Aqueous Two-Phase Interfacial Assembly of COF Membranes for Water Desalination
Corresponding Author: Zhongyi Jiang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 216
Abstract
Aqueous two-phase system features with ultralow interfacial tension and thick interfacial region, affording unique confined space for membrane assembly. Here, for the first time, an aqueous two-phase interfacial assembly method is proposed to fabricate covalent organic framework (COF) membranes. The aqueous solution containing polyethylene glycol and dextran undergoes segregated phase separation into two water-rich phases. By respectively distributing aldehyde and amine monomers into two aqueous phases, a series of COF membranes are fabricated at water–water interface. The resultant membranes exhibit high NaCl rejection of 93.0–93.6% and water permeance reaching 1.7–3.7 L m−2 h−1 bar−1, superior to most water desalination membranes. Interestingly, the interfacial tension is found to have pronounced effect on membrane structures. The appropriate interfacial tension range (0.1–1.0 mN m−1) leads to the tight and intact COF membranes. Furthermore, the method is extended to the fabrication of other COF and metal–organic polymer membranes. This work is the first exploitation of fabricating membranes in all-aqueous system, confering a green and generic method for advanced membrane manufacturing.
Highlights:
1 All-aqueous phase approach to membrane fabrication is invented for the first time.
2 Interfacial tension of water-water interface has pronounced effect on the evolution of membrane structures.
3 Covalent organic framework membranes through aqueous two-phase interfacial assembly exhibit high water desalination performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang et al., Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50(9), 5468–5516 (2021). https://doi.org/10.1039/D0CS01347A
- M. Wang, P. Zhang, X. Liang, J. Zhao, Y. Liu et al., Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5(6), 518–526 (2022). https://doi.org/10.1038/s41893-022-00870-3
- C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova et al., The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45
- S. Kandambeth, K. Dey, R. Banerjee, Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141(5), 1807–1822 (2019). https://doi.org/10.1021/jacs.8b10334
- Y. Lu, W. Liu, J. Liu, X. Li, S. Zhang, A review on 2D porous organic polymers for membrane-based separations: processing and engineering of transport channels. Adv. Membr. 1, 100014 (2021). https://doi.org/10.1016/j.advmem.2021.100014
- D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors based on prospective 1-D nanomaterials. Nano-Micro Lett. 3, 62–71 (2011). https://doi.org/10.1007/BF03353653
- J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1(5), 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18
- B. Ho, J. Kamcev, M.R. Lloyd, M. Elimelech, D.F. Benny, Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343), eaab0530 (2017). https://doi.org/10.1126/science.aab0530
- A. Nazif, H. Karkhanechi, E. Saljoughi, S.M. Mousavi, H. Matsuyama, Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: a review. J. Water Process. Eng. 47, 102706 (2022). https://doi.org/10.1016/j.jwpe.2022.102706
- Y. Liu, Y. Ren, H. Ma, G. He, Z. Jiang, Advanced organic molecular sieve membranes for carbon capture: current status, challenges and prospects. Adv. Membr. 2, 100028 (2022). https://doi.org/10.1016/j.advmem.2022.100028
- Y. Yao, P. Zhang, C. Jiang, R.M. DuChanois, X. Zhang et al., High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4(2), 138–146 (2021). https://doi.org/10.1038/s41893-020-00619-w
- E.C. Tyler, B. Khara, P.B. Kaitlyn, M. Geitner, J.Z. Tawanda et al., Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371(6524), 72–75 (2021). https://doi.org/10.1126/science.abb8518
- S.K. Patel, C.L. Ritt, A. Deshmukh, Z. Wang, M. Qin et al., The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 13(6), 1694–1710 (2020). https://doi.org/10.1039/D0EE00341G
