Cell Nanomechanics Based on Dielectric Elastomer Actuator Device
Corresponding Author: Jie Song
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 98
Abstract
As a frontier of biology, mechanobiology plays an important role in tissue and biomedical engineering. It is a common sense that mechanical cues under extracellular microenvironment affect a lot in regulating the behaviors of cells such as proliferation and gene expression, etc. In such an interdisciplinary field, engineering methods like the pneumatic and motor-driven devices have been employed for years. Nevertheless, such techniques usually rely on complex structures, which cost much but not so easy to control. Dielectric elastomer actuators (DEAs) are well known as a kind of soft actuation technology, and their research prospect in biomechanical field is gradually concerned due to their properties just like large deformation (> 100%) and fast response (< 1 ms). In addition, DEAs are usually optically transparent and can be fabricated into small volume, which make them easy to cooperate with regular microscope to realize real-time dynamic imaging of cells. This paper first reviews the basic components, principle, and evaluation of DEAs and then overview some corresponding applications of DEAs for cellular mechanobiology research. We also provide a comparison between DEA-based bioreactors and current custom-built devices and share some opinions about their potential applications in the future according to widely reported results via other methods.
Highlights:
1 The main components, principle, and technology of dielectric elastomer actuator (DEA) were reviewed to illustrate that DEA can be an effective carrier for mechanobiology research.
2 Comparison between DEA-based bioreactors and current commercial devices is provided, as well as the outlook of the DEA bio-applications in the future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.R. Jacobs, H. Huang, R.Y. Kwon, Introduction to Cell Mechanics and Mechanobiology. (Garland Science, 2012), p. 3. https://doi.org/10.1201/9781135042653
- G. Bao, S. Suresh, Cell and molecular mechanics of biological materials. Nat. Mater. 2(11), 715–725 (2003). https://doi.org/10.1038/nmat1001
- J.H.-C. Wang, B.P. Thampatty, An introductory review of cell mechanobiology. Biomech. Model Mechanobiol. 5(1), 1–16 (2006). https://doi.org/10.1007/s10237-005-0012-z
- S. Van Helvert, C. Storm, P. Friedl, Mechanoreciprocity in cell migration. Nat. Cell Biol. 20(1), 8–20 (2018). https://doi.org/10.1038/s41556-017-0012-0
- S.A. Gudipaty, J. Lindblom, P.D. Loftus, M.J. Redd, K. Edes, C. Davey, V. Krishnegowda, J. Rosenblatt, Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543(7643), 118–121 (2017). https://doi.org/10.1038/nature21407
- I. Manabe, T. Shindo, R. Nagai, Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ. Res. 91(12), 1103–1113 (2002). https://doi.org/10.1161/01.RES.0000046452.67724.B8
- G.-K. Xu, X.-Q. Feng, H. Gao, Orientations of cells on compliant substrates under biaxial stretches: a theoretical study. Biophys. J. 114(3), 701–710 (2018). https://doi.org/10.1016/j.bpj.2017.12.002
- A. Livne, E. Bouchbinder, B. Geiger, Cell reorientation under cyclic stretching. Nat. Commun. 5, 3938 (2014). https://doi.org/10.1038/ncomms4938
- J. Ando, K. Yamamoto, Vascular mechanobiology. Circ. J. 73(11), 1983–1992 (2009). https://doi.org/10.1253/circj.CJ-09-0583
- D.M. Wootton, D.N. Ku, Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1(1), 299–329 (1999). https://doi.org/10.1146/annurev.bioeng.1.1.299
- K.R. Levental, H. Yu, L. Kass, J.N. Lakins, M. Egeblad et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5), 891–906 (2009). https://doi.org/10.1016/j.cell.2009.10.027
- D.-H. Kim, P.K. Wong, J. Park, A. Levchenko, Y. Sun, Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11, 203–233 (2009). https://doi.org/10.1146/annurev-bioeng-061008-124915
- J.S. Park, J.S.F. Chu, C. Catherine, C. Fanqing, C. David, L. Song, Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88(3), 359–368 (2004). https://doi.org/10.1002/bit.20250
- T.D. Brown, Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33(1), 3–14 (2000). https://doi.org/10.1016/S0021-9290(99)00177-3
- C.A. Davis, S. Zambrano, P. Anumolu, A.C. Allen, L. Sonoqui, M.R. Moreno, Device-based in vitro techniques for mechanical stimulation of vascular cells: a review. J. Biomech. Eng. 137(4), 040801 (2015). https://doi.org/10.1115/1.4029016
- Q. Wang, H. Huang, Y. Niu, X. Zhang, P. Jiang, K.E. Swindle-Reilly, Y. Zhao, Microscale cell stretcher to generate spatially uniform equi-biaxial strain using an elastomeric membrane with a contoured thickness profile. Sens. Actuator B 273, 1600–1609 (2018). https://doi.org/10.1016/j.snb.2018.07.051
- K. Shimizu, A. Shunori, K. Morimoto, M. Hashida, S. Konishi, Development of a biochip with serially connected pneumatic balloons for cell-stretching culture. Sens. Actuator B 156(1), 486–493 (2011). https://doi.org/10.1016/j.snb.2011.04.048
- H.Y. Lim, J. Kim, H.J. Song, K. Kim, K.C. Choi, S. Park, G.Y. Sung, Development of wrinkled skin-on-a-chip (WSOC) by cyclic uniaxial stretching. J. Ind. Eng. Chem. 68, 238–245 (2018). https://doi.org/10.1016/j.jiec.2018.07.050
- J. Kreutzer, L. Ikonen, J. Hirvonen, M. Pekkanen-Mattila, K. Aalto-Setälä, P. Kallio, Pneumatic cell stretching system for cardiac differentiation and culture. Med. Eng. Phys. 36(4), 496–501 (2014). https://doi.org/10.1016/j.medengphy.2013.09.008
