Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering
Corresponding Author: Hao Liu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 178
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising way to convert CO2 to chemicals. The multicarbon (C2+) products, especially ethylene, are of great interest due to their versatile industrial applications. However, selectively reducing CO2 to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products. Nonetheless, mechanistic understanding of the key steps and preferred reaction pathways/conditions, as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO2RR. In this review, we first illustrate the key steps for CO2RR to ethylene (e.g., CO2 adsorption/activation, formation of *CO intermediate, C–C coupling step), offering mechanistic understanding of CO2RR conversion to ethylene. Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products (C1 and other C2+ products) are investigated, guiding the further design and development of preferred conditions for ethylene generation. Engineering strategies of Cu-based catalysts for CO2RR-ethylene are further summarized, and the correlations of reaction mechanism/pathways, engineering strategies and selectivity are elaborated. Finally, major challenges and perspectives in the research area of CO2RR are proposed for future development and practical applications.
Highlights:
1 Three key processes in carbon dioxide reduction reaction (CO2RR) for ethylene generation were discussed, including CO2 adsorption/activation, *CO intermediates formation, and C-C coupling.
2 The preferable mechanism for ethylene over C1 and other C2 products reaction pathways.
3 Engineering strategies of Cu-based catalysts for CO2RR-ethylene.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.H. Fu, D.R. Sun, Y.J. Chen, R.K. Huang, Z.X. Ding et al., An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51(14), 3364–3367 (2012). https://doi.org/10.1002/anie.201108357
- K. Caldeira, M.E. Wickett, Anthropogenic carbon and ocean pH. Nature 425(6956), 365–365 (2003). https://doi.org/10.1038/425365a
- V. Masson-Delmotte, M. Kageyama, P. Braconnot, S. Charbit, G. Krinner et al., Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dynam. 27(4), 437–440 (2006). https://doi.org/10.1007/s00382-006-0149-1
- J.W.C. White, P. Ciais, R.A. Figge, R. Kenny, V. Markgraf, A high-resolution record of atmospheric CO2 content from carbon isotopes in pet. Nature 367(6459), 153–156 (1994). https://doi.org/10.1038/367153a0
- S. Nitopi, E. Bertheussen, S.B. Scott, X.Y. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- J. Huo, Z. Shen, X. Cao, L. Li, Y. Zhao et al., Macro/micro-environment regulating carbon-supported single-atom catalysts for hydrogen/oxygen conversion reactions. Small 18(32), 2202394 (2022). https://doi.org/10.1002/smll.202202394
- J. Huo, X. Cao, Y. Tian, L. Li, J. Qu et al., Atomically dispersed mn atoms coordinated with n and o within an n-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 15(11), 5448–5457 (2023). https://doi.org/10.1039/D2NR06096E
- S.M. Benson, F.M. Orr, Carbon dioxide capture and storage. MRS Bull. 33(4), 303–305 (2008). https://doi.org/10.1557/mrs2008.63
- G.B. Wen, B.H. Ren, Y. Zheng, M. Li, C. Silva et al., Engineering electrochemical surface for efficient carbon dioxide upgrade. Adv. Energy Mater. 12(3), 2103289 (2022). https://doi.org/10.1002/aenm.202103289
- X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nano-Micro Lett. 14(1), 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14(1), 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
- C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14(1), 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
- F.W. Li, A. Thevenon, A. Rosas-Hernandez, Z.Y. Wang, Y.L. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577(7791), 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2
- P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6482), 6438 (2020). https://doi.org/10.1126/science.abb0992
- N. Han, P. Ding, L. He, Y. Li, Y. Li, Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), 1902338 (2020). https://doi.org/10.1002/aenm.201902338
- T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10(3), 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746
- X. Cao, J. Huo, L. Li, J. Qu, Y. Zhao et al., Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 12(41), 2202119 (2022). https://doi.org/10.1002/aenm.202202119
- Y. Zhao, J. Zhang, X. Guo, X. Cao, S. Wang et al., Engineering strategies and active site identification of mxene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 52(9), 3215–3264 (2023). https://doi.org/10.1039/D2CS00698G
- Y. Hori, K. Kikuchi, A. Murata, S. Suzuki, Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 15(6), 897–898 (1986). https://doi.org/10.1246/cl.1986.897
- Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Transl. 85(8), 2309–2326 (1989). https://doi.org/10.1039/F19898502309
- Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 109, 5022–5023 (1987). https://doi.org/10.1021/ja00250a044
- Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Commun. 1, 17–19 (1988). https://doi.org/10.1039/C39880000017
- H. Yoshio, M. Akira, T. Ryutaro, S. Shin, Electrochemical reduction of carbon monoxide to hydrocarbons at various metal electrodes in aqueous solution. Chem. Lett. 16(8), 1665–1668 (1987). https://doi.org/10.1246/cl.1987.1665
- B.X. Zhang, J.L. Zhang, M.L. Hua, Q. Wan, Z.Z. Su et al., Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 142(31), 13606–13613 (2020). https://doi.org/10.1021/jacs.0c06420
- M.G. Kibria, C.T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny et al., A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 30(49), 1804867 (2018). https://doi.org/10.1002/adma.201804867
- C. Choi, S. Kwon, T. Cheng, M.J. Xu, P. Tieu et al., Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3(10), 804–812 (2020). https://doi.org/10.1038/s41929-020-00504-x
- Y. Chen, Z.X. Fan, J. Wang, C.Y. Ling, W.X. Niu et al., Ethylene selectivity in electrocatalytic CO2 reduction on cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 142(29), 12760–12766 (2020). https://doi.org/10.1021/jacs.0c04981
- C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100
- M. Zhong, K. Tran, Y.M. Min, C.H. Wang, Z.Y. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
- J.J. Wu, S.C. Ma, J. Sun, J.I. Gold, C. Tiwary et al., A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016). https://doi.org/10.1038/ncomms13869
- D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier et al., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18(11), 1222–1227 (2019). https://doi.org/10.1038/s41563-019-0445-x
- D.H. Nam, O.S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani et al., Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140(36), 11378–11386 (2018). https://doi.org/10.1021/jacs.8b06407
- N. Martic, C. Reller, C. Macauley, M. Loffler, B. Schmid et al., Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction. Adv. Energy Mater. 9(29), 1901228 (2019). https://doi.org/10.1002/aenm.201901228
- J. Kim, W. Choi, J.W. Park, C. Kim, M. Kim et al., Branched copper oxide nanops induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141(17), 6986–6994 (2019). https://doi.org/10.1021/jacs.9b00911
- B. Yang, K. Liu, H. Li, C. Liu, J. Fu et al., Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 144(7), 3039–3049 (2022). https://doi.org/10.1021/jacs.1c11253
- D.-H. Nam, O. Shekhah, A. Ozden, C. McCallum, F. Li et al., High-rate and selective CO2 electrolysis to ethylene via metal-organic-framework-augmented CO2 availability. Adv. Mater. 34(51), 2207088 (2022). https://doi.org/10.1002/adma.202207088
- J. Zhang, Y. Wang, Z. Li, S. Xia, R. Cai et al., Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv. Sci. 9(21), 2200454 (2022). https://doi.org/10.1002/advs.202200454
- W.C. Ma, S.J. Xie, T.T. Liu, Q.Y. Fan, J.Y. Ye et al., Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3(6), 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0
- A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8(2), 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
- Y.W. Lum, T. Cheng, W.A. Goddard, J.W. Ager, Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140(30), 9337–9340 (2018). https://doi.org/10.1021/jacs.8b03986
- F. Calle-Vallejo, M.T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52(28), 7282–7285 (2013). https://doi.org/10.1002/anie.201301470
- M.B. Ross, P. De Luna, Y.F. Li, C.T. Dinh, D. Kim et al., Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2(8), 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7
- M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17(29), 18924–18936 (2015). https://doi.org/10.1039/c5cp03283k
- L.M. Wang, W.L. Chen, D.D. Zhang, Y.P. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48(21), 5310–5349 (2019). https://doi.org/10.1039/c9cs00163h
- G. Zhang, Z.-J. Zhao, D. Cheng, H. Li, J. Yu et al., Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 12(1), 5745 (2021). https://doi.org/10.1038/s41467-021-26053-w
- X.X. Chang, T. Wang, J.L. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9(7), 2177–2196 (2016). https://doi.org/10.1039/c6ee00383d
- M. Favaro, H. Xiao, T. Cheng, W.A. Goddard, J. Yano et al., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. 114(26), 6706–6711 (2017). https://doi.org/10.1073/pnas.1701405114
- Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- Y. Yang, Z. Tan, J. Zhang, Electrocatalytic carbon dioxide reduction to ethylene over copper-based catalytic systems. Chem. Asian J. 17(24), e202200893 (2022). https://doi.org/10.1002/asia.202200893
- M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao et al., Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 144(32), 14936–14944 (2022). https://doi.org/10.1021/jacs.2c06820
- J. Hou, X. Chang, J. Li, B. Xu, Q. Lu, Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ spectroscopic and reactivity investigations. J. Am. Chem. Soc. 144(48), 22202–22211 (2022). https://doi.org/10.1021/jacs.2c09956
- Y. Kim, S. Park, S.J. Shin, W. Choi, B.K. Min et al., Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13(11), 4301–4311 (2020). https://doi.org/10.1039/d0ee01690j