- R. Wei, X. Liu, Z. Lai, MOF or COF membranes for olefin/paraffin separation: current status and future research directions. Adv. Membr. 2, 100035 (2022). https://doi.org/10.1016/j.advmem.2022.100035
- Y. Huang, C. Xiao, Q. Huang, H. Liu, J. Zhao, Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chem. Eng. J. 403, 126295 (2021). https://doi.org/10.1016/j.cej.2020.126295
- D.M. Wang, J.Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2(2), 229–237 (2013). https://doi.org/10.1016/j.coche.2013.04.003
- Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 11, 100 (2019). https://doi.org/10.1007/s40820-019-0330-9
- X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
- Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale turing structures for water purification. Science 360(6388), 518–521 (2018). https://doi.org/10.1126/science.aar6308
- S. Karan, Z. Jiang, A.G. Livingston, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348(6241), 1347–1351 (2015). https://doi.org/10.1126/science.aaa5058
- M. Matsumoto, L. Valentino, G.M. Stiehl, H.B. Balch, A.R. Corcos et al., Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem 4(2), 308–317 (2018). https://doi.org/10.1016/j.chempr.2017.12.011
- K. Dey, M. Pal, K.C. Rout, S. Kunjattu, A. Das et al., Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017). https://doi.org/10.1021/jacs.7b06640
- M.I. Baig, E.N. Durmaz, J.D. Willott, W.M. Vos, Sustainable membrane production through polyelectrolyte complexation induced aqueous phase separation. Adv. Funct. Mater. 30(5), 1907344 (2020). https://doi.org/10.1002/adfm.201907344
- F. Schacher, M. Ulbricht, A.H.E. Müller, Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly(N, N-dimethylaminoethyl methacrylate) diblock copolymers. Adv. Funct. Mater. 19(7), 1040–1045 (2009). https://doi.org/10.1002/adfm.200801457
- F. Ruiz-Ruiz, J. Benavides, O. Aguilar, M. Rito-Palomares, Aqueous two-phase affinity partitioning systems: current applications and trends. J. Chromatogr. A 1244, 1–13 (2012). https://doi.org/10.1016/j.chroma.2012.04.077
- M.A. Torres-Acosta, K. Mayolo-Deloisa, J. González-Valdez, M. Rito-Palomares, Aqueous two-phase systems at large-scale: challenges and opportunities. Biotechnol. J. 14(1), 1800117 (2019). https://doi.org/10.1002/biot.201800117
- S.D. Hann, T.H.R. Niepa, K.J. Stebe, D. Lee, One-step generation of cell-encapsulating compartments via polyelectrolyte complexation in an aqueous two phase system. ACS Appl. Mater. Interfaces 8(38), 25603–25611 (2016). https://doi.org/10.1021/acsami.6b07939
- S.D. Hann, K.J. Stebe, D. Lee, All-aqueous assemblies via interfacial complexation: toward artificial cell and microniche development. Langmuir 33(39), 10107–10117 (2017). https://doi.org/10.1021/acs.langmuir.7b02237
- E. Atefi, J.A. Mann, H. Tavana, Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir 30(32), 9691–9699 (2014). https://doi.org/10.1021/la500930x
- M. Mastiani, N. Firoozi, N. Petrozzi, S. Seo, M. Kim, Polymer-salt aqueous two-phase system (ATPS) micro-droplets for cell encapsulation. Sci. Rep. 9(1), 15561 (2019). https://doi.org/10.1038/s41598-019-51958-4
- F. Zhang, J. Fan, S. Wang, Interfacial polymerization: from chemistry to functional materials. Angew. Chem. Int. Ed. 59(49), 21840–21856 (2020). https://doi.org/10.1002/anie.201916473
- S. Karan, Z. Jiang, G.L. Andrew, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348(6241), 1347–1351 (2015). https://doi.org/10.1126/science.aaa5058
- D.B. Shinde, G. Sheng, X. Li, M. Ostwal, A.H. Emwas et al., Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140(43), 14342–14349 (2018). https://doi.org/10.1021/jacs.8b08788
- H.J. Da, C.X. Yang, X.P. Yan, Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ. Sci. Technol. 53(9), 5212–5220 (2019). https://doi.org/10.1021/acs.est.8b06244
- D. Zhu, S. Zhou, Z. Zhou, R. Li, J. Ye et al., Highly efficient and selective removal of Cr(VI) by covalent organic frameworks: structure, performance and mechanism. Colloids Surf. A 600, 124910 (2020). https://doi.org/10.1016/j.colsurfa.2020.124910