- S. Schürmann, S. Wagner, S. Herlitze, C. Fischer, S. Gumbrecht et al., The isostretcher: an isotropic cell stretch device to study mechanical biosensor pathways in living cells. Biosens. Bioelectron. 81, 363–372 (2016). https://doi.org/10.1016/j.bios.2016.03.015
- Y. Kamotani, T. Bersano-Begey, N. Kato, Y.-C. Tung, D. Huh, J.W. Song, S. Takayama, Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials 29(17), 2646–2655 (2008). https://doi.org/10.1016/j.biomaterials.2008.02.019
- I. Sraj, C.D. Eggleton, R. Jimenez, E.E. Hoover, J.A. Squier, J. Chichester, D.W. Marr, Cell deformation cytometry using diode-bar optical stretchers. J. Biomed. Opt. 15(4), 047010 (2010). https://doi.org/10.1117/1.3470124
- N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, G. Whyte, Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed. Opt. Express 3(10), 2658–2668 (2012). https://doi.org/10.1364/BOE.3.002658
- K. Kurata, K. Sumida, H. Takamatsu, Open-source cell extension system assembled from laser-cut plates. HardwareX 5, e00065 (2019). https://doi.org/10.1016/j.ohx.2019.e00065
- L.-E. Mantella, A. Quan, S. Verma, Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc. Cell 7(1), 7 (2015). https://doi.org/10.1186/s13221-015-0032-0
- A.J. Banes, J. Gilbert, D. Taylor, O. Monbureau, A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell Sci. 75(1), 35–42 (1985)
- T. Mitsui, H. Azuma, M. Nagasawa, T. Iuchi, M. Akaike, M. Odomi, T. Matsumoto, Chronic corticosteroid administration causes mitochondrial dysfunction in skeletal muscle. J. Neuro. 249(8), 1004–1009 (2002). https://doi.org/10.1007/s00415-002-0774-5
- R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000). https://doi.org/10.1126/science.287.5454.836
- K. Ren, Y. Liu, H. Hofmann, Q. Zhang, J. Blottman, An active energy harvesting scheme with an electroactive polymer. Appl. Phys. Lett. 91(13), 132910 (2007). https://doi.org/10.1063/1.2793172
- M. Matysek, P. Lotz, T. Winterstein, H.F. Schlaak, Dielectric elastomer actuators for tactile displays. World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 290–295 (2009). https://doi.org/10.1109/WHC.2009.4810822
- G. Gu, J. Zou, R. Zhao, X. Zhao, X. Zhu, Soft wall-climbing robots. Sci. Robot. 3, 2874 (2018). https://doi.org/10.1126/scirobotics.aat2874
- L. Xu, H.-Q. Chen, J. Zou, W.-T. Dong, G.-Y. Gu, L.-M. Zhu, X.-Y. Zhu, Bio-inspired annelid robot: a dielectric elastomer actuated soft robot. Bioinspir. Biomim. 12(2), 025003 (2017). https://doi.org/10.1088/1748-3190/aa50a5
- G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, X.-Y. Zhu, Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model. Appl. Phys. Lett. 107(4), 042907 (2015). https://doi.org/10.1063/1.4927767
- C. Löwe, X. Zhang, G. Kovacs, Dielectric elastomers in actuator technology. Adv. Eng. Mater. 7(5), 361–367 (2005). https://doi.org/10.1002/adem.200500066
- G. Kofod, R.D. Kornbluh, R. Pelrine, P. Sommer-Larsen, Actuation response of polyacrylate dielectric elastomers. SPIE Smart Struct. Mater. 2001 Electroact. Polym. Actuators Devices 4329, 141–147 (2001). https://doi.org/10.1117/12.432638
- J. Zou, G. Gu, Dynamic modeling of dielectric elastomer actuators with a minimum energy structure. Smart Mater. Struct. 28(8), 085039 (2019). https://doi.org/10.1088/1361-665X/ab2c1f
- J. Zou, G. Gu, Feedforward control of the rate-dependent viscoelastic hysteresis nonlinearity in dielectric elastomer actuators. IEEE Robot. Autom. Lett. 4(3), 2340–2347 (2019). https://doi.org/10.1109/LRA.2019.2902954
- J. Zou, G. Gu, High-precision tracking control of a soft dielectric elastomer actuator with inverse viscoelastic hysteresis compensation. IEEE/ASME Trans. Mechatron. 24(1), 36–44 (2018). https://doi.org/10.1109/TMECH.2018.2873620
- J. Zou, G. Gu, Modeling the viscoelastic hysteresis of dielectric elastomer actuators with a modified rate-dependent Prandtl–Ishlinskii model. Polymers 10(5), 525 (2018). https://doi.org/10.3390/polym10050525
- G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, X. Zhu, Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 33(5), 1263–1271 (2017). https://doi.org/10.1109/TRO.2017.2706285
- J. Zou, G.-Y. Gu, L.-M. Zhu, Open-loop control of creep and vibration in dielectric elastomer actuators with phenomenological models. IEEE/ASME Trans. Mechatron. 22(1), 51–58 (2016). https://doi.org/10.1109/TMECH.2016.2591069
- S. Akbari, S. Rosset, H.R. Shea, More than 10-fold increase in the actuation strain of silicone dielectric elastomer actuators by applying prestrain. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 8687, 86871P (2013). https://doi.org/10.1117/12.2009912
- F. Carpi, G. Frediani, D. De Rossi, Electroactive elastomeric actuators for biomedical and bioinspired systems. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). 623–627 (2012). https://doi.org/10.1109/BioRob.2012.6290761
- A. Poulin, C.S. Demir, S. Rosset, T.V. Petrova, H. Shea, Dielectric elastomer actuator for mechanical loading of 2D cell cultures. Lab Chip 16(19), 3788–3794 (2016). https://doi.org/10.1039/C6LC00903D
- A. Poulin, S. Rosset, H. Shea, Fabrication and characterization of silicone-based dielectric elastomer actuators for mechanical stimulation of living cells. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD). 10594, 105940 V (2018). https://doi.org/10.1117/12.2295687
- S. Akbari, H. Shea, Arrays of 100 μm × 100 μm dielectric elastomer actuators to strain the single cells. Procedia Eng. 25, 693–696 (2011). https://doi.org/10.1016/j.proeng.2011.12.171
