Joule Heating-Driven sp2-C Domains Modulation in Biomass Carbon for High-Performance Bifunctional Oxygen Electrocatalysis
Corresponding Author: Mengmeng Fan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 221
Abstract
Natural biomass-derived carbon material is one promising alternative to traditional graphene-based catalyst for oxygen electrocatalysis. However, their electrocatalytic performance were constrained by the limited modulating strategy. Herein, using N-doped commercial coconut shell-derived activated carbon (AC) as catalyst model, the controllably enhanced sp2-C domains, through an flash Joule heating process, effectively improve the edge defect density and overall graphitization degree of AC catalyst, which tunes the electronic structure of N configurations and accelerates electron transfer, leading to excellent oxygen reduction reaction performance (half-wave potential of 0.884 VRHE, equivalent to commercial 20% Pt/C, with a higher kinetic current density of 5.88 mA cm−2) and oxygen evolution reaction activity (overpotential of 295 mV at 10 mA cm2). In a Zn-air battery, the catalyst shows outstanding cycle stability (over 1200 h) and a peak power density of 121 mW cm−2, surpassing commercial Pt/C and RuO2 catalysts. Density functional theory simulation reveals that the enhanced catalytic activity arises from the axial regulation of local sp2-C domains. This work establishes a robust strategy for sp2-C domain modulation, offering broad applicability in natural biomass-based carbon catalysts for electrocatalysis.
Highlights:
1 The flash Joule heating controllably enhanced sp2-domains content in various N-doped natural biomass-based carbon.
2 The axial modulation of sp2-C domains decreased the charge density of pyridinic N and graphitic N configurations resulting into outstanding oxygen electrocatalysis.
3 The assembled Zn-air battery with optimized catalyst achieved an over 1200-h cycle stability with the peak power density of 121 mW cm−2, exceeding the commercial Pt/C + RuO2 catalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Xie, C. Liang, Y. Wu, K. Wang, W. Hou et al., Isomerization engineering of oxygen-enriched carbon quantum dots for efficient electrochemical hydrogen peroxide production. Small 20(37), e2401253 (2024). https://doi.org/10.1002/smll.202401253
- Y. Wu, Y. Zhao, Q. Yuan, H. Sun, A. Wang et al., Electrochemically synthesized H2O2 at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets. Nat. Commun. 15(1), 10843 (2024). https://doi.org/10.1038/s41467-024-55071-7
- Q. Ni, S. Zhang, K. Wang, H. Guo, J. Zhang et al., Carbon quantum dot-mediated binary metal–organic framework nanosheets for efficient oxygen evolution at ampere-level current densities in proton exchange membrane electrolyzers. J. Mater. Chem. A 12(45), 31253–31261 (2024). https://doi.org/10.1039/D4TA06855F
- S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33(42), e2103133 (2021). https://doi.org/10.1002/adma.202103133
- P. Cui, L. Zhao, Y. Long, L. Dai, C. Hu, Carbon-based electrocatalysts for acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 62(14), e202218269 (2023). https://doi.org/10.1002/anie.202218269
- Y. Zhao, J. Raj, X. Xu, J. Jiang, J. Wu et al., Carbon catalysts empowering sustainable chemical synthesis via electrochemical CO2 conversion and two-electron oxygen reduction reaction. Small 2311163 (2024). https://doi.org/10.1002/smll.202311163