- S. Chandra, S. Kandambeth, B.P. Biswal, B. Lukose, S.M. Kunjir et al., Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135(47), 17853–17861 (2013). https://doi.org/10.1021/ja408121p
- S. Kandambeth, B.P. Biswal, H.D. Chaudhari, K.C. Rout, S. Kunjattu et al., Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29(2), 1603945 (2017). https://doi.org/10.1002/adma.201603945
- H. Yang, L. Yang, H. Wang, Z. Xu, Y. Zhao et al., Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10, 2101 (2019). https://doi.org/10.1038/s41467-019-10157-5
- Q. Hao, C. Zhao, B. Sun, C. Lu, J. Liu et al., Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140(38), 12152–12158 (2018). https://doi.org/10.1021/jacs.8b07120
- X. You, L. Cao, Y. Liu, H. Wu, R. Li et al., Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion. ACS Nano 16(8), 11781–11791 (2022). https://doi.org/10.1021/acsnano.2c04767
- L. Cao, H. Wu, Y. Cao, C. Fan, R. Zhao et al., Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 32(52), 2005565 (2020). https://doi.org/10.1002/adma.202005565
- X. Wang, B. Shi, H. Yang, J. Guan, X. Liang et al., Assembling covalent organic framework membranes with superior ion exchange capacity. Nat. Commun. 13, 1020 (2022). https://doi.org/10.1038/s41467-022-28643-8
- S. Karak, S. Kumar, P. Pachfule, R. Banerjee, Porosity prediction through hydrogen bonding in covalent organic frameworks. J. Am. Chem. Soc. 140(15), 5138–5145 (2018). https://doi.org/10.1021/jacs.7b13558
- C. Rigoni, G. Beaune, B. Harnist, F. Sohrabi, J.V.I. Timonen, Ferrofluidic aqueous two-phase system with ultralow interfacial tension and micro-pattern formation. Commun. Mater. 3(1), 26 (2022). https://doi.org/10.1038/s43246-022-00249-z
- J. Marthelot, E.F. Strong, P.M. Reis, P.T. Brun, Designing soft materials with interfacial instabilities in liquid films. Nat. Commun. 9, 4477 (2018). https://doi.org/10.1038/s41467-018-06984-7
- Y. Hang, G. Liu, K. Huang, W. Jin, Mechanical properties and interfacial adhesion of composite membranes probed by in-situ nano-indentation/scratch technique. J. Membr. Sci. 494, 205–215 (2015). https://doi.org/10.1016/j.memsci.2015.05.076
- M. Vis, J. Opdam, I.S.J. Oor, G. Soligno, R. Roij et al., Water-in-water emulsions stabilized by nanoplates. ACS Macro Lett. 4(9), 965–968 (2015). https://doi.org/10.1021/acsmacrolett.5b00480
- S. Zhao, C. Jiang, J. Fan, S. Hong, P. Mei et al., Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20(11), 1551–1558 (2021). https://doi.org/10.1038/s41563-021-01052-w
- X. You, H. Wu, R. Zhang, Y. Su, L. Cao et al., Metal-coordinated sub-10 nm membranes for water purification. Nat. Commun. 10, 4160 (2019). https://doi.org/10.1038/s41467-019-12100-0
References
H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang et al., Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 50(9), 5468–5516 (2021). https://doi.org/10.1039/D0CS01347A
M. Wang, P. Zhang, X. Liang, J. Zhao, Y. Liu et al., Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 5(6), 518–526 (2022). https://doi.org/10.1038/s41893-022-00870-3
C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova et al., The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45
S. Kandambeth, K. Dey, R. Banerjee, Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141(5), 1807–1822 (2019). https://doi.org/10.1021/jacs.8b10334
Y. Lu, W. Liu, J. Liu, X. Li, S. Zhang, A review on 2D porous organic polymers for membrane-based separations: processing and engineering of transport channels. Adv. Membr. 1, 100014 (2021). https://doi.org/10.1016/j.advmem.2021.100014
D. Zhao, Y. Wang, Y. Zhang, High-performance Li-ion batteries and supercapacitors based on prospective 1-D nanomaterials. Nano-Micro Lett. 3, 62–71 (2011). https://doi.org/10.1007/BF03353653
J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1(5), 16018 (2016). https://doi.org/10.1038/natrevmats.2016.18
B. Ho, J. Kamcev, M.R. Lloyd, M. Elimelech, D.F. Benny, Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343), eaab0530 (2017). https://doi.org/10.1126/science.aab0530