- E. Pérez-Gallent, M.C. Figueiredo, F. Calle-Vallejo, M.T.M. Koper, Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56(13), 3621–3624 (2017). https://doi.org/10.1002/anie.201700580
- W.C. Ma, X.Y. He, W. Wang, S.J. Xie, Q.H. Zhang et al., Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50(23), 12897–12914 (2021). https://doi.org/10.1039/d1cs00535a
- T. Cheng, H. Xiao, W.A. Goddard, Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 k. Proc. Natl. Acad. Sci. 114(8), 1795–1800 (2017). https://doi.org/10.1073/pnas.1612106114
- J.D. Goodpaster, A.T. Bell, M. Head-Gordon, Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7(8), 1471–1477 (2016). https://doi.org/10.1021/acs.jpclett.6b00358
- H. Xiao, T. Cheng, W.A. Goddard, Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139(1), 130–136 (2017). https://doi.org/10.1021/jacs.6b06846
- Y.H. Wang, J.L. Liu, G.F. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 33(46), 2005798 (2021). https://doi.org/10.1002/adma.202005798
- Z. Ni, H. Liang, Z. Yi, R. Guo, C. Liu et al., Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. Coordin. Chem. Rev. 441, 213983 (2021). https://doi.org/10.1016/j.ccr.2021.213983
- Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11), 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
- Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101(36), 7075–7081 (1997). https://doi.org/10.1021/jp970284i
- A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
- K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/c2ee21234j
- J.H. Montoya, C. Shi, K. Chan, J.K. Norskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6(11), 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722
- R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
- T. Cheng, H. Xiao, W.A. Goddard, Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 6(23), 4767–4773 (2015). https://doi.org/10.1021/acs.jpclett.5b02247
- J.T. Feaster, C. Shi, E.R. Cave, T.T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
- X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang et al., pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10(1), 32 (2019). https://doi.org/10.1038/s41467-018-07970-9
- I.V. Chernyshova, P. Somasundaran, S. Ponnurangam, On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. 115(40), E9261–E9270 (2018). https://doi.org/10.1073/pnas.1802256115
- S.A. Petrosyan, A.A. Rigos, T.A. Arias, Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B 109(32), 15436–15444 (2005). https://doi.org/10.1021/jp044822k
- R. Sundararaman, W.A. Goddard, The charge-asymmetric nonlocally determined local-electric (candle) solvation model. J. Chem. Phys. 142(6), 064107 (2015). https://doi.org/10.1063/1.4907731
- X.W. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52(9), 2459–2462 (2013). https://doi.org/10.1002/anie.201208320
- X.W. Nie, W.J. Luo, M.J. Janik, A. Asthagiri, Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 312, 108–122 (2014). https://doi.org/10.1016/j.jcat.2014.01.013
- K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2(10), 1902–1909 (2011). https://doi.org/10.1039/c1sc00277e
- F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54(17), 5179–5182 (2015). https://doi.org/10.1002/anie.201412214
- H. Xiao, T. Cheng, W.A. Goddard, R. Sundararaman, Mechanistic explanation of the ph dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138(2), 483–486 (2016). https://doi.org/10.1021/jacs.5b11390
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- B. Pan, Y. Wang, Y. Li, Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem. Catal. 2(6), 1267–1276 (2022). https://doi.org/10.1016/j.checat.2022.03.012
- B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar et al., Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 62, 133–154 (2017). https://doi.org/10.1016/j.pecs.2017.05.005
- C. Chen, J.F. Khosrowabadi Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4(11), 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
- W. Nie, G.P. Heim, N.B. Watkins, T. Agapie, J.C. Peters, Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem. Int. Ed. 62(12), e202216102 (2023). https://doi.org/10.1002/anie.202216102
- M. Ma, K. Djanashvili, W.A. Smith, Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55(23), 6680–6684 (2016). https://doi.org/10.1002/anie.201601282
- T. Ahmad, S. Liu, M. Sajid, K. Li, M. Ali et al., Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res. Energy 1, e9120021 (2022). https://doi.org/10.26599/NRE.2022.9120021
- M.C.O. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López et al., Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4(8), 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5
- A. Murata, Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. B Chem. Soc. of Jpn. 64(1), 123–127 (1991). https://doi.org/10.1246/bcsj.64.123
- E. Pérez-Gallent, G. Marcandalli, M.C. Figueiredo, F. Calle-Vallejo, M.T.M. Koper, Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139(45), 16412–16419 (2017). https://doi.org/10.1021/jacs.7b10142
- J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn et al., Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139(32), 11277–11287 (2017). https://doi.org/10.1021/jacs.7b06765
- V.J. Ovalle, Y.-S. Hsu, N. Agrawal, M.J. Janik, M.M. Waegele, Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5(7), 624–632 (2022). https://doi.org/10.1038/s41929-022-00816-0
- H. Liu, J. Liu, B. Yang, Promotional role of a cation intermediate complex in C2 formation from electrochemical reduction of CO2 over Cu. ACS Catal. 11(19), 12336–12343 (2021). https://doi.org/10.1021/acscatal.1c01072
- A.S. Malkani, J. Li, N.J. Oliveira, M. He, X. Chang et al., Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6(45), eabd2569 (2020). https://doi.org/10.1126/sciadv.abd2569
- M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager III., A.T. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138(39), 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612
- O. Ayemoba, A. Cuesta, Spectroscopic evidence of size-dependent buffering of interfacial ph by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9(33), 27377–27382 (2017). https://doi.org/10.1021/acsami.7b07351
- F. Zhang, A.C. Co, Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59(4), 1674–1681 (2020). https://doi.org/10.1002/anie.201912637
- G. Marcandalli, M.C.O. Monteiro, A. Goyal, M.T.M. Koper, Electrolyte effects on CO2 electrochemical reduction to CO. Accounts Chem. Res. 55(14), 1900–1911 (2022). https://doi.org/10.1021/acs.accounts.2c00080
- K.J.P. Schouten, E. Pérez Gallent, M.T.M. Koper, The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanaly. Chem. 716, 53–57 (2014). https://doi.org/10.1016/j.jelechem.2013.08.033
- A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016). https://doi.org/10.1016/j.cattod.2015.06.009
- Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141(19), 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
- K. Jiang, R.B. Sandberg, A.J. Akey, X. Liu, D.C. Bell et al., Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1(2), 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x
- D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2(3), 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
- G. Chen, J. Fu, B. Liu, C. Cai, H. Li et al., Passivation of Cu nanosheet dissolution with Cu2+-containing electrolytes for selective electroreduction of CO2 to CH4. Environ. Sci-Nano 9(9), 3312–3317 (2022). https://doi.org/10.1039/D2EN00561A
- J. Li, Z.Y. Wang, C. McCallum, Y. Xu, F.W. Li et al., Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2(12), 1124–1131 (2019). https://doi.org/10.1038/s41929-019-0380-x
- K.J.P. Schouten, E. Pérez Gallent, M.T.M. Koper, Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3(6), 1292–1295 (2013). https://doi.org/10.1021/cs4002404
- D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster et al., Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7(2), 130–143 (2022). https://doi.org/10.1038/s41560-021-00973-9
- D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C.P. Berlinguette, Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51(4), 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010
- X. Zhou, H. Liu, B.Y. Xia, K. Ostrikov, Y. Zheng et al., Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 3(1), 111–129 (2022). https://doi.org/10.1002/smm2.1109
- A.K. Buckley, M. Lee, T. Cheng, R.V. Kazantsev, D.M. Larson et al., Electrocatalysis at organic-metal interfaces: Identification of structure-reactivity relationships for CO2 reduction at modified Cu surfaces. J. Am. Chem. Soc. 141(18), 7355–7364 (2019). https://doi.org/10.1021/jacs.8b13655
- H. Noda, S. Ikeda, Y. Oda, K. Ito, Potential dependencies of the products on electrochemical reduction of carbon dioxide at a copper electrode. Chem. Lett. 18(2), 289–292 (1989). https://doi.org/10.1246/cl.1989.289
- Z. Wang, Y. Li, X. Zhao, S. Chen, Q. Nian et al., Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J. Am. Chem. Soc. 145(11), 6339–6348 (2023). https://doi.org/10.1021/jacs.2c13384
- F.P. Pan, Y. Yang, Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13(8), 2275–2309 (2020). https://doi.org/10.1039/d0ee00900h
- Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Cover picture: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 90275 (2009). https://doi.org/10.1002/anie.200890275
- Y.F. Shi, Z.H. Lyu, M. Zhao, R.H. Chen, Q.N. Nguyen et al., Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121(2), 649–735 (2021). https://doi.org/10.1021/acs.chemrev.0c00454
- D.H. Chi, H.P. Yang, Y.F. Du, T. Lv, G.J. Sui et al., Morphology-controlled CuO nanops for electroreduction of CO2 to ethanol. RSC Adv. 4(70), 37329–37332 (2014). https://doi.org/10.1039/c4ra05415f
- J.W. Yin, J. Wang, Y.B. Ma, J.L. Yu, J.W. Zhou et al., Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 3(1), 121–133 (2021). https://doi.org/10.1021/acsmaterialslett.0c00473
- H.Y. Zhang, Y.J. Zhang, Y.Y. Li, S. Ahn, G.T.R. Palmore et al., Cu nanowire- catalyzed electrochemical reduction of CO or CO2. Nanoscale 11(25), 12075–12079 (2019). https://doi.org/10.1039/c9nr03170g
- Q. Li, W.L. Zhu, J.J. Fu, H.Y. Zhang, G. Wu et al., Controlled assembly of Cu nanops on pyridinic-n rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24, 1–9 (2016). https://doi.org/10.1016/j.nanoen.2016.03.024