- L.-H. Zhang, Y. Shi, Y. Wang, N. Raveendran Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7(5), 1902126 (2020). https://doi.org/10.1002/advs.201902126
- Z. Jiang, Z.-J. Jiang, X. Tian, W. Chen, Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2(2), 441–450 (2014). https://doi.org/10.1039/C3TA13832A
- Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16(1), 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/C8EE03276A
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- X. Wang, T. Liu, H. Li, C. Han, P. Su et al., Balancing mass transfer and active sites to improve electrocatalytic oxygen reduction by B, N codoped C nanoreactors. Nano Lett. 23(11), 4699–4707 (2023). https://doi.org/10.1021/acs.nanolett.3c00202
- Z. Jiang, X. Zhao, X. Tian, L. Luo, J. Fang et al., Hydrothermal synthesis of boron and nitrogen codoped hollow graphene microspheres with enhanced electrocatalytic activity for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(34), 19398–19407 (2015). https://doi.org/10.1021/acsami.5b05585
- G. Ye, S. Liu, K. Zhao, Z. He, Singlet oxygen induced site-specific etching boosts nitrogen-carbon sites for high-efficiency oxygen reduction. Angew. Chem. Int. Ed. 62(21), e202303409 (2023). https://doi.org/10.1002/anie.202303409
- Y.L. Wang, M.C. Zhang, X.Y. Shen, H.M. Wang, H.M. Wang et al., Biomass-derived carbon materials: controllable preparation and versatile applications. Small 17(40), 2008079 (2021). https://doi.org/10.1002/smll.202008079
- M. Fan, Y. Huang, F. Yuan, Q. Hao, J. Yang et al., Effects of multiple heteroatom species and topographic defects on electrocatalytic and capacitive performances of graphene. J. Power Sources 366, 143–150 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.016
- G. An, K. Wang, Z. Wang, M. Zhang, H. Guo et al., Amine-functionalized metal-free nanocarbon to boost selective CO2 electroreduction to CO in a flow cell. ACS Appl. Mater. Interfaces 16(22), 29060–29068 (2024). https://doi.org/10.1021/acsami.4c04502
- X. Xu, R. Xu, Y. Zhao, Y. Wu, Q. Yuan et al., Boron-doped biomass carbon nanostructures as electrocatalysts for the two-electron oxygen reduction reaction. ACS Appl. Nano Mater. 7(16), 18912–18919 (2024). https://doi.org/10.1021/acsanm.4c02704
- C. Choi, J. Shin, L. Eddy, V. Granja, K.M. Wyss et al., Flash-within-flash synthesis of gram-scale solid-state materials. Nat. Chem. 16(11), 1831–1837 (2024). https://doi.org/10.1038/s41557-024-01598-7
- X. Zhu, L. Lin, M. Pang, C. Jia, L. Xia et al., Continuous and low-carbon production of biomass flash graphene. Nat. Commun. 15, 3218 (2024). https://doi.org/10.1038/s41467-024-47603-y
- Y. Sun, X.L. Shi, Y.L. Yang, G. Suo, L. Zhang et al., Biomass-derived carbon for high-performance batteries: from structure to properties. Adv. Funct. Mater. 32(24), 2201584 (2022). https://doi.org/10.1002/adfm.202201584
- S. Yin, Y. Huang, Y. Liu, L. Cheng, M. Chen et al., Advanced composite solid electrolyte architecture constructed with amino-modified cellulose and carbon nitride via biosynthetic avenue. Adv. Funct. Mater. 34(24), 2314976 (2024). https://doi.org/10.1002/adfm.202314976
- W. Lv, Z. Shen, X. Li, J. Meng, W. Yang et al., Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 16(1), 109 (2024). https://doi.org/10.1007/s40820-024-01334-3
- B. Hu, K. Huang, B. Tang, Z. Lei, Z. Wang et al., Graphene quantum dot-mediated atom-layer semiconductor electrocatalyst for hydrogen evolution. Nano-Micro Lett. 15(1), 217 (2023). https://doi.org/10.1007/s40820-023-01182-7
