Novel Bilayer-Shelled N, O-Doped Hollow Porous Carbon Microspheres as High Performance Anode for Potassium-Ion Hybrid Capacitors
Corresponding Author: Ning Lin
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 151
Abstract
With the advantages of high energy/power density, long cycling life and low cost, dual-carbon potassium ion hybrid capacitors (PIHCs) have great potential in the field of energy storage. Here, a novel bilayer-shelled N, O-doped hollow porous carbon microspheres (NOHPC) anode has been prepared by a self-template method, which is consisted of a dense thin shell and a hollow porous spherical core. Excitingly, the NOHPC anode possesses a high K-storage capacity of 325.9 mA h g−1 at 0.1 A g−1 and a capacity of 201.1 mAh g−1 at 5 A g−1 after 6000 cycles. In combination with ex situ characterizations and density functional theory calculations, the high reversible capacity has been demonstrated to be attributed to the co-doping of N/O heteroatoms and porous structure improved K+ adsorption and intercalation capabilities, and the stable long-cycling performance originating from the bilayer-shelled hollow porous carbon sphere structure. Meanwhile, the hollow porous activated carbon microspheres (HPAC) cathode with a high specific surface area (1472.65 m2 g−1) deriving from etching NOHPC with KOH, contributing to a high electrochemical adsorption capacity of 71.2 mAh g−1 at 1 A g−1. Notably, the NOHPC//HPAC PIHC delivers a high energy density of 90.1 Wh kg−1 at a power density of 939.6 W kg−1 after 6000 consecutive charge–discharge cycles.
Highlights:
1 Proposing a one-step pyrolysis strategy to fabricate a novel bilayer-shelled N, O-doped hollow porous carbon microspheres (NOHPC) anode.
2 The optimized NOHPC anode displays a high K-storage capacity of 325.9 mAh g−1 at 0.1 A g−1 and excellent rate performance (201.1 mAh g−1 at 5 A g−1 after 6000 cycles).
3 The assembled NOHPC//hollow porous activated carbon microspheres (HPAC) potassium ion hybrid capacitors deliver a high energy density of 90.1 Wh kg−1 at a power density of 939.6 W kg−1 even over 6000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10(15), 1904045 (2020). https://doi.org/10.1002/aenm.201904045
- Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu et al., A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10(7), 2048–2052 (2019). https://doi.org/10.1039/C8SC04489A
- X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in bi-heteroatom doped 3d porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9(42), 1901533 (2019). https://doi.org/10.1002/aenm.201901533
- L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano-Micro Lett. 15(1), 41 (2023). https://doi.org/10.1007/s40820-022-01006-0
- Y. Yun, B. Xi, F. Tian, W. Chen, W. Sun et al., Zero-strain structure for efficient potassium storage: nitrogen-enriched carbon dual-confinement cop composite. Adv. Energy Mater. 12(3), 2103341 (2022). https://doi.org/10.1002/aenm.202103341
- B. Yang, J. Chen, L. Liu, P. Ma, B. Liu et al., 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
- X. Zhao, F. Gong, Y. Zhao, B. Huang, D. Qian et al., Encapsulating nis nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem. Eng. J. 392, 123675 (2020). https://doi.org/10.1016/j.cej.2019.123675
- Z. Sun, Y. Chen, B. Xi, C. Geng, W. Guo et al., Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage. Energy Storage Mater. 53, 482–491 (2022). https://doi.org/10.1016/j.ensm.2022.09.031
- Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
- X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
- R. Guo, X. Liu, B. Wen, F. Liu, J. Meng et al., Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency. Nano-Micro Lett. 12(1), 148 (2020). https://doi.org/10.1007/s40820-020-00481-7