- N.T. Suen, Z.R. Kong, C.S. Hsu, H.C. Chen, C.W. Tung et al., Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide. ACS Catal. 9(6), 5217–5222 (2019). https://doi.org/10.1021/acscatal.9b00790
- Z.Y. Chang, S.J. Huo, W. Zhang, J.H. Fang, H.L. Wang, The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J. Phys. Chem. C 121(21), 11368–11379 (2017). https://doi.org/10.1021/acs.jpcc.7b01586
- J.J. Lv, M. Jouny, W. Luc, W.L. Zhu, J.J. Zhu et al., A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30(49), 1803111 (2018). https://doi.org/10.1002/adma.201803111
- Y. Hori, in Electrochemical CO2 Reduction on Metal Electrodes. ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-aldeco (Springer, New York, 2008), pp.89–189
- J.H. Baricuatro, Y.-G. Kim, C.L. Korzeniewski, M.P. Soriaga, Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials. Electrochem. Commun. 91, 1–4 (2018). https://doi.org/10.1016/j.elecom.2018.04.016
- W. Liu, P. Zhai, A. Li, B. Wei, K. Si et al., Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13(1), 1877 (2022). https://doi.org/10.1038/s41467-022-29428-9
- T. Burdyny, P.J. Graham, Y.J. Pang, C.T. Dinh, M. Liu et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5(5), 4031–4040 (2017). https://doi.org/10.1021/acssuschemeng.7b00023
- H. Kakizaki, H. Ooka, T. Hayashi, A. Yamaguchi, N. Bonnet-Mercier et al., Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide. Adv. Funct. Mater. 28(24), 1706319 (2018). https://doi.org/10.1002/adfm.201706319
- T. Wu, M.L. Stone, M.J. Shearer, M.J. Stolt, I.A. Guzei et al., Crystallographic facet dependence of the hydrogen evolution reaction on cops: theory and experiments. ACS Catal. 8(2), 1143–1152 (2018). https://doi.org/10.1021/acscatal.7b03167
- S.C. Wang, G. Liu, L.Z. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119(8), 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
- Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A-Chem. 199(1–2), 39–47 (2003). https://doi.org/10.1016/S1381-1169(03)00016-5
- Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106(1), 15–17 (2002). https://doi.org/10.1021/jp013478d
- Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 335, 258–263 (1995). https://doi.org/10.1016/0039-6028(95)00441-6
- W.J. Luo, X.W. Nie, M.J. Janik, A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6(1), 219–229 (2016). https://doi.org/10.1021/acscatal.5b01967
- Y. Huang, A.D. Handoko, P. Hirunsit, B.S. Yeo, Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of *CO coverage on the selective formation of ethylene. ACS Catal. 7(3), 1749–1756 (2017). https://doi.org/10.1021/acscatal.6b03147
- G.L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W.A. Smith et al., Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 10(9), 4854–4862 (2020). https://doi.org/10.1021/acscatal.0c00297
- H. Li, P. Yu, R. Lei, F. Yang, P. Wen et al., Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene. Angew. Chem. Int. Ed. 60(47), 24838–24843 (2021). https://doi.org/10.1002/anie.202109600
- C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren et al., Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5(1), 161–168 (2015). https://doi.org/10.1039/c4cy00906a
- Y.H. Wang, Z.Y. Wang, C.T. Dinh, J. Li, A. Ozden et al., Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3(2), 98–106 (2020). https://doi.org/10.1038/s41929-019-0397-1
- H. Luo, B. Li, J.G. Ma, P. Cheng, Surface modification of nano-CuO2 for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem. Int. Ed. 61(11), e202116736 (2022). https://doi.org/10.1002/anie.202116736
- H. Deng, C. Guo, P. Shi, G. Zhao, Amino assisted protonation for carbon-carbon coupling during electroreduction of carbon dioxide to ethylene on copper(i) oxide. ChemCatChem 13(20), 4325–4333 (2021). https://doi.org/10.1002/cctc.202100620
- L. Li, A.H. Larsen, N.A. Romero, V.A. Morozov, C. Glinsvad et al., Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4(1), 222–226 (2013). https://doi.org/10.1021/jz3018286
- R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, P size effects in the catalytic electroreduction of CO2 on Cu nanops. J. Am. Chem. Soc. 136(19), 6978–6986 (2014). https://doi.org/10.1021/ja500328k
- A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55(19), 5789–5792 (2016). https://doi.org/10.1002/anie.201601582
- A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L.Y. Lin et al., Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 120(36), 20058–20067 (2016). https://doi.org/10.1021/acs.jpcc.6b07128
- D.H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F.W. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19(3), 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2
- X.F. Li, Q.L. Zhu, Mof-based materials for photo- and electrocatalytic CO2 reduction. Energychem 2(3), 100033 (2020). https://doi.org/10.1016/j.enchem.2020.100033
- J.L. Yu, J. Wang, Y.B. Ma, J.W. Zhou, Y.H. Wang et al., Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Mater. 31(37), 2102151 (2021). https://doi.org/10.1002/adfm.202102151
- Z. Weng, J.B. Jiang, Y.S. Wu, Z.S. Wu, X.T. Guo et al., Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138(26), 8076–8079 (2016). https://doi.org/10.1021/jacs.6b04746
- C.F. Wen, M. Zhou, P.F. Liu, Y. Liu, X. Wu et al., Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem. Int. Ed. 61(2), e202111700 (2022). https://doi.org/10.1002/anie.202111700
- X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 143(19), 7242–7246 (2021). https://doi.org/10.1021/jacs.1c01466
- L.-L. Zhuo, P. Chen, K. Zheng, X.-W. Zhang, J.-X. Wu et al., Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem. Int. Ed. 61(28), e202204967 (2022). https://doi.org/10.1002/anie.202204967
- J. Gao, D. Ren, X.Y. Guo, S.M. Zakeeruddin, M. Gratzel, Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discuss 215, 282–296 (2019). https://doi.org/10.1039/c8fd00219c
- J. Gao, H. Zhang, X.Y. Guo, J.S. Luo, S.M. Zakeeruddin et al., Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando raman spectroscopy. J. Am. Chem. Soc. 141(47), 18704–18714 (2019). https://doi.org/10.1021/jacs.9b07415
- D. Ren, B.S.H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6(12), 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162
- X.S. Su, Y.M. Sun, L. Jin, L. Zhang, Y. Yang et al., Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B-Environ. 269, 118800 (2020). https://doi.org/10.1016/j.apcatb.2020.118800
- A. Dutta, I.Z. Montiel, R. Erni, K. Kiran, M. Rahaman et al., Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 68, 104331 (2020). https://doi.org/10.1016/j.nanoen.2019.104331
- T.T.H. Hoang, S. Verma, S.C. Ma, T.T. Fister, J. Timoshenko et al., Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140(17), 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868
- Z. Yin, J. Yu, Z. Xie, S.-W. Yu, L. Zhang et al., Hybrid catalyst coupling single-atom ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144(45), 20931–20938 (2022). https://doi.org/10.1021/jacs.2c09773
- Y.B. Ma, J.L. Yu, M.Z. Sun, B. Chen, X.C. Zhou et al., Confined growth of silver-copper janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 34(19), 2110607 (2022). https://doi.org/10.1002/adma.202110607
- M. Hirsimaki, M. Lampimaki, K. Lahtonen, I. Chorkendoff, M. Valden, Investigation of the role of oxygen induced segregation of Cu during Cu2O formation on Cu{100}, Ag/Cu{100} and Cu(Ag) alloy. Surf. Sci. 583(2–3), 157–165 (2005). https://doi.org/10.1016/j.susc.2005.03.035
- J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang et al., Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition. Chem. Eng. J. 299, 37–44 (2016). https://doi.org/10.1016/j.cej.2016.04.037
- J.Q. Wang, Z. Li, C.K. Dong, Y. Feng, J. Yang et al., Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11(3), 2763–2767 (2019). https://doi.org/10.1021/acsami.8b20545
- J.F. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 141(6), 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381
- Y. Feng, Z. Li, H. Liu, C.K. Dong, J.Q. Wang et al., Laser-prepared cuzn alloy catalyst for selective electrochemical reduction of CO2 to ethylene. Langmuir 34(45), 13544–13549 (2018). https://doi.org/10.1021/acs.langmuir.8b02837
- S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch et al., Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139(1), 47–50 (2017). https://doi.org/10.1021/jacs.6b10740
- L.K. Xiong, X. Zhang, H. Yuan, J. Wang, X.Z. Yuan et al., Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60(5), 2508–2518 (2021). https://doi.org/10.1002/anie.202012631
- Q.C. Wang, Y.P. Lei, D.S. Wang, Y.D. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12(6), 1730–1750 (2019). https://doi.org/10.1039/c8ee03781g
- Y.F. Wang, P. Han, X.M. Lv, L.J. Zhang, G.F. Zheng, Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2(12), 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
- H.S. Jeon, S. Kunze, F. Scholten, B. Roldan Cuenya, Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8(1), 531–535 (2018). https://doi.org/10.1021/acscatal.7b02959
- K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee et al., Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56(3), 796–800 (2017). https://doi.org/10.1002/anie.201610432
- Y.W. Jiang, X.Y. Wang, D.L. Duan, C.H. He, J. Ma et al., Structural reconstruction of cu2o superps toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 9, 2105292 (2022). https://doi.org/10.1002/advs.202105292
- Z.X. Gu, N. Yang, P. Han, M. Kuang, B.B. Mei et al., Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 3(2), 1800449 (2019). https://doi.org/10.1002/smtd.201800449
- X. Liu, X. Wang, B. Zhou, W.-C. Law, A.N. Cartwright et al., Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv. Funct. Mater. 23(10), 1256–1264 (2013). https://doi.org/10.1002/adfm.201202061
- J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10(5), 361–366 (2011). https://doi.org/10.1038/nmat3004
- T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna et al., Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1(6), 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7
- I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Role of lattice strain and defects in copper ps on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew. Chem. Int. Ed. 46(38), 7324–7327 (2007). https://doi.org/10.1002/anie.200702600