A. Nazif, H. Karkhanechi, E. Saljoughi, S.M. Mousavi, H. Matsuyama, Recent progress in membrane development, affecting parameters, and applications of reverse electrodialysis: a review. J. Water Process. Eng. 47, 102706 (2022). https://doi.org/10.1016/j.jwpe.2022.102706
Y. Liu, Y. Ren, H. Ma, G. He, Z. Jiang, Advanced organic molecular sieve membranes for carbon capture: current status, challenges and prospects. Adv. Membr. 2, 100028 (2022). https://doi.org/10.1016/j.advmem.2022.100028
Y. Yao, P. Zhang, C. Jiang, R.M. DuChanois, X. Zhang et al., High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4(2), 138–146 (2021). https://doi.org/10.1038/s41893-020-00619-w
E.C. Tyler, B. Khara, P.B. Kaitlyn, M. Geitner, J.Z. Tawanda et al., Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371(6524), 72–75 (2021). https://doi.org/10.1126/science.abb8518
S.K. Patel, C.L. Ritt, A. Deshmukh, Z. Wang, M. Qin et al., The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 13(6), 1694–1710 (2020). https://doi.org/10.1039/D0EE00341G
R. Wei, X. Liu, Z. Lai, MOF or COF membranes for olefin/paraffin separation: current status and future research directions. Adv. Membr. 2, 100035 (2022). https://doi.org/10.1016/j.advmem.2022.100035
Y. Huang, C. Xiao, Q. Huang, H. Liu, J. Zhao, Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chem. Eng. J. 403, 126295 (2021). https://doi.org/10.1016/j.cej.2020.126295
D.M. Wang, J.Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2(2), 229–237 (2013). https://doi.org/10.1016/j.coche.2013.04.003
Y. Liu, J. Luo, X. Chen, W. Liu, T. Chen, Cell membrane coating technology: a promising strategy for biomedical applications. Nano-Micro Lett. 11, 100 (2019). https://doi.org/10.1007/s40820-019-0330-9
X. Huang, L. Li, S. Zhao, L. Tong, Z. Li et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production. Nano-Micro Lett. 14, 174 (2022). https://doi.org/10.1007/s40820-022-00923-4
Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes with nanoscale turing structures for water purification. Science 360(6388), 518–521 (2018). https://doi.org/10.1126/science.aar6308
S. Karan, Z. Jiang, A.G. Livingston, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348(6241), 1347–1351 (2015). https://doi.org/10.1126/science.aaa5058
M. Matsumoto, L. Valentino, G.M. Stiehl, H.B. Balch, A.R. Corcos et al., Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem 4(2), 308–317 (2018). https://doi.org/10.1016/j.chempr.2017.12.011
K. Dey, M. Pal, K.C. Rout, S. Kunjattu, A. Das et al., Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139(37), 13083–13091 (2017). https://doi.org/10.1021/jacs.7b06640
M.I. Baig, E.N. Durmaz, J.D. Willott, W.M. Vos, Sustainable membrane production through polyelectrolyte complexation induced aqueous phase separation. Adv. Funct. Mater. 30(5), 1907344 (2020). https://doi.org/10.1002/adfm.201907344
F. Schacher, M. Ulbricht, A.H.E. Müller, Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly(N, N-dimethylaminoethyl methacrylate) diblock copolymers. Adv. Funct. Mater. 19(7), 1040–1045 (2009). https://doi.org/10.1002/adfm.200801457
F. Ruiz-Ruiz, J. Benavides, O. Aguilar, M. Rito-Palomares, Aqueous two-phase affinity partitioning systems: current applications and trends. J. Chromatogr. A 1244, 1–13 (2012). https://doi.org/10.1016/j.chroma.2012.04.077
M.A. Torres-Acosta, K. Mayolo-Deloisa, J. González-Valdez, M. Rito-Palomares, Aqueous two-phase systems at large-scale: challenges and opportunities. Biotechnol. J. 14(1), 1800117 (2019). https://doi.org/10.1002/biot.201800117
S.D. Hann, T.H.R. Niepa, K.J. Stebe, D. Lee, One-step generation of cell-encapsulating compartments via polyelectrolyte complexation in an aqueous two phase system. ACS Appl. Mater. Interfaces 8(38), 25603–25611 (2016). https://doi.org/10.1021/acsami.6b07939
S.D. Hann, K.J. Stebe, D. Lee, All-aqueous assemblies via interfacial complexation: toward artificial cell and microniche development. Langmuir 33(39), 10107–10117 (2017). https://doi.org/10.1021/acs.langmuir.7b02237