- Y. Qian, Y. Li, Z. Pan, J. Tian, N. Lin et al., Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3d porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. Mater. 31(30), 2103115 (2021). https://doi.org/10.1002/adfm.202103115
- M. Liu, Y. Wang, F. Wu, Y. Bai, Y. Li et al., Advances in carbon Mater for sodium and potassium storage. Adv. Funct. Mater. 32(31), 2203117 (2022). https://doi.org/10.1002/adfm.202203117
- J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
- X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang et al., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018). https://doi.org/10.1016/j.carbon.2018.01.094
- Y. Wang, J. Liu, X. Chen, B. Kang, H.-E. Wang et al., Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 189, 46–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.051
- Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34(7), 2108621 (2022). https://doi.org/10.1002/adma.202108621
- X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu et al., Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 19(8), 4965–4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
- C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi et al., Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 10(28), 2001161 (2020). https://doi.org/10.1002/aenm.202001161
- Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
- J. Li, X. Hu, G. Zhong, Y. Liu, Y. Ji et al., A general self-sacrifice template strategy to 3d heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 13, 1–15 (2021). https://doi.org/10.1007/s40820-021-00659-7
- S. Zhao, K. Yan, J. Liang, Q. Yuan, J. Zhang et al., Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reaction kinetics as anode Mater for high-performance potassium-ion hybrid capacitors. Adv. Funct. Mater. 31(31), 2102060 (2021). https://doi.org/10.1002/adfm.202102060
- S. Chong, L. Yuan, T. Li, C. Shu, S. Qiao et al., Nitrogen and oxygen co-doped porous hard carbon nanospheres with core-shell architecture as anode materials for superior potassium-ion storage. Small 18(8), 2104296 (2022). https://doi.org/10.1002/smll.202104296
- W. Xiong, Z. Wang, J. Zhang, C. Shang, M. Yang et al., Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater. 7, 229–235 (2017). https://doi.org/10.1016/j.ensm.2017.03.006
- M. Liu, D. Jing, Y. Shi, Q. Zhuang, Superior potassium storage in natural o/n–doped hard carbon derived from maple leaves. J. Mater. Sci. Mater. Electron. 30(9), 8911–8919 (2019). https://doi.org/10.1007/s10854-019-01219-x
- J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang et al., Fast and stable potassium-ion storage achieved by in situ molecular self-assembling n/o dual-doped carbon network. Energy Storage Mater. 23, 46–54 (2019). https://doi.org/10.1016/j.ensm.2019.05.037
- W. Qiu, H. Xiao, Y. Li, X. Lu, Y. Tong, Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 15(23), 1901285 (2019). https://doi.org/10.1002/smll.201901285
- R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10(45), 24422–24433 (2022). https://doi.org/10.1039/D2TA06686F
- J. Liu, M. Shao, X. Chen, W. Yu, X. Liu et al., Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125(27), 8088–8089 (2003). https://doi.org/10.1021/ja035763b
- Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1–11 (2018). https://doi.org/10.1038/s41467-018-04190-z
- C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 15(23), 1900816 (2019). https://doi.org/10.1002/smll.201900816
- L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao et al., Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29(20), 1602914 (2017). https://doi.org/10.1002/adma.201602914
- A. Li, L. Xu, S. Li, Y. He, R. Zhang et al., One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 8(2), 554–565 (2015). https://doi.org/10.1007/s12274-014-0669-7
- Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., Understanding mesopore volume-enhanced extra-capacity: optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Mater. 29, 341–349 (2020). https://doi.org/10.1016/j.ensm.2020.04.026