- S. Akbari, M. Niklaus, H. Shea, Arrays of EAP micro-actuators for single-cell stretching applications. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD); 7642, 76420H (2010). https://doi.org/10.1117/12.847125
- S. Akbari, H. Shea, Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells. J. Micromech. Microeng. 22(4), 045020 (2012). https://doi.org/10.1088/0960-1317/22/4/045020
- P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010). https://doi.org/10.1002/marc.200900425
- R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuator A 64(1), 77–85 (1998). https://doi.org/10.1016/S0924-4247(97)01657-9
- S. Rosset, H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110(2), 281–307 (2013). https://doi.org/10.1007/s00339-012-7402-8
- F. Carpi, P. Chiarelli, A. Mazzoldi, D. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens. Actuator A 107(1), 85–95 (2003). https://doi.org/10.1016/S0924-4247(03)00257-7
- R.D. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field electrostriction of elastomeric polymer dielectrics for actuation. SPIE Smart Struct. Mater. 1999 Electroact. Polym. Actuators Devices (EAPAD) 3669, 149–162 (1999). https://doi.org/10.1117/12.349672
- R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C 11(2), 89–100 (2000). https://doi.org/10.1016/S0928-4931(00)00128-4
- P. Lotz, M. Matysek, H.F. Schlaak, Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011). https://doi.org/10.1109/TMECH.2010.2090164
- M. Aschwanden, A. Stemmer, Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 6524, 65241N (2007). https://doi.org/10.1117/12.713325
- F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009). https://doi.org/10.1016/j.solmat.2008.10.004
- O.A. Araromi, S. Rosset, H.R. Shea, High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 7(32), 18046–18053 (2015). https://doi.org/10.1021/acsami.5b04975
- S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009). https://doi.org/10.1109/JMEMS.2009.2031690
- S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sens. Actuator A 144(1), 185–193 (2008). https://doi.org/10.1016/j.sna.2007.12.030
- P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.F.D. Rooij, H. Shea, Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes. Sens. Actuator A 130(2), 147–154 (2006). https://doi.org/10.1016/j.sna.2005.11.069
- S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2010). https://doi.org/10.1002/adfm.200801218
- F. Greco, A. Bellacicca, M. Gemmi, V. Cappello, V. Mattoli, P. Milani, Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: tunable thermally induced surface wrinkling. ACS Appl. Mater. Interfaces. 7(13), 7060–7065 (2015). https://doi.org/10.1021/acsami.5b00825
- L. Hu, Y. Wei, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 1459 (2009). https://doi.org/10.1063/1.3114463
- G. Kovacs, L. Düring, Contractive tension force stack actuator based on soft dielectric eap. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 7287, 72870A (2009). https://doi.org/10.1117/12.815195
- C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013). https://doi.org/10.1126/science.1240228
- Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong, C. Keplinger, C. Wang, A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29(10), 1605099 (2017). https://doi.org/10.1002/adma.201605099
- G. Haghiashtiani, E. Habtour, S.-H. Park, F. Gardea, M.C. McAlpine, 3d Printed electrically-driven soft actuators. Extreme Mechan. Lett. 21, 1–8 (2018). https://doi.org/10.1016/j.eml.2018.02.002
- A. O’Halloran, F. O’malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 9 (2008). https://doi.org/10.1063/1.2981642
- D. Cei, J. Costa, G. Gori, G. Frediani, C. Domenici, F. Carpi, A. Ahluwalia, A bioreactor with an electro-responsive elastomeric membrane for mimicking intestinal peristalsis. Bioinspir. Biomim. 12(1), 016001 (2016). https://doi.org/10.1088/1748-3190/12/1/016001
- A. Poulin, S. Rosset, H. Shea, Toward compression of small cell population: Harnessing stress in passive regions of dielectric elastomer actuators. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 9056, 90561Q (2014). https://doi.org/10.1117/12.2044784
- Z. Suo, Theory of dielectric elastomers. Acta Mech. Solida Sin. 23(6), 549–578 (2010). https://doi.org/10.1016/S0894-9166(11)60004-9
- B. Li, J. Zhou, H. Chen, Electromechanical stability in charge-controlled dielectric elastomer actuation. Appl. Phys. Lett. 99(24), 244101 (2011). https://doi.org/10.1063/1.3670048
- L. Jiang, A. Betts, D. Kennedy, S. Jerrams, Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch. J. Phys. D 49(26), 265401 (2016). https://doi.org/10.1088/0022-3727/49/26/265401
- S.J.A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, Z. Suo, Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. B 49(7), 504–515 (2011). https://doi.org/10.1002/polb.22223
- C.T.F. Ross, in Finite Element Techniques in Structural Mechanics. Albion Pub. 198 (1996). https://doi.org/10.1533/9780857099846
- J. Blaber, B. Adair, A. Antoniou, Ncorr: open-source 2D digital image correlation matlab software. Exp. Mech. 55(6), 1105–1122 (2015). https://doi.org/10.1007/s11340-015-0009-1
- A. Poulin, M. Imboden, F. Sorba, S. Grazioli, C. Martin-Olmos, S. Rosset, H. Shea, An ultra-fast mechanically active cell culture substrate. Sci. Rep. 8(1), 9895 (2018). https://doi.org/10.1038/s41598-018-27915-y
- Y. Bar-Cohen, S. Rosset, A. Poulin, A. Zollinger, M. Smith, H. Shea, Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 10163, 101630P (2017). https://doi.org/10.1117/12.2258731