E. Atefi, J.A. Mann, H. Tavana, Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir 30(32), 9691–9699 (2014). https://doi.org/10.1021/la500930x
M. Mastiani, N. Firoozi, N. Petrozzi, S. Seo, M. Kim, Polymer-salt aqueous two-phase system (ATPS) micro-droplets for cell encapsulation. Sci. Rep. 9(1), 15561 (2019). https://doi.org/10.1038/s41598-019-51958-4
F. Zhang, J. Fan, S. Wang, Interfacial polymerization: from chemistry to functional materials. Angew. Chem. Int. Ed. 59(49), 21840–21856 (2020). https://doi.org/10.1002/anie.201916473
S. Karan, Z. Jiang, G.L. Andrew, Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348(6241), 1347–1351 (2015). https://doi.org/10.1126/science.aaa5058
D.B. Shinde, G. Sheng, X. Li, M. Ostwal, A.H. Emwas et al., Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140(43), 14342–14349 (2018). https://doi.org/10.1021/jacs.8b08788
H.J. Da, C.X. Yang, X.P. Yan, Cationic covalent organic nanosheets for rapid and selective capture of perrhenate: an analogue of radioactive pertechnetate from aqueous solution. Environ. Sci. Technol. 53(9), 5212–5220 (2019). https://doi.org/10.1021/acs.est.8b06244
D. Zhu, S. Zhou, Z. Zhou, R. Li, J. Ye et al., Highly efficient and selective removal of Cr(VI) by covalent organic frameworks: structure, performance and mechanism. Colloids Surf. A 600, 124910 (2020). https://doi.org/10.1016/j.colsurfa.2020.124910
S. Chandra, S. Kandambeth, B.P. Biswal, B. Lukose, S.M. Kunjir et al., Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135(47), 17853–17861 (2013). https://doi.org/10.1021/ja408121p
S. Kandambeth, B.P. Biswal, H.D. Chaudhari, K.C. Rout, S. Kunjattu et al., Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv. Mater. 29(2), 1603945 (2017). https://doi.org/10.1002/adma.201603945
H. Yang, L. Yang, H. Wang, Z. Xu, Y. Zhao et al., Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10, 2101 (2019). https://doi.org/10.1038/s41467-019-10157-5
Q. Hao, C. Zhao, B. Sun, C. Lu, J. Liu et al., Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140(38), 12152–12158 (2018). https://doi.org/10.1021/jacs.8b07120
X. You, L. Cao, Y. Liu, H. Wu, R. Li et al., Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion. ACS Nano 16(8), 11781–11791 (2022). https://doi.org/10.1021/acsnano.2c04767
L. Cao, H. Wu, Y. Cao, C. Fan, R. Zhao et al., Weakly humidity-dependent proton-conducting COF membranes. Adv. Mater. 32(52), 2005565 (2020). https://doi.org/10.1002/adma.202005565
X. Wang, B. Shi, H. Yang, J. Guan, X. Liang et al., Assembling covalent organic framework membranes with superior ion exchange capacity. Nat. Commun. 13, 1020 (2022). https://doi.org/10.1038/s41467-022-28643-8
S. Karak, S. Kumar, P. Pachfule, R. Banerjee, Porosity prediction through hydrogen bonding in covalent organic frameworks. J. Am. Chem. Soc. 140(15), 5138–5145 (2018). https://doi.org/10.1021/jacs.7b13558
C. Rigoni, G. Beaune, B. Harnist, F. Sohrabi, J.V.I. Timonen, Ferrofluidic aqueous two-phase system with ultralow interfacial tension and micro-pattern formation. Commun. Mater. 3(1), 26 (2022). https://doi.org/10.1038/s43246-022-00249-z
J. Marthelot, E.F. Strong, P.M. Reis, P.T. Brun, Designing soft materials with interfacial instabilities in liquid films. Nat. Commun. 9, 4477 (2018). https://doi.org/10.1038/s41467-018-06984-7
Y. Hang, G. Liu, K. Huang, W. Jin, Mechanical properties and interfacial adhesion of composite membranes probed by in-situ nano-indentation/scratch technique. J. Membr. Sci. 494, 205–215 (2015). https://doi.org/10.1016/j.memsci.2015.05.076
M. Vis, J. Opdam, I.S.J. Oor, G. Soligno, R. Roij et al., Water-in-water emulsions stabilized by nanoplates. ACS Macro Lett. 4(9), 965–968 (2015). https://doi.org/10.1021/acsmacrolett.5b00480
S. Zhao, C. Jiang, J. Fan, S. Hong, P. Mei et al., Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20(11), 1551–1558 (2021). https://doi.org/10.1038/s41563-021-01052-w
X. You, H. Wu, R. Zhang, Y. Su, L. Cao et al., Metal-coordinated sub-10 nm membranes for water purification. Nat. Commun. 10, 4160 (2019). https://doi.org/10.1038/s41467-019-12100-0