- J. Niu, R. Shao, J. Liang, M. Dou, Z. Li et al., Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode Mater for li-ion batteries and supercapacitors. Nano Energy 36, 322–330 (2017). https://doi.org/10.1016/j.nanoen.2017.04.042
- S. Liu, J. Zhou, H. Song, Tailoring highly N-doped carbon mater from hexamine-based MOFs: superior performance and new insight into the roles of N configurations in Na-ion storage. Small 14(12), 1703548 (2018). https://doi.org/10.1002/smll.201703548
- L. Wang, S. Li, J. Li, S. Yan, X. Zhang et al., Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage. Mater. Today Energy 13, 195–204 (2019). https://doi.org/10.1016/j.mtener.2019.05.010
- H. He, D. Huang, Y. Tang, Q. Wang, X. Ji et al., Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 57, 728–736 (2019). https://doi.org/10.1016/j.nanoen.2019.01.009
- M.-S. Balogun, W. Qiu, H. Yang, W. Fan, Y. Huang et al., A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ. Sci. 9(11), 3411–3416 (2016). https://doi.org/10.1039/C6EE01930G
- J. Liu, T. Yin, B. Tian, B. Zhang, C. Qian et al., Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9(22), 1900579 (2019). https://doi.org/10.1002/aenm.201900579
- K. Share, A.P. Cohn, R.E. Carter, C.L. Pint, Mechanism of potassium ion intercalation staging in few layered graphene from in situ raman spectroscopy. Nanoscale 8(36), 16435–16439 (2016). https://doi.org/10.1039/C6NR04084E
- D. Li, X. Cheng, R. Xu, Y. Wu, X. Zhou et al., Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 7(34), 19929–19938 (2019). https://doi.org/10.1039/C9TA04663A
- X.-S. Tao, Y.-G. Sun, Y. Liu, B.-B. Chang, C.-T. Liu et al., Facile synthesis of hollow carbon nanospheres and their potential as stable anode Mater in potassium-ion batteries. ACS Appl. Mater. Interfaces 12(11), 13182–13188 (2020). https://doi.org/10.1021/acsami.9b22736
- D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting potassium-ion hybrid capacitors. Adv. Funct. Mater. 29(32), 1903496 (2019). https://doi.org/10.1002/adfm.201903496
- Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
- M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
- S. Chong, J. Yang, L. Sun, S. Guo, Y. Liu et al., Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 14(8), 9807–9818 (2020). https://doi.org/10.1021/acsnano.0c02047
- S. Chong, X. Wei, Y. Wu, L. Sun, C. Shu et al., Expanded MoSe2 nanosheets vertically bonded on reduced graphene oxide for sodium and potassium-ion storage. ACS Appl. Mater. Interfaces 13(11), 13158–13169 (2021). https://doi.org/10.1021/acsami.0c22430
- S. Dou, J. Xu, C. Yang, W.-D. Liu, I. Manke et al., Dual-function engineering to construct ultra-stable anodes for potassium-ion hybrid capacitors: N, O-doped porous carbon spheres. Nano Energy 93, 106903 (2022). https://doi.org/10.1016/j.nanoen.2021.106903
- A. Eftekhari, Z. Jian, X. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9(5), 4404–4419 (2017). https://doi.org/10.1021/acsami.6b07989
- S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
- Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang et al., Direct structure–performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6(12), 1802272 (2019). https://doi.org/10.1002/advs.201802272
- A. Le Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (KIC): an innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 363, 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
- J. Cao, H. Xu, J. Zhong, X. Li, S. Li et al., Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS Appl. Mater. Interfaces 13(7), 8497–8506 (2021). https://doi.org/10.1021/acsami.1c00115
- L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu et al., Cubic prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106–113 (2017). https://doi.org/10.1016/j.electacta.2017.02.096