- D.R. Gossett, T. Henry, S.A. Lee, Y. Ying, A.G. Lindgren et al., Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109(20), 7630–7635 (2012). https://doi.org/10.1073/pnas.1200107109
- V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, G.-Y. Liu, Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 22(19), 8151–8155 (2006). https://doi.org/10.1021/la060561p
- D.B. Serrell, T.L. Oreskovic, A.J. Slifka, R.L. Mahajan, D.S. Finch, A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomed. Microdevices 9(2), 267–275 (2007). https://doi.org/10.1007/s10544-006-9032-4
- S. Henon, G. Lenormand, A. Richert, F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76(2), 1145–1151 (1999). https://doi.org/10.1016/S0006-3495(99)77279-6
- S. Akbari, H.R. Shea, An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications. Sens. Actuator A 186, 236–241 (2012). https://doi.org/10.1016/j.sna.2012.01.030
- M. Imboden, E. de Coulon, A. Poulin, C. Dellenbach, S. Rosset, H. Shea, S. Rohr, High-speed mechano-active multielectrode array for investigating rapid stretch effects on cardiac tissue. Nat. Commun. 10(1), 834 (2019). https://doi.org/10.1038/s41467-019-08757-2
- S. Wu, L. Qian, L. Huang, X. Sun, H. Su et al., A plasmonic mass spectrometry approach for detection of small nutrients and toxins. Nano-Micro Lett. 10(3), 52 (2018). https://doi.org/10.1007/s40820-018-0204-6
- X. Sun, L. Huang, R. Zhang, W. Xu, J. Huang et al., Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Central Sci. 4(2), 223–229 (2018). https://doi.org/10.1021/acscentsci.7b00546
- R. Zhang, C. Rejeeth, W. Xu, C. Zhu, X. Liu, J. Wan, M. Jiang, K. Qian, Label-free electrochemical sensor for cd44 by ligand-protein interaction. Anal. Chem. 91(11), 7078–7085 (2019). https://doi.org/10.1021/acs.analchem.8b05966
- A. Grosberg, P.W. Alford, M.L. McCain, K.K. Parker, Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24), 4165–4173 (2011). https://doi.org/10.1039/c1lc20557a
- S. Rosset, A. Poulin, A. Zollinger, M. Smith, H. Shea, Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 10163, 101630P (2017). https://doi.org/10.1117/12.2258731
- O. Araromi, A. Poulin, S. Rosset, M. Favre, M. Giazzon et al., Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 9430, 94300Z (2015). https://doi.org/10.1117/12.2083905
- O. Araromi, A. Poulin, S. Rosset, M. Imboden, M. Favre et al., Optimization of thin-film highly-compliant elastomer sensors for contractility measurement of muscle cells. Extreme Mechan. Lett. 9, 1–10 (2016). https://doi.org/10.1016/j.eml.2016.03.017
- STREX Inc, https://strexcell.com/product-manuals/. Accessed 8 Aug 2019
- Flexcell International Corporation, https://www.flexcellint.com/. Accessed 8 Aug 2019
- P.S. Howard, U. Kucich, R. Taliwal, J.M. Korostoff, Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J. Periodont. Res. 33(8), 500–508 (1998). https://doi.org/10.1111/j.1600-0765.1998.tb02350.x
- C. Tamiello, A.B. Buskermolen, F.P. Baaijens, J.L. Broers, C.V. Bouten, Heading in the right direction: understanding cellular orientation responses to complex biophysical environments. Cell. Mol. Bioeng. 9(1), 12–37 (2016). https://doi.org/10.1007/s12195-015-0422-7
- P. Dartsch, H. Hämmerle, Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41(2), 339–346 (1986)
- P.C. Dartsch, H. Hämmerle, E. Betz, Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Cells Tissues Organs 125(2), 108–113 (1986). https://doi.org/10.1159/000146146
- D.E. Discher, P. Janmey, Y.-L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005). https://doi.org/10.1126/science.1116995
- J.H.-C. Wang, Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J. Theor. Biol. 202(1), 33–41 (2000). https://doi.org/10.1006/jtbi.1999.1035
- S. Chagnon-Lessard, H. Jean-Ruel, M. Godin, A.E. Pelling, Cellular orientation is guided by strain gradients. Integr. Biol. 9(7), 607–618 (2017). https://doi.org/10.1039/c7ib00019g
- J. Dai, H.P. Ting-Beall, M.P. Sheetz, The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J. Gen. Physiol. 110(1), 1–10 (1997). https://doi.org/10.1085/jgp.110.1.1
- D. Raucher, M.P. Sheetz, Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol. 144(3), 497–506 (1999). https://doi.org/10.1083/jcb.144.3.497
- S. Boulant, C. Kural, J.-C. Zeeh, F. Ubelmann, T. Kirchhausen, Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13(9), 1124 (2011). https://doi.org/10.1038/ncb2307
- J.J. Thottacherry, A.J. Kosmalska, A. Kumar, A.S. Vishen, A. Elosegui-Artola et al., Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat. Commun. 9(1), 4217 (2018). https://doi.org/10.1038/s41467-018-06738-5
- P.K. Chaudhuri, B.C. Low, C.T. Lim, Mechanobiology of tumor growth. Chem. Rev. 118(14), 6499–6515 (2018). https://doi.org/10.1021/acs.chemrev.8b00042
- A.L. McNulty, F. Guilak, Mechanobiology of the meniscus. J. Biomech. 48(8), 1469–1478 (2015). https://doi.org/10.1016/j.jbiomech.2015.02.008
- J.H.-C. Wang, Mechanobiology of tendon. J. Biomech. 39(9), 1563–1582 (2006). https://doi.org/10.1016/j.jbiomech.2005.05.011
- M. Hofmann, M. Guschel, A. Bernd, J. Bereiter-Hahn, R. Kaufmann et al., Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia 8(2), 89–95 (2006). https://doi.org/10.1593/neo.05469
- G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15(8), 778 (1997). https://doi.org/10.1038/nbt0897-778
- T. Gupta, B. Zielinska, J. McHenry, M. Kadmiel, T.H. Donahue, IL-1 and iNOS gene expression and no synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains. Osteoarthritis Cartilage 16(10), 1213–1219 (2008). https://doi.org/10.1016/j.joca.2008.02.019