- R. Liu, J.-X. Wang, W.-D. Yang, Hierarchical porous heteroatoms-co-doped activated carbon synthesized from coconut shell and its application for supercapacitors. Nanomaterials 12(19), 3504 (2022). https://doi.org/10.3390/nano12193504
- Y. Liu, L. Zhou, S. Liu, S. Li, J. Zhou et al., Fe, N-inducing interfacial electron redistribution in NiCo spinel on biomass-derived carbon for bi-functional oxygen conversion. Angew. Chem. Int. Ed. 63(16), e202319983 (2024). https://doi.org/10.1002/anie.202319983
- Y. Liu, H. Wen, D. Zhou, X. Huang, X. Wu et al., Tuning surface d charge of Ni-Ru alloys for unprecedented catalytic activity towards hydrogen generation from ammonia borane hydrolysis. Appl. Catal. B Environ. 291, 120094 (2021). https://doi.org/10.1016/j.apcatb.2021.120094
- Y. Liu, S. Liu, P. Zhang, J. Zhou, H. Liu et al., Electronic structure regulation of MnCo2O4 via surface-phosphorization coupling to monolithic carbon for oxygen electrocatalysis in Zn–air batteries. Adv. Funct. Mater. 34(41), 2400522 (2024). https://doi.org/10.1002/adfm.202400522
- C. Chen, J. Qian, H. Chen, H. Zhang, L. Yang et al., Molecular origin of the biologically accelerated mineralization of hydroxyapatite on bacterial cellulose for more robust nanocomposites. Nano Lett. 21(24), 10292–10300 (2021). https://doi.org/10.1021/acs.nanolett.1c03411
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- M. Sprik, G. Ciccotti, Free energy from constrained molecular dynamics. J. Chem. Phys. 109(18), 7737–7744 (1998). https://doi.org/10.1063/1.477419
- B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59(11), 7413–7421 (1999). https://doi.org/10.1103/physrevb.59.7413
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- L. Cheng, T. Ma, B. Zhang, L. Huang, W. Guo et al., Steering the topological defects in amorphous laser-induced graphene for direct nitrate-to-ammonia electroreduction. ACS Catal. 12(19), 11639–11650 (2022). https://doi.org/10.1021/acscatal.2c03219
- L. Cheng, Y. Huang, S. Yin, M. Chen, F. Seidi et al., A vapor-assisted construction of 3D highly porous boron nitride for anchoring and catalyzing polysulfides in lithium-sulfur batteries. Chem. Eng. J. 485, 150042 (2024). https://doi.org/10.1016/j.cej.2024.150042
- W. Chen, C. Ge, J.T. Li, J.L. Beckham, Z. Yuan et al., Heteroatom-doped flash graphene. ACS Nano 16(4), 6646–6656 (2022). https://doi.org/10.1021/acsnano.2c01136
- M. Fan, Q. Yuan, Y. Zhao, Z. Wang, A. Wang et al., A facile “double-catalysts” approach to directionally fabricate pyridinic N—B-pair-doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 34(13), e2107040 (2022). https://doi.org/10.1002/adma.202107040
- B. Wang, J.R. Fitzpatrick, A. Brookfield, A.J. Fielding, E. Reynolds et al., Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon. Nat. Commun. 15(1), 3013 (2024). https://doi.org/10.1038/s41467-024-45460-3
- Z. Wang, G. Li, W. Hou, H. Guo, L. Wang et al., Insights into the use of Te-O pairs as active centers of carbon nanosheets for efficient electrochemical oxygen reduction. ACS Nano 17(9), 8671–8679 (2023). https://doi.org/10.1021/acsnano.3c01662
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), e2003134 (2020). https://doi.org/10.1002/adma.202003134
- M. Wu, X. Yang, X. Cui, N. Chen, L. Du et al., Engineering Fe-N4 electronic structure with adjacent Co-N2C2 and Co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15(1), 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