- F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei et al., Porous mxenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013
References
J. Ruan, F. Mo, Z. Chen, M. Liu, S. Zheng et al., Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 10(15), 1904045 (2020). https://doi.org/10.1002/aenm.201904045
Y. Luo, L. Liu, K. Lei, J. Shi, G. Xu et al., A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 10(7), 2048–2052 (2019). https://doi.org/10.1039/C8SC04489A
X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan et al., Fast redox kinetics in bi-heteroatom doped 3d porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 9(42), 1901533 (2019). https://doi.org/10.1002/aenm.201901533
L. Zhao, S. Sun, J. Lin, L. Zhong, L. Chen et al., Defect engineering of disordered carbon anodes with ultra-high heteroatom doping through a supermolecule-mediated strategy for potassium-ion hybrid capacitors. Nano-Micro Lett. 15(1), 41 (2023). https://doi.org/10.1007/s40820-022-01006-0
Y. Yun, B. Xi, F. Tian, W. Chen, W. Sun et al., Zero-strain structure for efficient potassium storage: nitrogen-enriched carbon dual-confinement cop composite. Adv. Energy Mater. 12(3), 2103341 (2022). https://doi.org/10.1002/aenm.202103341
B. Yang, J. Chen, L. Liu, P. Ma, B. Liu et al., 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 23, 522–529 (2019). https://doi.org/10.1016/j.ensm.2019.04.008
X. Zhao, F. Gong, Y. Zhao, B. Huang, D. Qian et al., Encapsulating nis nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem. Eng. J. 392, 123675 (2020). https://doi.org/10.1016/j.cej.2019.123675
Z. Sun, Y. Chen, B. Xi, C. Geng, W. Guo et al., Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage. Energy Storage Mater. 53, 482–491 (2022). https://doi.org/10.1016/j.ensm.2022.09.031
Z. Jian, W. Luo, X. Ji, Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 137(36), 11566–11569 (2015). https://doi.org/10.1021/jacs.5b06809
X. Wu, Y. Chen, Z. Xing, C.W.K. Lam, S.S. Pang et al., Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 9(21), 1900343 (2019). https://doi.org/10.1002/aenm.201900343
R. Guo, X. Liu, B. Wen, F. Liu, J. Meng et al., Engineering mesoporous structure in amorphous carbon boosts potassium storage with high initial coulombic efficiency. Nano-Micro Lett. 12(1), 148 (2020). https://doi.org/10.1007/s40820-020-00481-7
Y. Qian, Y. Li, Z. Pan, J. Tian, N. Lin et al., Hydrothermal “disproportionation” of biomass into oriented carbon microsphere anode and 3d porous carbon cathode for potassium ion hybrid capacitor. Adv. Funct. Mater. 31(30), 2103115 (2021). https://doi.org/10.1002/adfm.202103115
M. Liu, Y. Wang, F. Wu, Y. Bai, Y. Li et al., Advances in carbon Mater for sodium and potassium storage. Adv. Funct. Mater. 32(31), 2203117 (2022). https://doi.org/10.1002/adfm.202203117
J. Ding, H. Zhang, H. Zhou, J. Feng, X. Zheng et al., Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 31(30), 1900429 (2019). https://doi.org/10.1002/adma.201900429
X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang et al., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018). https://doi.org/10.1016/j.carbon.2018.01.094
Y. Wang, J. Liu, X. Chen, B. Kang, H.-E. Wang et al., Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries. Carbon 189, 46–56 (2022). https://doi.org/10.1016/j.carbon.2021.12.051
Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34(7), 2108621 (2022). https://doi.org/10.1002/adma.202108621
X. Zhou, L. Chen, W. Zhang, J. Wang, Z. Liu et al., Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 19(8), 4965–4973 (2019). https://doi.org/10.1021/acs.nanolett.9b01127
C. Lu, Z. Sun, L. Yu, X. Lian, Y. Yi et al., Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries. Adv. Energy Mater. 10(28), 2001161 (2020). https://doi.org/10.1002/aenm.202001161