- N. Maffulli, Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14(8), 840–843 (1998). https://doi.org/10.1016/S0749-8063(98)70021-0
- K.M. Khan, N. Maffulli, Tendinopathy: an Achilles’ heel for athletes and clinicians. Clin. J. Sport Med. 8(3), 151–154 (1998). https://doi.org/10.1097/00042752-199807000-00001
- A. Poulin, S. Rosset, H.R. Shea, Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107(24), 244104 (2015). https://doi.org/10.1063/1.4937735
References
C.R. Jacobs, H. Huang, R.Y. Kwon, Introduction to Cell Mechanics and Mechanobiology. (Garland Science, 2012), p. 3. https://doi.org/10.1201/9781135042653
G. Bao, S. Suresh, Cell and molecular mechanics of biological materials. Nat. Mater. 2(11), 715–725 (2003). https://doi.org/10.1038/nmat1001
J.H.-C. Wang, B.P. Thampatty, An introductory review of cell mechanobiology. Biomech. Model Mechanobiol. 5(1), 1–16 (2006). https://doi.org/10.1007/s10237-005-0012-z
S. Van Helvert, C. Storm, P. Friedl, Mechanoreciprocity in cell migration. Nat. Cell Biol. 20(1), 8–20 (2018). https://doi.org/10.1038/s41556-017-0012-0
S.A. Gudipaty, J. Lindblom, P.D. Loftus, M.J. Redd, K. Edes, C. Davey, V. Krishnegowda, J. Rosenblatt, Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543(7643), 118–121 (2017). https://doi.org/10.1038/nature21407
I. Manabe, T. Shindo, R. Nagai, Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ. Res. 91(12), 1103–1113 (2002). https://doi.org/10.1161/01.RES.0000046452.67724.B8
G.-K. Xu, X.-Q. Feng, H. Gao, Orientations of cells on compliant substrates under biaxial stretches: a theoretical study. Biophys. J. 114(3), 701–710 (2018). https://doi.org/10.1016/j.bpj.2017.12.002
A. Livne, E. Bouchbinder, B. Geiger, Cell reorientation under cyclic stretching. Nat. Commun. 5, 3938 (2014). https://doi.org/10.1038/ncomms4938
J. Ando, K. Yamamoto, Vascular mechanobiology. Circ. J. 73(11), 1983–1992 (2009). https://doi.org/10.1253/circj.CJ-09-0583
D.M. Wootton, D.N. Ku, Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1(1), 299–329 (1999). https://doi.org/10.1146/annurev.bioeng.1.1.299
K.R. Levental, H. Yu, L. Kass, J.N. Lakins, M. Egeblad et al., Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5), 891–906 (2009). https://doi.org/10.1016/j.cell.2009.10.027
D.-H. Kim, P.K. Wong, J. Park, A. Levchenko, Y. Sun, Microengineered platforms for cell mechanobiology. Annu. Rev. Biomed. Eng. 11, 203–233 (2009). https://doi.org/10.1146/annurev-bioeng-061008-124915
J.S. Park, J.S.F. Chu, C. Catherine, C. Fanqing, C. David, L. Song, Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88(3), 359–368 (2004). https://doi.org/10.1002/bit.20250
T.D. Brown, Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33(1), 3–14 (2000). https://doi.org/10.1016/S0021-9290(99)00177-3
C.A. Davis, S. Zambrano, P. Anumolu, A.C. Allen, L. Sonoqui, M.R. Moreno, Device-based in vitro techniques for mechanical stimulation of vascular cells: a review. J. Biomech. Eng. 137(4), 040801 (2015). https://doi.org/10.1115/1.4029016
Q. Wang, H. Huang, Y. Niu, X. Zhang, P. Jiang, K.E. Swindle-Reilly, Y. Zhao, Microscale cell stretcher to generate spatially uniform equi-biaxial strain using an elastomeric membrane with a contoured thickness profile. Sens. Actuator B 273, 1600–1609 (2018). https://doi.org/10.1016/j.snb.2018.07.051
K. Shimizu, A. Shunori, K. Morimoto, M. Hashida, S. Konishi, Development of a biochip with serially connected pneumatic balloons for cell-stretching culture. Sens. Actuator B 156(1), 486–493 (2011). https://doi.org/10.1016/j.snb.2011.04.048
H.Y. Lim, J. Kim, H.J. Song, K. Kim, K.C. Choi, S. Park, G.Y. Sung, Development of wrinkled skin-on-a-chip (WSOC) by cyclic uniaxial stretching. J. Ind. Eng. Chem. 68, 238–245 (2018). https://doi.org/10.1016/j.jiec.2018.07.050
J. Kreutzer, L. Ikonen, J. Hirvonen, M. Pekkanen-Mattila, K. Aalto-Setälä, P. Kallio, Pneumatic cell stretching system for cardiac differentiation and culture. Med. Eng. Phys. 36(4), 496–501 (2014). https://doi.org/10.1016/j.medengphy.2013.09.008
S. Schürmann, S. Wagner, S. Herlitze, C. Fischer, S. Gumbrecht et al., The isostretcher: an isotropic cell stretch device to study mechanical biosensor pathways in living cells. Biosens. Bioelectron. 81, 363–372 (2016). https://doi.org/10.1016/j.bios.2016.03.015
Y. Kamotani, T. Bersano-Begey, N. Kato, Y.-C. Tung, D. Huh, J.W. Song, S. Takayama, Individually programmable cell stretching microwell arrays actuated by a Braille display. Biomaterials 29(17), 2646–2655 (2008). https://doi.org/10.1016/j.biomaterials.2008.02.019
I. Sraj, C.D. Eggleton, R. Jimenez, E.E. Hoover, J.A. Squier, J. Chichester, D.W. Marr, Cell deformation cytometry using diode-bar optical stretchers. J. Biomed. Opt. 15(4), 047010 (2010). https://doi.org/10.1117/1.3470124
N. Bellini, F. Bragheri, I. Cristiani, J. Guck, R. Osellame, G. Whyte, Validation and perspectives of a femtosecond laser fabricated monolithic optical stretcher. Biomed. Opt. Express 3(10), 2658–2668 (2012). https://doi.org/10.1364/BOE.3.002658
K. Kurata, K. Sumida, H. Takamatsu, Open-source cell extension system assembled from laser-cut plates. HardwareX 5, e00065 (2019). https://doi.org/10.1016/j.ohx.2019.e00065
L.-E. Mantella, A. Quan, S. Verma, Variability in vascular smooth muscle cell stretch-induced responses in 2D culture. Vasc. Cell 7(1), 7 (2015). https://doi.org/10.1186/s13221-015-0032-0
A.J. Banes, J. Gilbert, D. Taylor, O. Monbureau, A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J. Cell Sci. 75(1), 35–42 (1985)