- T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase et al., Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583(7816), 391–395 (2020). https://doi.org/10.1038/s41586-020-2464-9
- Y. Jing, S. Huang, J. Wu, M. Meng, X. Li et al., A single-electron transistor made of a 3d topological insulator nanoplate. Adv. Mater. 31(42), 1903686 (2019). https://doi.org/10.1002/adma.201903686
- C. Peng, G. Luo, Z. Xu, S. Yan, J. Zhang et al., Lithiation-enabled high-density nitrogen vacancies electrocatalyze CO2 to C2 products. Adv. Mater. 33(40), 2103150 (2021). https://doi.org/10.1002/adma.202103150
- H. Xu, L. Chen, J. Shi, Advanced electrocatalytic systems for enhanced atom/electron utilization. Energy Environ. Sci. 16(4), 1334–1363 (2023). https://doi.org/10.1039/D2EE03323B
- Z.Y. Yin, C. Yu, Z.L. Zhao, X.F. Guo, M.Q. Shen et al., Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 19(12), 8658–8663 (2019). https://doi.org/10.1021/acs.nanolett.9b03324
- Y.Y. Mi, X.Y. Peng, X.J. Liu, J. Luo, Selective formation of C2 products from electrochemical CO2 reduction over Cu1.8Se nanowires. ACS Appl. Energy Mater. 1(10), 5119–5123 (2018). https://doi.org/10.1021/acsaem.8b00744
- J. Li, A. Ozden, M.Y. Wan, Y.F. Hu, F.W. Li et al., Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 12(1), 2808 (2021). https://doi.org/10.1038/s41467-021-23023-0
- F.P.G. de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. Science 367(6478), 661–666 (2020). https://doi.org/10.1126/science.aay4217
- H.Q. Liang, S. Zhao, X.M. Hu, M. Ceccato, T. Skrydstrup et al., Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal. 11(2), 958–966 (2021). https://doi.org/10.1021/acscatal.0c03766
- R.X. Chen, H.Y. Su, D.Y. Liu, R. Huang, X.G. Meng et al., Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem. Int. Ed. 59(1), 154–160 (2020). https://doi.org/10.1002/anie.201910662
- X. Wei, Z.L. Yin, K.J. Lyu, Z. Li, J. Gong et al., Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10(7), 4103–4111 (2020). https://doi.org/10.1021/acscatal.0c00049
- A. Thevenon, A. Rosas-Hernandez, J.C. Peters, T. Agapie, In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additive promotes electrocatalytic CO2 reduction to ethylene. Angew. Chem. Int. Ed. 58(47), 16952–16958 (2019). https://doi.org/10.1002/anie.201907935
- X.Y. Chen, J.F. Chen, N.M. Alghoraibi, D.A. Henckel, R.X. Zhang et al., Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4(1), 20–27 (2021). https://doi.org/10.1038/s41929-020-00547-0
- L. Yuan, L. Zhang, J. Feng, C. Jiang, J. Feng et al., Upscaling studies for efficiently electric-driven CO2 reduction to CO in ionic liquid-based electrolytes. Chem. Eng. J. 450, 138378 (2022). https://doi.org/10.1016/j.cej.2022.138378
- Y. Wang, W. Wang, J. Xie, C.-H. Wang, Y.-W. Yang et al., Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of Li-CO2 batteries via in situ ambient pressure x-ray photoelectron spectroscopy. Nano Energy 83, 105830 (2021). https://doi.org/10.1016/j.nanoen.2021.105830
- Y.F. Sha, J.L. Zhang, X.Y. Cheng, M.Z. Xu, Z.Z. Su et al., Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew. Chem. Int. Ed. 61, 13 (2022). https://doi.org/10.1002/anie.202200039
- C.L. Xiao, J. Zhang, Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 15(5), 7975–8000 (2021). https://doi.org/10.1021/acsnano.0c10697
- J. Wang, H.-Y. Tan, Y. Zhu, H. Chu, H.M. Chen, Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60(32), 17254–17267 (2021). https://doi.org/10.1002/anie.202017181
- P.P. Yang, X.L. Zhang, F.Y. Gao, Y.R. Zheng, Z.Z. Niu et al., Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142(13), 6400–6408 (2020). https://doi.org/10.1021/jacs.0c01699
- H. Xiao, W.A. Goddard, T. Cheng, Y.Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. 114(26), 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114
- T.C. Chou, C.C. Chang, H.L. Yu, W.Y. Yu, C.L. Dong et al., Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 142(6), 2857–2867 (2020). https://doi.org/10.1021/jacs.9b11126
- P. De Luna, R. Quintero-Bermudez, C.T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1(2), 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
- X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu et al., Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. 60(28), 15344–15347 (2021). https://doi.org/10.1002/anie.202105118
- X. Li, Q. Liu, J. Wang, D. Meng, Y. Shu et al., Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 8(8), 2148–2162 (2022). https://doi.org/10.1016/j.chempr.2022.04.004
- D. Gao, I. Sinev, F. Scholten, R.M. Arán-Ais, N.J. Divins et al., Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 131(47), 17203–17209 (2019). https://doi.org/10.1002/anie.201910155
- W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai et al., Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 142(26), 11417–11427 (2020). https://doi.org/10.1021/jacs.0c01562
- H. Sun, L. Chen, L. Xiong, K. Feng, Y. Chen et al., Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nat. Commun. 12(1), 6823 (2021). https://doi.org/10.1038/s41467-021-27169-9
- S. Sultan, H. Lee, S. Park, M.M. Kim, A. Yoon et al., Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci. 15(6), 2397–2409 (2022). https://doi.org/10.1039/D1EE03861C
- A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5(4), 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018
- P. Shao, H.X. Zhang, Q.L. Hong, L. Yi, Q.H. Li et al., Enhancing CO2 electroreduction to ethylene via copper-silver tandem catalyst in boron-imidazolate framework nanosheet. Adv. Energy Mater. 13(19), 2300088 (2023). https://doi.org/10.1002/aenm.202300088
- A. Ozden, F. Li, F.P. Garcıá de Arquer, A. Rosas-Hernández, A. Thevenon et al., High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 5(9), 2811–2818 (2020). https://doi.org/10.1021/acsenergylett.0c01266
- R. Wang, J. Liu, Q. Huang, L.Z. Dong, S.L. Li et al., Partial coordination-perturbed bi-copper sites for selective electroreduction of CO2 to hydrocarbons. Angew. Chem. Int. Ed. 60(36), 19829–19835 (2021). https://doi.org/10.1002/anie.202105343
- M. Balamurugan, H.Y. Jeong, V.S.K. Choutipalli, J.S. Hong, H. Seo et al., Electrocatalytic reduction of CO2 to ethylene by molecular Cu-complex immobilized on graphitized mesoporous carbon. Small 16(25), 2000955 (2020). https://doi.org/10.1002/smll.202000955
- X. Xie, X. Zhang, M. Xie, L. Xiong, H. Sun et al., Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 13(1), 63 (2022). https://doi.org/10.1038/s41467-021-27768-6
- Y.-R. Lin, D.U. Lee, S. Tan, D.M. Koshy, T.Y. Lin et al., Vapor-fed electrolyzers for carbon dioxide reduction using tandem electrocatalysts: cuprous oxide coupled with nickel-coordinated nitrogen-doped carbon. Adv. Funct. Mater. 32(28), 2113252 (2022). https://doi.org/10.1002/adfm.202113252
- W.H. Lee, C. Lim, S.Y. Lee, K.H. Chae, C.H. Choi et al., Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration. Nano Energy 84, 105859 (2021). https://doi.org/10.1016/j.nanoen.2021.105859
- A. Ozden, Y. Wang, F. Li, M. Luo, J. Sisler et al., Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5(3), 706–719 (2021). https://doi.org/10.1016/j.joule.2021.01.007
- Y.N. Xu, W. Li, H.Q. Fu, X.Y. Zhang, J.Y. Zhao et al., Tuning the microenvironment in monolayer mgal layered double hydroxide for CO2-to-ethylene electrocatalysis in neutral media. Angew. Chem. Int. Ed. 135(19), 2217296 (2023). https://doi.org/10.1002/ange.202217296
- Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
- S.Y. Lee, H. Jung, N.-K. Kim, H.-S. Oh, B.K. Min et al., Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140(28), 8681–8689 (2018). https://doi.org/10.1021/jacs.8b02173
- H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7(1), 12123 (2016). https://doi.org/10.1038/ncomms12123
- H. Chen, Z. Wang, X. Wei, S. Liu, P. Guo et al., Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. 544, 148965 (2021). https://doi.org/10.1016/j.apsusc.2021.148965
- H. Li, T. Liu, P. Wei, L. Lin, D. Gao et al., High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem. Int. Ed. 133(26), 14450–14454 (2021). https://doi.org/10.1002/ange.202102657
- A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4(8), 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
- D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanops. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948
- S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti et al., Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59(35), 14736–14746 (2020). https://doi.org/10.1002/anie.202000617
- S.H. Lee, J.C. Lin, M. Farmand, A.T. Landers, J.T. Feaster et al., Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143(2), 588–592 (2021). https://doi.org/10.1021/jacs.0c10017
- T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12(5), 1442–1453 (2019). https://doi.org/10.1039/C8EE03134G
- Y. Luo, K. Zhang, Y. Li, Y. Wang, Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 3(12), 1313–1332 (2021). https://doi.org/10.1002/inf2.12253
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-10819-4
- J.Y.T. Kim, P. Zhu, F.-Y. Chen, Z.-Y. Wu, D.A. Cullen et al., Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5(4), 288–299 (2022). https://doi.org/10.1038/s41929-022-00763-w
- W. Luc, B.H. Ko, S. Kattel, S. Li, D. Su et al., SO2-induced selectivity change in CO2 electroreduction. J. Am. Chem. Soc. 141(25), 9902–9909 (2019). https://doi.org/10.1021/jacs.9b03215
- C. Chen, X. Yan, S. Liu, Y. Wu, Q. Wan et al., Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem. Int. Ed. 59(38), 16459–16464 (2020). https://doi.org/10.1002/anie.202006847
References
Y.H. Fu, D.R. Sun, Y.J. Chen, R.K. Huang, Z.X. Ding et al., An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51(14), 3364–3367 (2012). https://doi.org/10.1002/anie.201108357
K. Caldeira, M.E. Wickett, Anthropogenic carbon and ocean pH. Nature 425(6956), 365–365 (2003). https://doi.org/10.1038/425365a
V. Masson-Delmotte, M. Kageyama, P. Braconnot, S. Charbit, G. Krinner et al., Past and future polar amplification of climate change: climate model intercomparisons and ice-core constraints. Clim. Dynam. 27(4), 437–440 (2006). https://doi.org/10.1007/s00382-006-0149-1
J.W.C. White, P. Ciais, R.A. Figge, R. Kenny, V. Markgraf, A high-resolution record of atmospheric CO2 content from carbon isotopes in pet. Nature 367(6459), 153–156 (1994). https://doi.org/10.1038/367153a0