Z. Ju, P. Li, G. Ma, Z. Xing, Q. Zhuang et al., Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 11, 38–46 (2018). https://doi.org/10.1016/j.ensm.2017.09.009
J. Li, X. Hu, G. Zhong, Y. Liu, Y. Ji et al., A general self-sacrifice template strategy to 3d heteroatom-doped macroporous carbon for high-performance potassium-ion hybrid capacitors. Nano-Micro Lett. 13, 1–15 (2021). https://doi.org/10.1007/s40820-021-00659-7
S. Zhao, K. Yan, J. Liang, Q. Yuan, J. Zhang et al., Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reaction kinetics as anode Mater for high-performance potassium-ion hybrid capacitors. Adv. Funct. Mater. 31(31), 2102060 (2021). https://doi.org/10.1002/adfm.202102060
S. Chong, L. Yuan, T. Li, C. Shu, S. Qiao et al., Nitrogen and oxygen co-doped porous hard carbon nanospheres with core-shell architecture as anode materials for superior potassium-ion storage. Small 18(8), 2104296 (2022). https://doi.org/10.1002/smll.202104296
W. Xiong, Z. Wang, J. Zhang, C. Shang, M. Yang et al., Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater. 7, 229–235 (2017). https://doi.org/10.1016/j.ensm.2017.03.006
M. Liu, D. Jing, Y. Shi, Q. Zhuang, Superior potassium storage in natural o/n–doped hard carbon derived from maple leaves. J. Mater. Sci. Mater. Electron. 30(9), 8911–8919 (2019). https://doi.org/10.1007/s10854-019-01219-x
J. Ruan, Y. Zhao, S. Luo, T. Yuan, J. Yang et al., Fast and stable potassium-ion storage achieved by in situ molecular self-assembling n/o dual-doped carbon network. Energy Storage Mater. 23, 46–54 (2019). https://doi.org/10.1016/j.ensm.2019.05.037
W. Qiu, H. Xiao, Y. Li, X. Lu, Y. Tong, Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 15(23), 1901285 (2019). https://doi.org/10.1002/smll.201901285
R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10(45), 24422–24433 (2022). https://doi.org/10.1039/D2TA06686F
J. Liu, M. Shao, X. Chen, W. Yu, X. Liu et al., Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process. J. Am. Chem. Soc. 125(27), 8088–8089 (2003). https://doi.org/10.1021/ja035763b
Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1–11 (2018). https://doi.org/10.1038/s41467-018-04190-z
C. Lv, W. Xu, H. Liu, L. Zhang, S. Chen, X. Yang, X. Xu, D. Yang, 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 15(23), 1900816 (2019). https://doi.org/10.1002/smll.201900816
L. Zhou, Z. Zhuang, H. Zhao, M. Lin, D. Zhao et al., Intricate hollow structures: controlled synthesis and applications in energy storage and conversion. Adv. Mater. 29(20), 1602914 (2017). https://doi.org/10.1002/adma.201602914
A. Li, L. Xu, S. Li, Y. He, R. Zhang et al., One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 8(2), 554–565 (2015). https://doi.org/10.1007/s12274-014-0669-7
Y. Qian, S. Jiang, Y. Li, Z. Yi, J. Zhou et al., Understanding mesopore volume-enhanced extra-capacity: optimizing mesoporous carbon for high-rate and long-life potassium-storage. Energy Storage Mater. 29, 341–349 (2020). https://doi.org/10.1016/j.ensm.2020.04.026
J. Niu, R. Shao, J. Liang, M. Dou, Z. Li et al., Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode Mater for li-ion batteries and supercapacitors. Nano Energy 36, 322–330 (2017). https://doi.org/10.1016/j.nanoen.2017.04.042
S. Liu, J. Zhou, H. Song, Tailoring highly N-doped carbon mater from hexamine-based MOFs: superior performance and new insight into the roles of N configurations in Na-ion storage. Small 14(12), 1703548 (2018). https://doi.org/10.1002/smll.201703548
L. Wang, S. Li, J. Li, S. Yan, X. Zhang et al., Nitrogen/sulphur co-doped porous carbon derived from wasted wet wipes as promising anode material for high performance capacitive potassium-ion storage. Mater. Today Energy 13, 195–204 (2019). https://doi.org/10.1016/j.mtener.2019.05.010
H. He, D. Huang, Y. Tang, Q. Wang, X. Ji et al., Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 57, 728–736 (2019). https://doi.org/10.1016/j.nanoen.2019.01.009
