-2)
	Areal capacity,
(mAh cm-2)
	Lifespan
(hours)
	Refs.

	Zn@Zn-BTC
	1
	1
	800
	 [S5]

	Zn@ZrP
	0.5
	1
	780
	 [S6]

	PZIL
	1
	1
	1000
	 [S7]

	Sb2O3@Zn
	1
	0.5
	1000
	 [S8]

	Zn@Sb
	1
	1
	800
	 [S9]

	CeO2@Zn
	0.5
	0.25
	1300
	 [S10]

	PDA@Zn
	1
	1
	1100
	 [S11]

	EDTA-2Na
	5
	2.5
	500
	 [S12]

	ZP-coated
	5
	2.5
	250
	 [S13]

	IF-BTO
	0.25
	0.25
	1600
	 [S14]

	Triple-gradient
	5
	2.5
	400
	 [S15]

	Cu@CNFs
	2.5
	2.5
	800
	 [S16]

	F-GQDs
	0.5
	0.25
	1800
	 [S17]

	MB @ Zn
	2
	1
	650
	 [S18]

	SC-PPS@Zn
	1
	1
	600
	 [S19]

	
Chitosan/CNTs @ Zn

	2
	1
	2070
	This Work

	
	5
	2.5
	870
	


Table S2 Main parameters used in the simulation of the battery packs
	Parameter
	Bare Zn // V2O5
	Chitosan/CNTs @ Zn // V2O5

	Positive electrode active material specific capacity (mAh·g-1)
	362
	418

	Positive electrode active material density (g·cm-3)
	3.36
	3.36

	Positive electrode composition (AM:CC:B, weight fractions)
	94:3:3
	94:3:3

	Positive electrode active material cost 
($·kg-1)
	10
	10

	Positive electrode porosity
	25%
	25%

	Positive electrode current collector thickness (µm)
	20 (Stainless steel)
	20 (Stainless steel)

	Positive electrode current collector cost 
($·m-2)
	0.8
	0.8

	Negative electrode active material specific capacity (mAh·g-1)
	820
	820

	Negative electrode active material density (g·cm-3)
	7.14
	7.14

	Negative electrode composition (AM:CC:B, weight fractions)
	100:0:0
	100:0:0

	Negative electrode active material cost 
($·kg-1)
	2.50
	2.50

	Negative electrode current collector thickness (µm)
	20 (Stainless steel)
	20 (Stainless steel)

	Negative electrode current collector cost ($·m-2)
	0.8
	0.8

	Electrolyte density (g·cm-3)
	1.28
	1.28

	Electrolyte cost ($·L-1)
	1
	1

	Separator thickness (µm)
	15
	15

	N/P ratioa
	1.1
	1.1


a Ratio between the capacity of the anode and the capacity of the cathode
[bookmark: _Hlk185703896]Table S3 Main results of the simulation of the battery packs
	Parameter
	Bare Zn // V2O5
	Chitosan/CNTs @ Zn // V2O5

	Positive electrode active material cost ($·pack-1)
	572
	506

	Negative electrode active material cost ($·pack-1)
	68
	70

	Electrodes preparation cost ($·pack-1)
	123
	109

	Positive electrode current collector cost ($·pack-1)
	98
	87

	Negative electrode current collector cost ($·pack-1)
	102
	91

	Separators cost ($·pack-1)
	24
	22

	Electrolyte cost ($·pack-1)
	8
	7

	Battery system total energy (kWh)
	11.5
	11.5

	Battery system rated power (KW)
	1
	1

	Battery system capacity, (Ah)
	121
	123

	Battery system nominal operating voltage (V)
	95
	93

	Positive electrode thickness (µm)
	120
	120

	Negative electrode thickness (µm)
	18
	21

	Cell volume (L)
	0.37
	0.34

	Cell mass (kg)
	0.73
	0.68

	Cell capacity (Ah)
	121
	123

	Cell specific energy (Wh·kg-1)
	109
	117

	Cell energy density (Wh·L-1)
	216
	235

	Cell cost ($·kWh-1)
	162
	151



Table S4 Detailed data of the simulation of the battery packs
	[bookmark: _Hlk185699975]
	Bare Zn // V2O5
	Chitosan/CNTs @ Zn // V2O5

	Total cost of cell materials ($/cell)
	7.48
	7.11

	Direct labor ($/cell)
	0.87
	0.85

	Variable overhead
($/cell)
	0.72
	0.70

	Total fixed costs ($/cell)
	3.42
	3.35

	Total cost of materials ($/year)
	28,222,881
	25,605,692

	Total other variable costs ($/year)
	5,719,323
	5,594,047

	Total fixed costs
($/year)
	12,313,132
	12,067,922

	Total year cost ($/year)
	46,255,336
	43,267,661

	Energy density (Wh/l)
	216
	235

	Specific energy (Wh/kg)
	109
	117
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