T. Mitsui, H. Azuma, M. Nagasawa, T. Iuchi, M. Akaike, M. Odomi, T. Matsumoto, Chronic corticosteroid administration causes mitochondrial dysfunction in skeletal muscle. J. Neuro. 249(8), 1004–1009 (2002). https://doi.org/10.1007/s00415-002-0774-5
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000). https://doi.org/10.1126/science.287.5454.836
K. Ren, Y. Liu, H. Hofmann, Q. Zhang, J. Blottman, An active energy harvesting scheme with an electroactive polymer. Appl. Phys. Lett. 91(13), 132910 (2007). https://doi.org/10.1063/1.2793172
M. Matysek, P. Lotz, T. Winterstein, H.F. Schlaak, Dielectric elastomer actuators for tactile displays. World Haptics 2009-Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. 290–295 (2009). https://doi.org/10.1109/WHC.2009.4810822
G. Gu, J. Zou, R. Zhao, X. Zhao, X. Zhu, Soft wall-climbing robots. Sci. Robot. 3, 2874 (2018). https://doi.org/10.1126/scirobotics.aat2874
L. Xu, H.-Q. Chen, J. Zou, W.-T. Dong, G.-Y. Gu, L.-M. Zhu, X.-Y. Zhu, Bio-inspired annelid robot: a dielectric elastomer actuated soft robot. Bioinspir. Biomim. 12(2), 025003 (2017). https://doi.org/10.1088/1748-3190/aa50a5
G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, X.-Y. Zhu, Feedforward deformation control of a dielectric elastomer actuator based on a nonlinear dynamic model. Appl. Phys. Lett. 107(4), 042907 (2015). https://doi.org/10.1063/1.4927767
C. Löwe, X. Zhang, G. Kovacs, Dielectric elastomers in actuator technology. Adv. Eng. Mater. 7(5), 361–367 (2005). https://doi.org/10.1002/adem.200500066
G. Kofod, R.D. Kornbluh, R. Pelrine, P. Sommer-Larsen, Actuation response of polyacrylate dielectric elastomers. SPIE Smart Struct. Mater. 2001 Electroact. Polym. Actuators Devices 4329, 141–147 (2001). https://doi.org/10.1117/12.432638
J. Zou, G. Gu, Dynamic modeling of dielectric elastomer actuators with a minimum energy structure. Smart Mater. Struct. 28(8), 085039 (2019). https://doi.org/10.1088/1361-665X/ab2c1f
J. Zou, G. Gu, Feedforward control of the rate-dependent viscoelastic hysteresis nonlinearity in dielectric elastomer actuators. IEEE Robot. Autom. Lett. 4(3), 2340–2347 (2019). https://doi.org/10.1109/LRA.2019.2902954
J. Zou, G. Gu, High-precision tracking control of a soft dielectric elastomer actuator with inverse viscoelastic hysteresis compensation. IEEE/ASME Trans. Mechatron. 24(1), 36–44 (2018). https://doi.org/10.1109/TMECH.2018.2873620
J. Zou, G. Gu, Modeling the viscoelastic hysteresis of dielectric elastomer actuators with a modified rate-dependent Prandtl–Ishlinskii model. Polymers 10(5), 525 (2018). https://doi.org/10.3390/polym10050525
G.-Y. Gu, U. Gupta, J. Zhu, L.-M. Zhu, X. Zhu, Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Trans. Robot. 33(5), 1263–1271 (2017). https://doi.org/10.1109/TRO.2017.2706285
J. Zou, G.-Y. Gu, L.-M. Zhu, Open-loop control of creep and vibration in dielectric elastomer actuators with phenomenological models. IEEE/ASME Trans. Mechatron. 22(1), 51–58 (2016). https://doi.org/10.1109/TMECH.2016.2591069
S. Akbari, S. Rosset, H.R. Shea, More than 10-fold increase in the actuation strain of silicone dielectric elastomer actuators by applying prestrain. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 8687, 86871P (2013). https://doi.org/10.1117/12.2009912
F. Carpi, G. Frediani, D. De Rossi, Electroactive elastomeric actuators for biomedical and bioinspired systems. 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). 623–627 (2012). https://doi.org/10.1109/BioRob.2012.6290761
A. Poulin, C.S. Demir, S. Rosset, T.V. Petrova, H. Shea, Dielectric elastomer actuator for mechanical loading of 2D cell cultures. Lab Chip 16(19), 3788–3794 (2016). https://doi.org/10.1039/C6LC00903D
A. Poulin, S. Rosset, H. Shea, Fabrication and characterization of silicone-based dielectric elastomer actuators for mechanical stimulation of living cells. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD). 10594, 105940 V (2018). https://doi.org/10.1117/12.2295687
S. Akbari, H. Shea, Arrays of 100 μm × 100 μm dielectric elastomer actuators to strain the single cells. Procedia Eng. 25, 693–696 (2011). https://doi.org/10.1016/j.proeng.2011.12.171
S. Akbari, M. Niklaus, H. Shea, Arrays of EAP micro-actuators for single-cell stretching applications. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD); 7642, 76420H (2010). https://doi.org/10.1117/12.847125
S. Akbari, H. Shea, Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells. J. Micromech. Microeng. 22(4), 045020 (2012). https://doi.org/10.1088/0960-1317/22/4/045020
P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010). https://doi.org/10.1002/marc.200900425
R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuator A 64(1), 77–85 (1998). https://doi.org/10.1016/S0924-4247(97)01657-9
S. Rosset, H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 110(2), 281–307 (2013). https://doi.org/10.1007/s00339-012-7402-8
F. Carpi, P. Chiarelli, A. Mazzoldi, D. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sens. Actuator A 107(1), 85–95 (2003). https://doi.org/10.1016/S0924-4247(03)00257-7
R.D. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field electrostriction of elastomeric polymer dielectrics for actuation. SPIE Smart Struct. Mater. 1999 Electroact. Polym. Actuators Devices (EAPAD) 3669, 149–162 (1999). https://doi.org/10.1117/12.349672
R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, S. Chiba, High-field deformation of elastomeric dielectrics for actuators. Mater. Sci. Eng. C 11(2), 89–100 (2000). https://doi.org/10.1016/S0928-4931(00)00128-4