M.-S. Balogun, W. Qiu, H. Yang, W. Fan, Y. Huang et al., A monolithic metal-free electrocatalyst for oxygen evolution reaction and overall water splitting. Energy Environ. Sci. 9(11), 3411–3416 (2016). https://doi.org/10.1039/C6EE01930G
J. Liu, T. Yin, B. Tian, B. Zhang, C. Qian et al., Unraveling the potassium storage mechanism in graphite foam. Adv. Energy Mater. 9(22), 1900579 (2019). https://doi.org/10.1002/aenm.201900579
K. Share, A.P. Cohn, R.E. Carter, C.L. Pint, Mechanism of potassium ion intercalation staging in few layered graphene from in situ raman spectroscopy. Nanoscale 8(36), 16435–16439 (2016). https://doi.org/10.1039/C6NR04084E
D. Li, X. Cheng, R. Xu, Y. Wu, X. Zhou et al., Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 7(34), 19929–19938 (2019). https://doi.org/10.1039/C9TA04663A
X.-S. Tao, Y.-G. Sun, Y. Liu, B.-B. Chang, C.-T. Liu et al., Facile synthesis of hollow carbon nanospheres and their potential as stable anode Mater in potassium-ion batteries. ACS Appl. Mater. Interfaces 12(11), 13182–13188 (2020). https://doi.org/10.1021/acsami.9b22736
D. Qiu, J. Guan, M. Li, C. Kang, J. Wei et al., Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting potassium-ion hybrid capacitors. Adv. Funct. Mater. 29(32), 1903496 (2019). https://doi.org/10.1002/adfm.201903496
Z. Jian, Z. Xing, C. Bommier, Z. Li, X. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016). https://doi.org/10.1002/aenm.201501874
M. Chen, W. Wang, X. Liang, S. Gong, J. Liu et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(19), 1800171 (2018). https://doi.org/10.1002/aenm.201800171
W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li et al., Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 8(5), 1701648 (2018). https://doi.org/10.1002/aenm.201701648
S. Chong, J. Yang, L. Sun, S. Guo, Y. Liu et al., Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 14(8), 9807–9818 (2020). https://doi.org/10.1021/acsnano.0c02047
S. Chong, X. Wei, Y. Wu, L. Sun, C. Shu et al., Expanded MoSe2 nanosheets vertically bonded on reduced graphene oxide for sodium and potassium-ion storage. ACS Appl. Mater. Interfaces 13(11), 13158–13169 (2021). https://doi.org/10.1021/acsami.0c22430
S. Dou, J. Xu, C. Yang, W.-D. Liu, I. Manke et al., Dual-function engineering to construct ultra-stable anodes for potassium-ion hybrid capacitors: N, O-doped porous carbon spheres. Nano Energy 93, 106903 (2022). https://doi.org/10.1016/j.nanoen.2021.106903
A. Eftekhari, Z. Jian, X. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9(5), 4404–4419 (2017). https://doi.org/10.1021/acsami.6b07989
S. Komaba, T. Hasegawa, M. Dahbi, K. Kubota, Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015). https://doi.org/10.1016/j.elecom.2015.09.002
Z. Xu, M. Wu, Z. Chen, C. Chen, J. Yang et al., Direct structure–performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 6(12), 1802272 (2019). https://doi.org/10.1002/advs.201802272
A. Le Comte, Y. Reynier, C. Vincens, C. Leys, P. Azaïs, First prototypes of hybrid potassium-ion capacitor (KIC): an innovative, cost-effective energy storage technology for transportation applications. J. Power Sources 363, 34–43 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.005
J. Cao, H. Xu, J. Zhong, X. Li, S. Li et al., Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS Appl. Mater. Interfaces 13(7), 8497–8506 (2021). https://doi.org/10.1021/acsami.1c00115
L. Zhou, M. Zhang, Y. Wang, Y. Zhu, L. Fu et al., Cubic prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim. Acta 232, 106–113 (2017). https://doi.org/10.1016/j.electacta.2017.02.096
F. Ming, H. Liang, W. Zhang, J. Ming, Y. Lei et al., Porous mxenes enable high performance potassium ion capacitors. Nano Energy 62, 853–860 (2019). https://doi.org/10.1016/j.nanoen.2019.06.013