- T. Teng, X. Wu, Y. Lu, F. Yu, C. Jia et al., Flash reforming pyrogenic carbon to graphene for boosting advanced oxidation reaction. Adv. Mater. Technol. 8(16), 2300236 (2023). https://doi.org/10.1002/admt.202300236
- D.X. Luong, K.V. Bets, W.A. Algozeeb, M.G. Stanford, C. Kittrell et al., Gram-scale bottom-up flash graphene synthesis. Nature 577(7792), 647–651 (2020). https://doi.org/10.1038/s41586-020-1938-0
- Y. Wang, P. Meng, Z. Yang, M. Jiang, J. Yang et al., Regulation of atomic Fe-spin state by crystal field and magnetic field for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Angew. Chem. Int. Ed. 62(28), e202304229 (2023). https://doi.org/10.1002/anie.202304229
- X. Lei, Q. Tang, Y. Zheng, P. Kidkhunthod, X. Zhou et al., High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6(7), 816–826 (2023). https://doi.org/10.1038/s41893-023-01101-z
- L. Huang, L. Cheng, T. Ma, J.J. Zhang, H. Wu et al., Direct synthesis of ammonia from nitrate on amorphous graphene with near 100% efficiency. Adv. Mater. 35(24), e2211856 (2023). https://doi.org/10.1002/adma.202211856
- J. Cho, A. Medina, I. Saih, J.I. Choi, M. Drexler et al., 2D metal/graphene and 2D metal/graphene/metal systems for electrocatalytic conversion of CO2 to formic acid. Angew. Chem. Int. Ed. 63(12), e202320268 (2024). https://doi.org/10.1002/anie.202320268
- J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang et al., Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(42), 15089–15097 (2019). https://doi.org/10.1002/anie.201907915
- Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye et al., Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62(15), e202219191 (2023). https://doi.org/10.1002/anie.202219191
References
L. Xie, C. Liang, Y. Wu, K. Wang, W. Hou et al., Isomerization engineering of oxygen-enriched carbon quantum dots for efficient electrochemical hydrogen peroxide production. Small 20(37), e2401253 (2024). https://doi.org/10.1002/smll.202401253
Y. Wu, Y. Zhao, Q. Yuan, H. Sun, A. Wang et al., Electrochemically synthesized H2O2 at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets. Nat. Commun. 15(1), 10843 (2024). https://doi.org/10.1038/s41467-024-55071-7
Q. Ni, S. Zhang, K. Wang, H. Guo, J. Zhang et al., Carbon quantum dot-mediated binary metal–organic framework nanosheets for efficient oxygen evolution at ampere-level current densities in proton exchange membrane electrolyzers. J. Mater. Chem. A 12(45), 31253–31261 (2024). https://doi.org/10.1039/D4TA06855F
S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang et al., Constructing graphitic-nitrogen-bonded pentagons in interlayer-expanded graphene matrix toward carbon-based electrocatalysts for acidic oxygen reduction reaction. Adv. Mater. 33(42), e2103133 (2021). https://doi.org/10.1002/adma.202103133
P. Cui, L. Zhao, Y. Long, L. Dai, C. Hu, Carbon-based electrocatalysts for acidic oxygen reduction reaction. Angew. Chem. Int. Ed. 62(14), e202218269 (2023). https://doi.org/10.1002/anie.202218269
Y. Zhao, J. Raj, X. Xu, J. Jiang, J. Wu et al., Carbon catalysts empowering sustainable chemical synthesis via electrochemical CO2 conversion and two-electron oxygen reduction reaction. Small 2311163 (2024). https://doi.org/10.1002/smll.202311163
L.-H. Zhang, Y. Shi, Y. Wang, N. Raveendran Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7(5), 1902126 (2020). https://doi.org/10.1002/advs.201902126
Z. Jiang, Z.-J. Jiang, X. Tian, W. Chen, Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. J. Mater. Chem. A 2(2), 441–450 (2014). https://doi.org/10.1039/C3TA13832A
Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16(1), 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/C8EE03276A
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
X. Wang, T. Liu, H. Li, C. Han, P. Su et al., Balancing mass transfer and active sites to improve electrocatalytic oxygen reduction by B, N codoped C nanoreactors. Nano Lett. 23(11), 4699–4707 (2023). https://doi.org/10.1021/acs.nanolett.3c00202
Z. Jiang, X. Zhao, X. Tian, L. Luo, J. Fang et al., Hydrothermal synthesis of boron and nitrogen codoped hollow graphene microspheres with enhanced electrocatalytic activity for oxygen reduction reaction. ACS Appl. Mater. Interfaces 7(34), 19398–19407 (2015). https://doi.org/10.1021/acsami.5b05585
G. Ye, S. Liu, K. Zhao, Z. He, Singlet oxygen induced site-specific etching boosts nitrogen-carbon sites for high-efficiency oxygen reduction. Angew. Chem. Int. Ed. 62(21), e202303409 (2023). https://doi.org/10.1002/anie.202303409
Y.L. Wang, M.C. Zhang, X.Y. Shen, H.M. Wang, H.M. Wang et al., Biomass-derived carbon materials: controllable preparation and versatile applications. Small 17(40), 2008079 (2021). https://doi.org/10.1002/smll.202008079
M. Fan, Y. Huang, F. Yuan, Q. Hao, J. Yang et al., Effects of multiple heteroatom species and topographic defects on electrocatalytic and capacitive performances of graphene. J. Power Sources 366, 143–150 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.016
G. An, K. Wang, Z. Wang, M. Zhang, H. Guo et al., Amine-functionalized metal-free nanocarbon to boost selective CO2 electroreduction to CO in a flow cell. ACS Appl. Mater. Interfaces 16(22), 29060–29068 (2024). https://doi.org/10.1021/acsami.4c04502
X. Xu, R. Xu, Y. Zhao, Y. Wu, Q. Yuan et al., Boron-doped biomass carbon nanostructures as electrocatalysts for the two-electron oxygen reduction reaction. ACS Appl. Nano Mater. 7(16), 18912–18919 (2024). https://doi.org/10.1021/acsanm.4c02704
C. Choi, J. Shin, L. Eddy, V. Granja, K.M. Wyss et al., Flash-within-flash synthesis of gram-scale solid-state materials. Nat. Chem. 16(11), 1831–1837 (2024). https://doi.org/10.1038/s41557-024-01598-7
X. Zhu, L. Lin, M. Pang, C. Jia, L. Xia et al., Continuous and low-carbon production of biomass flash graphene. Nat. Commun. 15, 3218 (2024). https://doi.org/10.1038/s41467-024-47603-y
Y. Sun, X.L. Shi, Y.L. Yang, G. Suo, L. Zhang et al., Biomass-derived carbon for high-performance batteries: from structure to properties. Adv. Funct. Mater. 32(24), 2201584 (2022). https://doi.org/10.1002/adfm.202201584
S. Yin, Y. Huang, Y. Liu, L. Cheng, M. Chen et al., Advanced composite solid electrolyte architecture constructed with amino-modified cellulose and carbon nitride via biosynthetic avenue. Adv. Funct. Mater. 34(24), 2314976 (2024). https://doi.org/10.1002/adfm.202314976
W. Lv, Z. Shen, X. Li, J. Meng, W. Yang et al., Discovering cathodic biocompatibility for aqueous Zn-MnO2 battery: an integrating biomass carbon strategy. Nano-Micro Lett. 16(1), 109 (2024). https://doi.org/10.1007/s40820-024-01334-3
B. Hu, K. Huang, B. Tang, Z. Lei, Z. Wang et al., Graphene quantum dot-mediated atom-layer semiconductor electrocatalyst for hydrogen evolution. Nano-Micro Lett. 15(1), 217 (2023). https://doi.org/10.1007/s40820-023-01182-7
R. Liu, J.-X. Wang, W.-D. Yang, Hierarchical porous heteroatoms-co-doped activated carbon synthesized from coconut shell and its application for supercapacitors. Nanomaterials 12(19), 3504 (2022). https://doi.org/10.3390/nano12193504