S. Nitopi, E. Bertheussen, S.B. Scott, X.Y. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
J. Huo, Z. Shen, X. Cao, L. Li, Y. Zhao et al., Macro/micro-environment regulating carbon-supported single-atom catalysts for hydrogen/oxygen conversion reactions. Small 18(32), 2202394 (2022). https://doi.org/10.1002/smll.202202394
J. Huo, X. Cao, Y. Tian, L. Li, J. Qu et al., Atomically dispersed mn atoms coordinated with n and o within an n-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 15(11), 5448–5457 (2023). https://doi.org/10.1039/D2NR06096E
S.M. Benson, F.M. Orr, Carbon dioxide capture and storage. MRS Bull. 33(4), 303–305 (2008). https://doi.org/10.1557/mrs2008.63
G.B. Wen, B.H. Ren, Y. Zheng, M. Li, C. Silva et al., Engineering electrochemical surface for efficient carbon dioxide upgrade. Adv. Energy Mater. 12(3), 2103289 (2022). https://doi.org/10.1002/aenm.202103289
X. Li, J. Wang, X. Lv, Y. Yang, Y. Xu et al., Hetero-interfaces on Cu electrode for enhanced electrochemical conversion of CO2 to multi-carbon products. Nano-Micro Lett. 14(1), 134 (2022). https://doi.org/10.1007/s40820-022-00879-5
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., MOF-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14(1), 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14(1), 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
F.W. Li, A. Thevenon, A. Rosas-Hernandez, Z.Y. Wang, Y.L. Li et al., Molecular tuning of CO2-to-ethylene conversion. Nature 577(7791), 509–513 (2020). https://doi.org/10.1038/s41586-019-1782-2
P. De Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6482), 6438 (2020). https://doi.org/10.1126/science.abb0992
N. Han, P. Ding, L. He, Y. Li, Y. Li, Promises of main group metal–based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), 1902338 (2020). https://doi.org/10.1002/aenm.201902338
T.K. Todorova, M.W. Schreiber, M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts. ACS Catal. 10(3), 1754–1768 (2020). https://doi.org/10.1021/acscatal.9b04746
X. Cao, J. Huo, L. Li, J. Qu, Y. Zhao et al., Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions. Adv. Energy Mater. 12(41), 2202119 (2022). https://doi.org/10.1002/aenm.202202119
Y. Zhao, J. Zhang, X. Guo, X. Cao, S. Wang et al., Engineering strategies and active site identification of mxene-based catalysts for electrochemical conversion reactions. Chem. Soc. Rev. 52(9), 3215–3264 (2023). https://doi.org/10.1039/D2CS00698G
Y. Hori, K. Kikuchi, A. Murata, S. Suzuki, Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 15(6), 897–898 (1986). https://doi.org/10.1246/cl.1986.897
Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution. J. Chem. Soc. Faraday Transl. 85(8), 2309–2326 (1989). https://doi.org/10.1039/F19898502309
Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure. J. Am. Chem. Soc. 109, 5022–5023 (1987). https://doi.org/10.1021/ja00250a044
Y. Hori, A. Murata, R. Takahashi, S. Suzuki, Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Commun. 1, 17–19 (1988). https://doi.org/10.1039/C39880000017
H. Yoshio, M. Akira, T. Ryutaro, S. Shin, Electrochemical reduction of carbon monoxide to hydrocarbons at various metal electrodes in aqueous solution. Chem. Lett. 16(8), 1665–1668 (1987). https://doi.org/10.1246/cl.1987.1665
B.X. Zhang, J.L. Zhang, M.L. Hua, Q. Wan, Z.Z. Su et al., Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 142(31), 13606–13613 (2020). https://doi.org/10.1021/jacs.0c06420
M.G. Kibria, C.T. Dinh, A. Seifitokaldani, P. De Luna, T. Burdyny et al., A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 30(49), 1804867 (2018). https://doi.org/10.1002/adma.201804867
C. Choi, S. Kwon, T. Cheng, M.J. Xu, P. Tieu et al., Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3(10), 804–812 (2020). https://doi.org/10.1038/s41929-020-00504-x
Y. Chen, Z.X. Fan, J. Wang, C.Y. Ling, W.X. Niu et al., Ethylene selectivity in electrocatalytic CO2 reduction on cu nanomaterials: a crystal phase-dependent study. J. Am. Chem. Soc. 142(29), 12760–12766 (2020). https://doi.org/10.1021/jacs.0c04981
C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100
M. Zhong, K. Tran, Y.M. Min, C.H. Wang, Z.Y. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
J.J. Wu, S.C. Ma, J. Sun, J.I. Gold, C. Tiwary et al., A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016). https://doi.org/10.1038/ncomms13869
D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier et al., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18(11), 1222–1227 (2019). https://doi.org/10.1038/s41563-019-0445-x
D.H. Nam, O.S. Bushuyev, J. Li, P. De Luna, A. Seifitokaldani et al., Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 140(36), 11378–11386 (2018). https://doi.org/10.1021/jacs.8b06407
N. Martic, C. Reller, C. Macauley, M. Loffler, B. Schmid et al., Paramelaconite-enriched copper-based material as an efficient and robust catalyst for electrochemical carbon dioxide reduction. Adv. Energy Mater. 9(29), 1901228 (2019). https://doi.org/10.1002/aenm.201901228
J. Kim, W. Choi, J.W. Park, C. Kim, M. Kim et al., Branched copper oxide nanops induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 141(17), 6986–6994 (2019). https://doi.org/10.1021/jacs.9b00911
B. Yang, K. Liu, H. Li, C. Liu, J. Fu et al., Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 144(7), 3039–3049 (2022). https://doi.org/10.1021/jacs.1c11253
D.-H. Nam, O. Shekhah, A. Ozden, C. McCallum, F. Li et al., High-rate and selective CO2 electrolysis to ethylene via metal-organic-framework-augmented CO2 availability. Adv. Mater. 34(51), 2207088 (2022). https://doi.org/10.1002/adma.202207088
J. Zhang, Y. Wang, Z. Li, S. Xia, R. Cai et al., Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene. Adv. Sci. 9(21), 2200454 (2022). https://doi.org/10.1002/advs.202200454
W.C. Ma, S.J. Xie, T.T. Liu, Q.Y. Fan, J.Y. Ye et al., Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal. 3(6), 478–487 (2020). https://doi.org/10.1038/s41929-020-0450-0
A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8(2), 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
Y.W. Lum, T. Cheng, W.A. Goddard, J.W. Ager, Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140(30), 9337–9340 (2018). https://doi.org/10.1021/jacs.8b03986
F. Calle-Vallejo, M.T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52(28), 7282–7285 (2013). https://doi.org/10.1002/anie.201301470
M.B. Ross, P. De Luna, Y.F. Li, C.T. Dinh, D. Kim et al., Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2(8), 648–658 (2019). https://doi.org/10.1038/s41929-019-0306-7
M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17(29), 18924–18936 (2015). https://doi.org/10.1039/c5cp03283k
L.M. Wang, W.L. Chen, D.D. Zhang, Y.P. Du, R. Amal et al., Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48(21), 5310–5349 (2019). https://doi.org/10.1039/c9cs00163h
G. Zhang, Z.-J. Zhao, D. Cheng, H. Li, J. Yu et al., Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 12(1), 5745 (2021). https://doi.org/10.1038/s41467-021-26053-w
X.X. Chang, T. Wang, J.L. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9(7), 2177–2196 (2016). https://doi.org/10.1039/c6ee00383d
M. Favaro, H. Xiao, T. Cheng, W.A. Goddard, J. Yano et al., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. 114(26), 6706–6711 (2017). https://doi.org/10.1073/pnas.1701405114
Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
Y. Yang, Z. Tan, J. Zhang, Electrocatalytic carbon dioxide reduction to ethylene over copper-based catalytic systems. Chem. Asian J. 17(24), e202200893 (2022). https://doi.org/10.1002/asia.202200893
M. Zheng, P. Wang, X. Zhi, K. Yang, Y. Jiao et al., Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. 144(32), 14936–14944 (2022). https://doi.org/10.1021/jacs.2c06820
J. Hou, X. Chang, J. Li, B. Xu, Q. Lu, Correlating CO coverage and CO electroreduction on Cu via high-pressure in situ spectroscopic and reactivity investigations. J. Am. Chem. Soc. 144(48), 22202–22211 (2022). https://doi.org/10.1021/jacs.2c09956
Y. Kim, S. Park, S.J. Shin, W. Choi, B.K. Min et al., Time-resolved observation of C–C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction. Energy Environ. Sci. 13(11), 4301–4311 (2020). https://doi.org/10.1039/d0ee01690j
E. Pérez-Gallent, M.C. Figueiredo, F. Calle-Vallejo, M.T.M. Koper, Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56(13), 3621–3624 (2017). https://doi.org/10.1002/anie.201700580
W.C. Ma, X.Y. He, W. Wang, S.J. Xie, Q.H. Zhang et al., Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 50(23), 12897–12914 (2021). https://doi.org/10.1039/d1cs00535a
T. Cheng, H. Xiao, W.A. Goddard, Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 k. Proc. Natl. Acad. Sci. 114(8), 1795–1800 (2017). https://doi.org/10.1073/pnas.1612106114
J.D. Goodpaster, A.T. Bell, M. Head-Gordon, Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7(8), 1471–1477 (2016). https://doi.org/10.1021/acs.jpclett.6b00358
H. Xiao, T. Cheng, W.A. Goddard, Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139(1), 130–136 (2017). https://doi.org/10.1021/jacs.6b06846
Y.H. Wang, J.L. Liu, G.F. Zheng, Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 33(46), 2005798 (2021). https://doi.org/10.1002/adma.202005798
Z. Ni, H. Liang, Z. Yi, R. Guo, C. Liu et al., Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. Coordin. Chem. Rev. 441, 213983 (2021). https://doi.org/10.1016/j.ccr.2021.213983
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11), 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7
Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101(36), 7075–7081 (1997). https://doi.org/10.1021/jp970284i
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5(5), 7050–7059 (2012). https://doi.org/10.1039/c2ee21234j
J.H. Montoya, C. Shi, K. Chan, J.K. Norskov, Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6(11), 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722
R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
T. Cheng, H. Xiao, W.A. Goddard, Free-energy barriers and reaction mechanisms for the electrochemical reduction of CO on the Cu(100) surface, including multiple layers of explicit solvent at pH 0. J. Phys. Chem. Lett. 6(23), 4767–4773 (2015). https://doi.org/10.1021/acs.jpclett.5b02247
J.T. Feaster, C. Shi, E.R. Cave, T.T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