P. Lotz, M. Matysek, H.F. Schlaak, Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 16(1), 58–66 (2011). https://doi.org/10.1109/TMECH.2010.2090164
M. Aschwanden, A. Stemmer, Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 6524, 65241N (2007). https://doi.org/10.1117/12.713325
F.C. Krebs, Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93(4), 394–412 (2009). https://doi.org/10.1016/j.solmat.2008.10.004
O.A. Araromi, S. Rosset, H.R. Shea, High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 7(32), 18046–18053 (2015). https://doi.org/10.1021/acsami.5b04975
S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Large-stroke dielectric elastomer actuators with ion-implanted electrodes. J. Microelectromech. Syst. 18(6), 1300–1308 (2009). https://doi.org/10.1109/JMEMS.2009.2031690
S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes. Sens. Actuator A 144(1), 185–193 (2008). https://doi.org/10.1016/j.sna.2007.12.030
P. Dubois, S. Rosset, S. Koster, J. Stauffer, S. Mikhaïlov, M. Dadras, N.F.D. Rooij, H. Shea, Microactuators based on ion implanted dielectric electroactive polymer (EAP) membranes. Sens. Actuator A 130(2), 147–154 (2006). https://doi.org/10.1016/j.sna.2005.11.069
S. Rosset, M. Niklaus, P. Dubois, H.R. Shea, Metal ion implantation for the fabrication of stretchable electrodes on elastomers. Adv. Funct. Mater. 19(3), 470–478 (2010). https://doi.org/10.1002/adfm.200801218
F. Greco, A. Bellacicca, M. Gemmi, V. Cappello, V. Mattoli, P. Milani, Conducting shrinkable nanocomposite based on au-nanoparticle implanted plastic sheet: tunable thermally induced surface wrinkling. ACS Appl. Mater. Interfaces. 7(13), 7060–7065 (2015). https://doi.org/10.1021/acsami.5b00825
L. Hu, Y. Wei, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 1459 (2009). https://doi.org/10.1063/1.3114463
G. Kovacs, L. Düring, Contractive tension force stack actuator based on soft dielectric eap. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 7287, 72870A (2009). https://doi.org/10.1117/12.815195
C. Keplinger, J.-Y. Sun, C.C. Foo, P. Rothemund, G.M. Whitesides, Z. Suo, Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013). https://doi.org/10.1126/science.1240228
Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong, C. Keplinger, C. Wang, A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29(10), 1605099 (2017). https://doi.org/10.1002/adma.201605099
G. Haghiashtiani, E. Habtour, S.-H. Park, F. Gardea, M.C. McAlpine, 3d Printed electrically-driven soft actuators. Extreme Mechan. Lett. 21, 1–8 (2018). https://doi.org/10.1016/j.eml.2018.02.002
A. O’Halloran, F. O’malley, P. McHugh, A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 9 (2008). https://doi.org/10.1063/1.2981642
D. Cei, J. Costa, G. Gori, G. Frediani, C. Domenici, F. Carpi, A. Ahluwalia, A bioreactor with an electro-responsive elastomeric membrane for mimicking intestinal peristalsis. Bioinspir. Biomim. 12(1), 016001 (2016). https://doi.org/10.1088/1748-3190/12/1/016001
A. Poulin, S. Rosset, H. Shea, Toward compression of small cell population: Harnessing stress in passive regions of dielectric elastomer actuators. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 9056, 90561Q (2014). https://doi.org/10.1117/12.2044784
Z. Suo, Theory of dielectric elastomers. Acta Mech. Solida Sin. 23(6), 549–578 (2010). https://doi.org/10.1016/S0894-9166(11)60004-9
B. Li, J. Zhou, H. Chen, Electromechanical stability in charge-controlled dielectric elastomer actuation. Appl. Phys. Lett. 99(24), 244101 (2011). https://doi.org/10.1063/1.3670048
L. Jiang, A. Betts, D. Kennedy, S. Jerrams, Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch. J. Phys. D 49(26), 265401 (2016). https://doi.org/10.1088/0022-3727/49/26/265401
S.J.A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, Z. Suo, Mechanisms of large actuation strain in dielectric elastomers. J. Polym. Sci. B 49(7), 504–515 (2011). https://doi.org/10.1002/polb.22223
C.T.F. Ross, in Finite Element Techniques in Structural Mechanics. Albion Pub. 198 (1996). https://doi.org/10.1533/9780857099846
J. Blaber, B. Adair, A. Antoniou, Ncorr: open-source 2D digital image correlation matlab software. Exp. Mech. 55(6), 1105–1122 (2015). https://doi.org/10.1007/s11340-015-0009-1
A. Poulin, M. Imboden, F. Sorba, S. Grazioli, C. Martin-Olmos, S. Rosset, H. Shea, An ultra-fast mechanically active cell culture substrate. Sci. Rep. 8(1), 9895 (2018). https://doi.org/10.1038/s41598-018-27915-y
Y. Bar-Cohen, S. Rosset, A. Poulin, A. Zollinger, M. Smith, H. Shea, Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 10163, 101630P (2017). https://doi.org/10.1117/12.2258731
D.R. Gossett, T. Henry, S.A. Lee, Y. Ying, A.G. Lindgren et al., Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109(20), 7630–7635 (2012). https://doi.org/10.1073/pnas.1200107109
V. Lulevich, T. Zink, H.-Y. Chen, F.-T. Liu, G.-Y. Liu, Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 22(19), 8151–8155 (2006). https://doi.org/10.1021/la060561p
D.B. Serrell, T.L. Oreskovic, A.J. Slifka, R.L. Mahajan, D.S. Finch, A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomed. Microdevices 9(2), 267–275 (2007). https://doi.org/10.1007/s10544-006-9032-4
S. Henon, G. Lenormand, A. Richert, F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76(2), 1145–1151 (1999). https://doi.org/10.1016/S0006-3495(99)77279-6
S. Akbari, H.R. Shea, An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications. Sens. Actuator A 186, 236–241 (2012). https://doi.org/10.1016/j.sna.2012.01.030