X. Liu, P. Schlexer, J. Xiao, Y. Ji, L. Wang et al., pH effects on the electrochemical reduction of CO2 towards C2 products on stepped copper. Nat. Commun. 10(1), 32 (2019). https://doi.org/10.1038/s41467-018-07970-9
I.V. Chernyshova, P. Somasundaran, S. Ponnurangam, On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl. Acad. Sci. 115(40), E9261–E9270 (2018). https://doi.org/10.1073/pnas.1802256115
S.A. Petrosyan, A.A. Rigos, T.A. Arias, Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B 109(32), 15436–15444 (2005). https://doi.org/10.1021/jp044822k
R. Sundararaman, W.A. Goddard, The charge-asymmetric nonlocally determined local-electric (candle) solvation model. J. Chem. Phys. 142(6), 064107 (2015). https://doi.org/10.1063/1.4907731
X.W. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52(9), 2459–2462 (2013). https://doi.org/10.1002/anie.201208320
X.W. Nie, W.J. Luo, M.J. Janik, A. Asthagiri, Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J. Catal. 312, 108–122 (2014). https://doi.org/10.1016/j.jcat.2014.01.013
K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2(10), 1902–1909 (2011). https://doi.org/10.1039/c1sc00277e
F.S. Roberts, K.P. Kuhl, A. Nilsson, High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem. Int. Ed. 54(17), 5179–5182 (2015). https://doi.org/10.1002/anie.201412214
H. Xiao, T. Cheng, W.A. Goddard, R. Sundararaman, Mechanistic explanation of the ph dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138(2), 483–486 (2016). https://doi.org/10.1021/jacs.5b11390
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
B. Pan, Y. Wang, Y. Li, Understanding and leveraging the effect of cations in the electrical double layer for electrochemical CO2 reduction. Chem. Catal. 2(6), 1267–1276 (2022). https://doi.org/10.1016/j.checat.2022.03.012
B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar et al., Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 62, 133–154 (2017). https://doi.org/10.1016/j.pecs.2017.05.005
C. Chen, J.F. Khosrowabadi Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4(11), 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
W. Nie, G.P. Heim, N.B. Watkins, T. Agapie, J.C. Peters, Organic additive-derived films on Cu electrodes promote electrochemical CO2 reduction to C2+ products under strongly acidic conditions. Angew. Chem. Int. Ed. 62(12), e202216102 (2023). https://doi.org/10.1002/anie.202216102
M. Ma, K. Djanashvili, W.A. Smith, Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem. Int. Ed. 55(23), 6680–6684 (2016). https://doi.org/10.1002/anie.201601282
T. Ahmad, S. Liu, M. Sajid, K. Li, M. Ali et al., Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res. Energy 1, e9120021 (2022). https://doi.org/10.26599/NRE.2022.9120021
M.C.O. Monteiro, F. Dattila, B. Hagedoorn, R. García-Muelas, N. López et al., Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4(8), 654–662 (2021). https://doi.org/10.1038/s41929-021-00655-5
A. Murata, Y. Hori, Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. B Chem. Soc. of Jpn. 64(1), 123–127 (1991). https://doi.org/10.1246/bcsj.64.123
E. Pérez-Gallent, G. Marcandalli, M.C. Figueiredo, F. Calle-Vallejo, M.T.M. Koper, Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139(45), 16412–16419 (2017). https://doi.org/10.1021/jacs.7b10142
J. Resasco, L.D. Chen, E. Clark, C. Tsai, C. Hahn et al., Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139(32), 11277–11287 (2017). https://doi.org/10.1021/jacs.7b06765
V.J. Ovalle, Y.-S. Hsu, N. Agrawal, M.J. Janik, M.M. Waegele, Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au. Nat. Catal. 5(7), 624–632 (2022). https://doi.org/10.1038/s41929-022-00816-0
H. Liu, J. Liu, B. Yang, Promotional role of a cation intermediate complex in C2 formation from electrochemical reduction of CO2 over Cu. ACS Catal. 11(19), 12336–12343 (2021). https://doi.org/10.1021/acscatal.1c01072
A.S. Malkani, J. Li, N.J. Oliveira, M. He, X. Chang et al., Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. Sci. Adv. 6(45), eabd2569 (2020). https://doi.org/10.1126/sciadv.abd2569
M.R. Singh, Y. Kwon, Y. Lum, J.W. Ager III., A.T. Bell, Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138(39), 13006–13012 (2016). https://doi.org/10.1021/jacs.6b07612
O. Ayemoba, A. Cuesta, Spectroscopic evidence of size-dependent buffering of interfacial ph by cation hydrolysis during CO2 electroreduction. ACS Appl. Mater. Interfaces 9(33), 27377–27382 (2017). https://doi.org/10.1021/acsami.7b07351
F. Zhang, A.C. Co, Direct evidence of local pH change and the role of alkali cation during CO2 electroreduction in aqueous media. Angew. Chem. Int. Ed. 59(4), 1674–1681 (2020). https://doi.org/10.1002/anie.201912637
G. Marcandalli, M.C.O. Monteiro, A. Goyal, M.T.M. Koper, Electrolyte effects on CO2 electrochemical reduction to CO. Accounts Chem. Res. 55(14), 1900–1911 (2022). https://doi.org/10.1021/acs.accounts.2c00080
K.J.P. Schouten, E. Pérez Gallent, M.T.M. Koper, The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanaly. Chem. 716, 53–57 (2014). https://doi.org/10.1016/j.jelechem.2013.08.033
A.S. Varela, M. Kroschel, T. Reier, P. Strasser, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal. Today 260, 8–13 (2016). https://doi.org/10.1016/j.cattod.2015.06.009
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141(19), 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
K. Jiang, R.B. Sandberg, A.J. Akey, X. Liu, D.C. Bell et al., Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1(2), 111–119 (2018). https://doi.org/10.1038/s41929-017-0009-x
D. Gao, R.M. Arán-Ais, H.S. Jeon, B. Roldan Cuenya, Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2(3), 198–210 (2019). https://doi.org/10.1038/s41929-019-0235-5
G. Chen, J. Fu, B. Liu, C. Cai, H. Li et al., Passivation of Cu nanosheet dissolution with Cu2+-containing electrolytes for selective electroreduction of CO2 to CH4. Environ. Sci-Nano 9(9), 3312–3317 (2022). https://doi.org/10.1039/D2EN00561A
J. Li, Z.Y. Wang, C. McCallum, Y. Xu, F.W. Li et al., Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2(12), 1124–1131 (2019). https://doi.org/10.1038/s41929-019-0380-x
K.J.P. Schouten, E. Pérez Gallent, M.T.M. Koper, Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3(6), 1292–1295 (2013). https://doi.org/10.1021/cs4002404
D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster et al., Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7(2), 130–143 (2022). https://doi.org/10.1038/s41560-021-00973-9
D.M. Weekes, D.A. Salvatore, A. Reyes, A. Huang, C.P. Berlinguette, Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51(4), 910–918 (2018). https://doi.org/10.1021/acs.accounts.8b00010
X. Zhou, H. Liu, B.Y. Xia, K. Ostrikov, Y. Zheng et al., Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 3(1), 111–129 (2022). https://doi.org/10.1002/smm2.1109
A.K. Buckley, M. Lee, T. Cheng, R.V. Kazantsev, D.M. Larson et al., Electrocatalysis at organic-metal interfaces: Identification of structure-reactivity relationships for CO2 reduction at modified Cu surfaces. J. Am. Chem. Soc. 141(18), 7355–7364 (2019). https://doi.org/10.1021/jacs.8b13655
H. Noda, S. Ikeda, Y. Oda, K. Ito, Potential dependencies of the products on electrochemical reduction of carbon dioxide at a copper electrode. Chem. Lett. 18(2), 289–292 (1989). https://doi.org/10.1246/cl.1989.289
Z. Wang, Y. Li, X. Zhao, S. Chen, Q. Nian et al., Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J. Am. Chem. Soc. 145(11), 6339–6348 (2023). https://doi.org/10.1021/jacs.2c13384
F.P. Pan, Y. Yang, Designing CO2 reduction electrode materials by morphology and interface engineering. Energy Environ. Sci. 13(8), 2275–2309 (2020). https://doi.org/10.1039/d0ee00900h
Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Cover picture: Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48(1), 90275 (2009). https://doi.org/10.1002/anie.200890275
Y.F. Shi, Z.H. Lyu, M. Zhao, R.H. Chen, Q.N. Nguyen et al., Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 121(2), 649–735 (2021). https://doi.org/10.1021/acs.chemrev.0c00454
D.H. Chi, H.P. Yang, Y.F. Du, T. Lv, G.J. Sui et al., Morphology-controlled CuO nanops for electroreduction of CO2 to ethanol. RSC Adv. 4(70), 37329–37332 (2014). https://doi.org/10.1039/c4ra05415f
J.W. Yin, J. Wang, Y.B. Ma, J.L. Yu, J.W. Zhou et al., Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials. ACS Mater. Lett. 3(1), 121–133 (2021). https://doi.org/10.1021/acsmaterialslett.0c00473
H.Y. Zhang, Y.J. Zhang, Y.Y. Li, S. Ahn, G.T.R. Palmore et al., Cu nanowire- catalyzed electrochemical reduction of CO or CO2. Nanoscale 11(25), 12075–12079 (2019). https://doi.org/10.1039/c9nr03170g
Q. Li, W.L. Zhu, J.J. Fu, H.Y. Zhang, G. Wu et al., Controlled assembly of Cu nanops on pyridinic-n rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24, 1–9 (2016). https://doi.org/10.1016/j.nanoen.2016.03.024
N.T. Suen, Z.R. Kong, C.S. Hsu, H.C. Chen, C.W. Tung et al., Morphology manipulation of copper nanocrystals and product selectivity in the electrocatalytic reduction of carbon dioxide. ACS Catal. 9(6), 5217–5222 (2019). https://doi.org/10.1021/acscatal.9b00790
Z.Y. Chang, S.J. Huo, W. Zhang, J.H. Fang, H.L. Wang, The tunable and highly selective reduction products on Ag@Cu bimetallic catalysts toward CO2 electrochemical reduction reaction. J. Phys. Chem. C 121(21), 11368–11379 (2017). https://doi.org/10.1021/acs.jpcc.7b01586
J.J. Lv, M. Jouny, W. Luc, W.L. Zhu, J.J. Zhu et al., A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30(49), 1803111 (2018). https://doi.org/10.1002/adma.201803111
Y. Hori, in Electrochemical CO2 Reduction on Metal Electrodes. ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-aldeco (Springer, New York, 2008), pp.89–189
J.H. Baricuatro, Y.-G. Kim, C.L. Korzeniewski, M.P. Soriaga, Seriatim ECSTM-ECPMIRS of the adsorption of carbon monoxide on Cu(100) in alkaline solution at CO2-reduction potentials. Electrochem. Commun. 91, 1–4 (2018). https://doi.org/10.1016/j.elecom.2018.04.016
W. Liu, P. Zhai, A. Li, B. Wei, K. Si et al., Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 13(1), 1877 (2022). https://doi.org/10.1038/s41467-022-29428-9
T. Burdyny, P.J. Graham, Y.J. Pang, C.T. Dinh, M. Liu et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry. ACS Sustain. Chem. Eng. 5(5), 4031–4040 (2017). https://doi.org/10.1021/acssuschemeng.7b00023
H. Kakizaki, H. Ooka, T. Hayashi, A. Yamaguchi, N. Bonnet-Mercier et al., Evidence that crystal facet orientation dictates oxygen evolution intermediates on rutile manganese oxide. Adv. Funct. Mater. 28(24), 1706319 (2018). https://doi.org/10.1002/adfm.201706319
T. Wu, M.L. Stone, M.J. Shearer, M.J. Stolt, I.A. Guzei et al., Crystallographic facet dependence of the hydrogen evolution reaction on cops: theory and experiments. ACS Catal. 8(2), 1143–1152 (2018). https://doi.org/10.1021/acscatal.7b03167
S.C. Wang, G. Liu, L.Z. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119(8), 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A-Chem. 199(1–2), 39–47 (2003). https://doi.org/10.1016/S1381-1169(03)00016-5
Y. Hori, I. Takahashi, O. Koga, N. Hoshi, Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106(1), 15–17 (2002). https://doi.org/10.1021/jp013478d
Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Adsorption of CO accompanied with simultaneous charge transfer on copper single crystal electrodes related with electrochemical reduction of CO2 to hydrocarbons. Surf. Sci. 335, 258–263 (1995). https://doi.org/10.1016/0039-6028(95)00441-6
W.J. Luo, X.W. Nie, M.J. Janik, A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6(1), 219–229 (2016). https://doi.org/10.1021/acscatal.5b01967
Y. Huang, A.D. Handoko, P. Hirunsit, B.S. Yeo, Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of *CO coverage on the selective formation of ethylene. ACS Catal. 7(3), 1749–1756 (2017). https://doi.org/10.1021/acscatal.6b03147
G.L. De Gregorio, T. Burdyny, A. Loiudice, P. Iyengar, W.A. Smith et al., Facet-dependent selectivity of Cu catalysts in electrochemical CO2 reduction at commercially viable current densities. ACS Catal. 10(9), 4854–4862 (2020). https://doi.org/10.1021/acscatal.0c00297
H. Li, P. Yu, R. Lei, F. Yang, P. Wen et al., Facet-selective deposition of ultrathin Al2O3 on copper nanocrystals for highly stable CO2 electroreduction to ethylene. Angew. Chem. Int. Ed. 60(47), 24838–24843 (2021). https://doi.org/10.1002/anie.202109600
C.S. Chen, A.D. Handoko, J.H. Wan, L. Ma, D. Ren et al., Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catal. Sci. Technol. 5(1), 161–168 (2015). https://doi.org/10.1039/c4cy00906a
Y.H. Wang, Z.Y. Wang, C.T. Dinh, J. Li, A. Ozden et al., Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3(2), 98–106 (2020). https://doi.org/10.1038/s41929-019-0397-1
H. Luo, B. Li, J.G. Ma, P. Cheng, Surface modification of nano-CuO2 for controlling CO2 electrochemical reduction to ethylene and syngas. Angew. Chem. Int. Ed. 61(11), e202116736 (2022). https://doi.org/10.1002/anie.202116736
H. Deng, C. Guo, P. Shi, G. Zhao, Amino assisted protonation for carbon-carbon coupling during electroreduction of carbon dioxide to ethylene on copper(i) oxide. ChemCatChem 13(20), 4325–4333 (2021). https://doi.org/10.1002/cctc.202100620
L. Li, A.H. Larsen, N.A. Romero, V.A. Morozov, C. Glinsvad et al., Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4(1), 222–226 (2013). https://doi.org/10.1021/jz3018286
R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, P size effects in the catalytic electroreduction of CO2 on Cu nanops. J. Am. Chem. Soc. 136(19), 6978–6986 (2014). https://doi.org/10.1021/ja500328k
A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55(19), 5789–5792 (2016). https://doi.org/10.1002/anie.201601582
A.D. Handoko, C.W. Ong, Y. Huang, Z.G. Lee, L.Y. Lin et al., Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts. J. Phys. Chem. C 120(36), 20058–20067 (2016). https://doi.org/10.1021/acs.jpcc.6b07128
D.H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F.W. Li et al., Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19(3), 266–276 (2020). https://doi.org/10.1038/s41563-020-0610-2
X.F. Li, Q.L. Zhu, Mof-based materials for photo- and electrocatalytic CO2 reduction. Energychem 2(3), 100033 (2020). https://doi.org/10.1016/j.enchem.2020.100033
J.L. Yu, J. Wang, Y.B. Ma, J.W. Zhou, Y.H. Wang et al., Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Mater. 31(37), 2102151 (2021). https://doi.org/10.1002/adfm.202102151
Z. Weng, J.B. Jiang, Y.S. Wu, Z.S. Wu, X.T. Guo et al., Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 138(26), 8076–8079 (2016). https://doi.org/10.1021/jacs.6b04746
C.F. Wen, M. Zhou, P.F. Liu, Y. Liu, X. Wu et al., Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem. Int. Ed. 61(2), e202111700 (2022). https://doi.org/10.1002/anie.202111700
X.-F. Qiu, H.-L. Zhu, J.-R. Huang, P.-Q. Liao, X.-M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 143(19), 7242–7246 (2021). https://doi.org/10.1021/jacs.1c01466
L.-L. Zhuo, P. Chen, K. Zheng, X.-W. Zhang, J.-X. Wu et al., Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem. Int. Ed. 61(28), e202204967 (2022). https://doi.org/10.1002/anie.202204967
J. Gao, D. Ren, X.Y. Guo, S.M. Zakeeruddin, M. Gratzel, Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts. Faraday Discuss 215, 282–296 (2019). https://doi.org/10.1039/c8fd00219c
J. Gao, H. Zhang, X.Y. Guo, J.S. Luo, S.M. Zakeeruddin et al., Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando raman spectroscopy. J. Am. Chem. Soc. 141(47), 18704–18714 (2019). https://doi.org/10.1021/jacs.9b07415
D. Ren, B.S.H. Ang, B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6(12), 8239–8247 (2016). https://doi.org/10.1021/acscatal.6b02162
X.S. Su, Y.M. Sun, L. Jin, L. Zhang, Y. Yang et al., Hierarchically porous Cu/Zn bimetallic catalysts for highly selective CO2 electroreduction to liquid C2 products. Appl. Catal. B-Environ. 269, 118800 (2020). https://doi.org/10.1016/j.apcatb.2020.118800
A. Dutta, I.Z. Montiel, R. Erni, K. Kiran, M. Rahaman et al., Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction. Nano Energy 68, 104331 (2020). https://doi.org/10.1016/j.nanoen.2019.104331
T.T.H. Hoang, S. Verma, S.C. Ma, T.T. Fister, J. Timoshenko et al., Nanoporous copper silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140(17), 5791–5797 (2018). https://doi.org/10.1021/jacs.8b01868
Z. Yin, J. Yu, Z. Xie, S.-W. Yu, L. Zhang et al., Hybrid catalyst coupling single-atom ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144(45), 20931–20938 (2022). https://doi.org/10.1021/jacs.2c09773
Y.B. Ma, J.L. Yu, M.Z. Sun, B. Chen, X.C. Zhou et al., Confined growth of silver-copper janus nanostructures with 100 facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater. 34(19), 2110607 (2022). https://doi.org/10.1002/adma.202110607
M. Hirsimaki, M. Lampimaki, K. Lahtonen, I. Chorkendoff, M. Valden, Investigation of the role of oxygen induced segregation of Cu during Cu2O formation on Cu{100}, Ag/Cu{100} and Cu(Ag) alloy. Surf. Sci. 583(2–3), 157–165 (2005). https://doi.org/10.1016/j.susc.2005.03.035
J. Choi, M.J. Kim, S.H. Ahn, I. Choi, J.H. Jang et al., Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition. Chem. Eng. J. 299, 37–44 (2016). https://doi.org/10.1016/j.cej.2016.04.037
J.Q. Wang, Z. Li, C.K. Dong, Y. Feng, J. Yang et al., Silver/copper interface for relay electroreduction of carbon dioxide to ethylene. ACS Appl. Mater. Interfaces 11(3), 2763–2767 (2019). https://doi.org/10.1021/acsami.8b20545
J.F. Huang, M. Mensi, E. Oveisi, V. Mantella, R. Buonsanti, Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 141(6), 2490–2499 (2019). https://doi.org/10.1021/jacs.8b12381
Y. Feng, Z. Li, H. Liu, C.K. Dong, J.Q. Wang et al., Laser-prepared cuzn alloy catalyst for selective electrochemical reduction of CO2 to ethylene. Langmuir 34(45), 13544–13549 (2018). https://doi.org/10.1021/acs.langmuir.8b02837
S. Ma, M. Sadakiyo, M. Heima, R. Luo, R.T. Haasch et al., Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139(1), 47–50 (2017). https://doi.org/10.1021/jacs.6b10740
L.K. Xiong, X. Zhang, H. Yuan, J. Wang, X.Z. Yuan et al., Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60(5), 2508–2518 (2021). https://doi.org/10.1002/anie.202012631
Q.C. Wang, Y.P. Lei, D.S. Wang, Y.D. Li, Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction. Energy Environ. Sci. 12(6), 1730–1750 (2019). https://doi.org/10.1039/c8ee03781g
Y.F. Wang, P. Han, X.M. Lv, L.J. Zhang, G.F. Zheng, Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2(12), 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
H.S. Jeon, S. Kunze, F. Scholten, B. Roldan Cuenya, Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 8(1), 531–535 (2018). https://doi.org/10.1021/acscatal.7b02959
K.D. Yang, W.R. Ko, J.H. Lee, S.J. Kim, H. Lee et al., Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew. Chem. Int. Ed. 56(3), 796–800 (2017). https://doi.org/10.1002/anie.201610432
Y.W. Jiang, X.Y. Wang, D.L. Duan, C.H. He, J. Ma et al., Structural reconstruction of cu2o superps toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 9, 2105292 (2022). https://doi.org/10.1002/advs.202105292
Z.X. Gu, N. Yang, P. Han, M. Kuang, B.B. Mei et al., Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 3(2), 1800449 (2019). https://doi.org/10.1002/smtd.201800449
X. Liu, X. Wang, B. Zhou, W.-C. Law, A.N. Cartwright et al., Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films. Adv. Funct. Mater. 23(10), 1256–1264 (2013). https://doi.org/10.1002/adfm.201202061
J.M. Luther, P.K. Jain, T. Ewers, A.P. Alivisatos, Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10(5), 361–366 (2011). https://doi.org/10.1038/nmat3004
T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P. De Luna et al., Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1(6), 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7
I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlögl, Role of lattice strain and defects in copper ps on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew. Chem. Int. Ed. 46(38), 7324–7327 (2007). https://doi.org/10.1002/anie.200702600
T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase et al., Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583(7816), 391–395 (2020). https://doi.org/10.1038/s41586-020-2464-9
Y. Jing, S. Huang, J. Wu, M. Meng, X. Li et al., A single-electron transistor made of a 3d topological insulator nanoplate. Adv. Mater. 31(42), 1903686 (2019). https://doi.org/10.1002/adma.201903686
C. Peng, G. Luo, Z. Xu, S. Yan, J. Zhang et al., Lithiation-enabled high-density nitrogen vacancies electrocatalyze CO2 to C2 products. Adv. Mater. 33(40), 2103150 (2021). https://doi.org/10.1002/adma.202103150