M. Imboden, E. de Coulon, A. Poulin, C. Dellenbach, S. Rosset, H. Shea, S. Rohr, High-speed mechano-active multielectrode array for investigating rapid stretch effects on cardiac tissue. Nat. Commun. 10(1), 834 (2019). https://doi.org/10.1038/s41467-019-08757-2
S. Wu, L. Qian, L. Huang, X. Sun, H. Su et al., A plasmonic mass spectrometry approach for detection of small nutrients and toxins. Nano-Micro Lett. 10(3), 52 (2018). https://doi.org/10.1007/s40820-018-0204-6
X. Sun, L. Huang, R. Zhang, W. Xu, J. Huang et al., Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Central Sci. 4(2), 223–229 (2018). https://doi.org/10.1021/acscentsci.7b00546
R. Zhang, C. Rejeeth, W. Xu, C. Zhu, X. Liu, J. Wan, M. Jiang, K. Qian, Label-free electrochemical sensor for cd44 by ligand-protein interaction. Anal. Chem. 91(11), 7078–7085 (2019). https://doi.org/10.1021/acs.analchem.8b05966
A. Grosberg, P.W. Alford, M.L. McCain, K.K. Parker, Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11(24), 4165–4173 (2011). https://doi.org/10.1039/c1lc20557a
S. Rosset, A. Poulin, A. Zollinger, M. Smith, H. Shea, Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 10163, 101630P (2017). https://doi.org/10.1117/12.2258731
O. Araromi, A. Poulin, S. Rosset, M. Favre, M. Giazzon et al., Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells. SPIE Smart Struct. Mater. Electroact. Polym. Actuators Devices (EAPAD) 9430, 94300Z (2015). https://doi.org/10.1117/12.2083905
O. Araromi, A. Poulin, S. Rosset, M. Imboden, M. Favre et al., Optimization of thin-film highly-compliant elastomer sensors for contractility measurement of muscle cells. Extreme Mechan. Lett. 9, 1–10 (2016). https://doi.org/10.1016/j.eml.2016.03.017
STREX Inc, https://strexcell.com/product-manuals/. Accessed 8 Aug 2019
Flexcell International Corporation, https://www.flexcellint.com/. Accessed 8 Aug 2019
P.S. Howard, U. Kucich, R. Taliwal, J.M. Korostoff, Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J. Periodont. Res. 33(8), 500–508 (1998). https://doi.org/10.1111/j.1600-0765.1998.tb02350.x
C. Tamiello, A.B. Buskermolen, F.P. Baaijens, J.L. Broers, C.V. Bouten, Heading in the right direction: understanding cellular orientation responses to complex biophysical environments. Cell. Mol. Bioeng. 9(1), 12–37 (2016). https://doi.org/10.1007/s12195-015-0422-7
P. Dartsch, H. Hämmerle, Orientation response of arterial smooth muscle cells to mechanical stimulation. Eur. J. Cell Biol. 41(2), 339–346 (1986)
P.C. Dartsch, H. Hämmerle, E. Betz, Orientation of cultured arterial smooth muscle cells growing on cyclically stretched substrates. Cells Tissues Organs 125(2), 108–113 (1986). https://doi.org/10.1159/000146146
D.E. Discher, P. Janmey, Y.-L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005). https://doi.org/10.1126/science.1116995
J.H.-C. Wang, Substrate deformation determines actin cytoskeleton reorganization: a mathematical modeling and experimental study. J. Theor. Biol. 202(1), 33–41 (2000). https://doi.org/10.1006/jtbi.1999.1035
S. Chagnon-Lessard, H. Jean-Ruel, M. Godin, A.E. Pelling, Cellular orientation is guided by strain gradients. Integr. Biol. 9(7), 607–618 (2017). https://doi.org/10.1039/c7ib00019g
J. Dai, H.P. Ting-Beall, M.P. Sheetz, The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J. Gen. Physiol. 110(1), 1–10 (1997). https://doi.org/10.1085/jgp.110.1.1
D. Raucher, M.P. Sheetz, Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol. 144(3), 497–506 (1999). https://doi.org/10.1083/jcb.144.3.497
S. Boulant, C. Kural, J.-C. Zeeh, F. Ubelmann, T. Kirchhausen, Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13(9), 1124 (2011). https://doi.org/10.1038/ncb2307
J.J. Thottacherry, A.J. Kosmalska, A. Kumar, A.S. Vishen, A. Elosegui-Artola et al., Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat. Commun. 9(1), 4217 (2018). https://doi.org/10.1038/s41467-018-06738-5
P.K. Chaudhuri, B.C. Low, C.T. Lim, Mechanobiology of tumor growth. Chem. Rev. 118(14), 6499–6515 (2018). https://doi.org/10.1021/acs.chemrev.8b00042
A.L. McNulty, F. Guilak, Mechanobiology of the meniscus. J. Biomech. 48(8), 1469–1478 (2015). https://doi.org/10.1016/j.jbiomech.2015.02.008
J.H.-C. Wang, Mechanobiology of tendon. J. Biomech. 39(9), 1563–1582 (2006). https://doi.org/10.1016/j.jbiomech.2005.05.011
M. Hofmann, M. Guschel, A. Bernd, J. Bereiter-Hahn, R. Kaufmann et al., Lowering of tumor interstitial fluid pressure reduces tumor cell proliferation in a xenograft tumor model. Neoplasia 8(2), 89–95 (2006). https://doi.org/10.1593/neo.05469
G. Helmlinger, P.A. Netti, H.C. Lichtenbeld, R.J. Melder, R.K. Jain, Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15(8), 778 (1997). https://doi.org/10.1038/nbt0897-778
T. Gupta, B. Zielinska, J. McHenry, M. Kadmiel, T.H. Donahue, IL-1 and iNOS gene expression and no synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains. Osteoarthritis Cartilage 16(10), 1213–1219 (2008). https://doi.org/10.1016/j.joca.2008.02.019
N. Maffulli, Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14(8), 840–843 (1998). https://doi.org/10.1016/S0749-8063(98)70021-0
K.M. Khan, N. Maffulli, Tendinopathy: an Achilles’ heel for athletes and clinicians. Clin. J. Sport Med. 8(3), 151–154 (1998). https://doi.org/10.1097/00042752-199807000-00001
A. Poulin, S. Rosset, H.R. Shea, Printing low-voltage dielectric elastomer actuators. Appl. Phys. Lett. 107(24), 244104 (2015). https://doi.org/10.1063/1.4937735