H. Xu, L. Chen, J. Shi, Advanced electrocatalytic systems for enhanced atom/electron utilization. Energy Environ. Sci. 16(4), 1334–1363 (2023). https://doi.org/10.1039/D2EE03323B
Z.Y. Yin, C. Yu, Z.L. Zhao, X.F. Guo, M.Q. Shen et al., Cu3N nanocubes for selective electrochemical reduction of CO2 to ethylene. Nano Lett. 19(12), 8658–8663 (2019). https://doi.org/10.1021/acs.nanolett.9b03324
Y.Y. Mi, X.Y. Peng, X.J. Liu, J. Luo, Selective formation of C2 products from electrochemical CO2 reduction over Cu1.8Se nanowires. ACS Appl. Energy Mater. 1(10), 5119–5123 (2018). https://doi.org/10.1021/acsaem.8b00744
J. Li, A. Ozden, M.Y. Wan, Y.F. Hu, F.W. Li et al., Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 12(1), 2808 (2021). https://doi.org/10.1038/s41467-021-23023-0
F.P.G. de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. Science 367(6478), 661–666 (2020). https://doi.org/10.1126/science.aay4217
H.Q. Liang, S. Zhao, X.M. Hu, M. Ceccato, T. Skrydstrup et al., Hydrophobic copper interfaces boost electroreduction of carbon dioxide to ethylene in water. ACS Catal. 11(2), 958–966 (2021). https://doi.org/10.1021/acscatal.0c03766
R.X. Chen, H.Y. Su, D.Y. Liu, R. Huang, X.G. Meng et al., Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem. Int. Ed. 59(1), 154–160 (2020). https://doi.org/10.1002/anie.201910662
X. Wei, Z.L. Yin, K.J. Lyu, Z. Li, J. Gong et al., Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 10(7), 4103–4111 (2020). https://doi.org/10.1021/acscatal.0c00049
A. Thevenon, A. Rosas-Hernandez, J.C. Peters, T. Agapie, In-situ nanostructuring and stabilization of polycrystalline copper by an organic salt additive promotes electrocatalytic CO2 reduction to ethylene. Angew. Chem. Int. Ed. 58(47), 16952–16958 (2019). https://doi.org/10.1002/anie.201907935
X.Y. Chen, J.F. Chen, N.M. Alghoraibi, D.A. Henckel, R.X. Zhang et al., Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4(1), 20–27 (2021). https://doi.org/10.1038/s41929-020-00547-0
L. Yuan, L. Zhang, J. Feng, C. Jiang, J. Feng et al., Upscaling studies for efficiently electric-driven CO2 reduction to CO in ionic liquid-based electrolytes. Chem. Eng. J. 450, 138378 (2022). https://doi.org/10.1016/j.cej.2022.138378
Y. Wang, W. Wang, J. Xie, C.-H. Wang, Y.-W. Yang et al., Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of Li-CO2 batteries via in situ ambient pressure x-ray photoelectron spectroscopy. Nano Energy 83, 105830 (2021). https://doi.org/10.1016/j.nanoen.2021.105830
Y.F. Sha, J.L. Zhang, X.Y. Cheng, M.Z. Xu, Z.Z. Su et al., Anchoring ionic liquid in copper electrocatalyst for improving CO2 conversion to ethylene. Angew. Chem. Int. Ed. 61, 13 (2022). https://doi.org/10.1002/anie.202200039
C.L. Xiao, J. Zhang, Architectural design for enhanced C2 product selectivity in electrochemical CO2 reduction using Cu-based catalysts: a review. ACS Nano 15(5), 7975–8000 (2021). https://doi.org/10.1021/acsnano.0c10697
J. Wang, H.-Y. Tan, Y. Zhu, H. Chu, H.M. Chen, Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 60(32), 17254–17267 (2021). https://doi.org/10.1002/anie.202017181
P.P. Yang, X.L. Zhang, F.Y. Gao, Y.R. Zheng, Z.Z. Niu et al., Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ fuels. J. Am. Chem. Soc. 142(13), 6400–6408 (2020). https://doi.org/10.1021/jacs.0c01699
H. Xiao, W.A. Goddard, T. Cheng, Y.Y. Liu, Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl. Acad. Sci. 114(26), 6685–6688 (2017). https://doi.org/10.1073/pnas.1702405114
T.C. Chou, C.C. Chang, H.L. Yu, W.Y. Yu, C.L. Dong et al., Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO2 reduction to ethylene. J. Am. Chem. Soc. 142(6), 2857–2867 (2020). https://doi.org/10.1021/jacs.9b11126
P. De Luna, R. Quintero-Bermudez, C.T. Dinh, M.B. Ross, O.S. Bushuyev et al., Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1(2), 103–110 (2018). https://doi.org/10.1038/s41929-017-0018-9
X. Yuan, S. Chen, D. Cheng, L. Li, W. Zhu et al., Controllable Cu0-Cu+ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. 60(28), 15344–15347 (2021). https://doi.org/10.1002/anie.202105118
X. Li, Q. Liu, J. Wang, D. Meng, Y. Shu et al., Enhanced electroreduction of CO2 to C2+ products on heterostructured Cu/oxide electrodes. Chem 8(8), 2148–2162 (2022). https://doi.org/10.1016/j.chempr.2022.04.004
D. Gao, I. Sinev, F. Scholten, R.M. Arán-Ais, N.J. Divins et al., Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 131(47), 17203–17209 (2019). https://doi.org/10.1002/anie.201910155
W. Zhang, C. Huang, Q. Xiao, L. Yu, L. Shuai et al., Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 142(26), 11417–11427 (2020). https://doi.org/10.1021/jacs.0c01562
H. Sun, L. Chen, L. Xiong, K. Feng, Y. Chen et al., Promoting ethylene production over a wide potential window on Cu crystallites induced and stabilized via current shock and charge delocalization. Nat. Commun. 12(1), 6823 (2021). https://doi.org/10.1038/s41467-021-27169-9
S. Sultan, H. Lee, S. Park, M.M. Kim, A. Yoon et al., Interface rich CuO/Al2CuO4 surface for selective ethylene production from electrochemical CO2 conversion. Energy Environ. Sci. 15(6), 2397–2409 (2022). https://doi.org/10.1039/D1EE03861C
A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang et al., Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5(4), 1044–1053 (2020). https://doi.org/10.1021/acsenergylett.0c00018
P. Shao, H.X. Zhang, Q.L. Hong, L. Yi, Q.H. Li et al., Enhancing CO2 electroreduction to ethylene via copper-silver tandem catalyst in boron-imidazolate framework nanosheet. Adv. Energy Mater. 13(19), 2300088 (2023). https://doi.org/10.1002/aenm.202300088
A. Ozden, F. Li, F.P. Garcıá de Arquer, A. Rosas-Hernández, A. Thevenon et al., High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 5(9), 2811–2818 (2020). https://doi.org/10.1021/acsenergylett.0c01266
R. Wang, J. Liu, Q. Huang, L.Z. Dong, S.L. Li et al., Partial coordination-perturbed bi-copper sites for selective electroreduction of CO2 to hydrocarbons. Angew. Chem. Int. Ed. 60(36), 19829–19835 (2021). https://doi.org/10.1002/anie.202105343
M. Balamurugan, H.Y. Jeong, V.S.K. Choutipalli, J.S. Hong, H. Seo et al., Electrocatalytic reduction of CO2 to ethylene by molecular Cu-complex immobilized on graphitized mesoporous carbon. Small 16(25), 2000955 (2020). https://doi.org/10.1002/smll.202000955
X. Xie, X. Zhang, M. Xie, L. Xiong, H. Sun et al., Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 13(1), 63 (2022). https://doi.org/10.1038/s41467-021-27768-6
Y.-R. Lin, D.U. Lee, S. Tan, D.M. Koshy, T.Y. Lin et al., Vapor-fed electrolyzers for carbon dioxide reduction using tandem electrocatalysts: cuprous oxide coupled with nickel-coordinated nitrogen-doped carbon. Adv. Funct. Mater. 32(28), 2113252 (2022). https://doi.org/10.1002/adfm.202113252
W.H. Lee, C. Lim, S.Y. Lee, K.H. Chae, C.H. Choi et al., Highly selective and stackable electrode design for gaseous CO2 electroreduction to ethylene in a zero-gap configuration. Nano Energy 84, 105859 (2021). https://doi.org/10.1016/j.nanoen.2021.105859
A. Ozden, Y. Wang, F. Li, M. Luo, J. Sisler et al., Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5(3), 706–719 (2021). https://doi.org/10.1016/j.joule.2021.01.007
Y.N. Xu, W. Li, H.Q. Fu, X.Y. Zhang, J.Y. Zhao et al., Tuning the microenvironment in monolayer mgal layered double hydroxide for CO2-to-ethylene electrocatalysis in neutral media. Angew. Chem. Int. Ed. 135(19), 2217296 (2023). https://doi.org/10.1002/ange.202217296
Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang et al., Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10(9), 974–980 (2018). https://doi.org/10.1038/s41557-018-0092-x
S.Y. Lee, H. Jung, N.-K. Kim, H.-S. Oh, B.K. Min et al., Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J. Am. Chem. Soc. 140(28), 8681–8689 (2018). https://doi.org/10.1021/jacs.8b02173
H. Mistry, A.S. Varela, C.S. Bonifacio, I. Zegkinoglou, I. Sinev et al., Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7(1), 12123 (2016). https://doi.org/10.1038/ncomms12123
H. Chen, Z. Wang, X. Wei, S. Liu, P. Guo et al., Promotion of electrochemical CO2 reduction to ethylene on phosphorus-doped copper nanocrystals with stable Cuδ+ sites. Appl. Surf. Sci. 544, 148965 (2021). https://doi.org/10.1016/j.apsusc.2021.148965
H. Li, T. Liu, P. Wei, L. Lin, D. Gao et al., High-rate CO2 electroreduction to C2+ products over a copper-copper iodide catalyst. Angew. Chem. Int. Ed. 133(26), 14450–14454 (2021). https://doi.org/10.1002/ange.202102657
A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, S.-Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem 4(8), 1809–1831 (2018). https://doi.org/10.1016/j.chempr.2018.05.001
D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanops. Nat. Commun. 5, 4948 (2014). https://doi.org/10.1038/ncomms5948
S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti et al., Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem. Int. Ed. 59(35), 14736–14746 (2020). https://doi.org/10.1002/anie.202000617
S.H. Lee, J.C. Lin, M. Farmand, A.T. Landers, J.T. Feaster et al., Oxidation state and surface reconstruction of Cu under CO2 reduction conditions from in situ X-ray characterization. J. Am. Chem. Soc. 143(2), 588–592 (2021). https://doi.org/10.1021/jacs.0c10017
T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12(5), 1442–1453 (2019). https://doi.org/10.1039/C8EE03134G
Y. Luo, K. Zhang, Y. Li, Y. Wang, Valorizing carbon dioxide via electrochemical reduction on gas-diffusion electrodes. InfoMat 3(12), 1313–1332 (2021). https://doi.org/10.1002/inf2.12253
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10(1), 1–10 (2019). https://doi.org/10.1038/s41467-019-10819-4
J.Y.T. Kim, P. Zhu, F.-Y. Chen, Z.-Y. Wu, D.A. Cullen et al., Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5(4), 288–299 (2022). https://doi.org/10.1038/s41929-022-00763-w
W. Luc, B.H. Ko, S. Kattel, S. Li, D. Su et al., SO2-induced selectivity change in CO2 electroreduction. J. Am. Chem. Soc. 141(25), 9902–9909 (2019). https://doi.org/10.1021/jacs.9b03215
C. Chen, X. Yan, S. Liu, Y. Wu, Q. Wan et al., Highly efficient electroreduction of CO2 to C2+ alcohols on heterogeneous dual active sites. Angew. Chem. Int. Ed. 59(38), 16459–16464 (2020). https://doi.org/10.1002/anie.202006847