Y. Liu, L. Zhou, S. Liu, S. Li, J. Zhou et al., Fe, N-inducing interfacial electron redistribution in NiCo spinel on biomass-derived carbon for bi-functional oxygen conversion. Angew. Chem. Int. Ed. 63(16), e202319983 (2024). https://doi.org/10.1002/anie.202319983
Y. Liu, H. Wen, D. Zhou, X. Huang, X. Wu et al., Tuning surface d charge of Ni-Ru alloys for unprecedented catalytic activity towards hydrogen generation from ammonia borane hydrolysis. Appl. Catal. B Environ. 291, 120094 (2021). https://doi.org/10.1016/j.apcatb.2021.120094
Y. Liu, S. Liu, P. Zhang, J. Zhou, H. Liu et al., Electronic structure regulation of MnCo2O4 via surface-phosphorization coupling to monolithic carbon for oxygen electrocatalysis in Zn–air batteries. Adv. Funct. Mater. 34(41), 2400522 (2024). https://doi.org/10.1002/adfm.202400522
C. Chen, J. Qian, H. Chen, H. Zhang, L. Yang et al., Molecular origin of the biologically accelerated mineralization of hydroxyapatite on bacterial cellulose for more robust nanocomposites. Nano Lett. 21(24), 10292–10300 (2021). https://doi.org/10.1021/acs.nanolett.1c03411
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
M. Sprik, G. Ciccotti, Free energy from constrained molecular dynamics. J. Chem. Phys. 109(18), 7737–7744 (1998). https://doi.org/10.1063/1.477419
B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59(11), 7413–7421 (1999). https://doi.org/10.1103/physrevb.59.7413
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
L. Cheng, T. Ma, B. Zhang, L. Huang, W. Guo et al., Steering the topological defects in amorphous laser-induced graphene for direct nitrate-to-ammonia electroreduction. ACS Catal. 12(19), 11639–11650 (2022). https://doi.org/10.1021/acscatal.2c03219
L. Cheng, Y. Huang, S. Yin, M. Chen, F. Seidi et al., A vapor-assisted construction of 3D highly porous boron nitride for anchoring and catalyzing polysulfides in lithium-sulfur batteries. Chem. Eng. J. 485, 150042 (2024). https://doi.org/10.1016/j.cej.2024.150042
W. Chen, C. Ge, J.T. Li, J.L. Beckham, Z. Yuan et al., Heteroatom-doped flash graphene. ACS Nano 16(4), 6646–6656 (2022). https://doi.org/10.1021/acsnano.2c01136
M. Fan, Q. Yuan, Y. Zhao, Z. Wang, A. Wang et al., A facile “double-catalysts” approach to directionally fabricate pyridinic N—B-pair-doped crystal graphene nanoribbons/amorphous carbon hybrid electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 34(13), e2107040 (2022). https://doi.org/10.1002/adma.202107040
B. Wang, J.R. Fitzpatrick, A. Brookfield, A.J. Fielding, E. Reynolds et al., Electron paramagnetic resonance as a tool to determine the sodium charge storage mechanism of hard carbon. Nat. Commun. 15(1), 3013 (2024). https://doi.org/10.1038/s41467-024-45460-3
Z. Wang, G. Li, W. Hou, H. Guo, L. Wang et al., Insights into the use of Te-O pairs as active centers of carbon nanosheets for efficient electrochemical oxygen reduction. ACS Nano 17(9), 8671–8679 (2023). https://doi.org/10.1021/acsnano.3c01662
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), e2003134 (2020). https://doi.org/10.1002/adma.202003134
M. Wu, X. Yang, X. Cui, N. Chen, L. Du et al., Engineering Fe-N4 electronic structure with adjacent Co-N2C2 and Co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15(1), 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
T. Teng, X. Wu, Y. Lu, F. Yu, C. Jia et al., Flash reforming pyrogenic carbon to graphene for boosting advanced oxidation reaction. Adv. Mater. Technol. 8(16), 2300236 (2023). https://doi.org/10.1002/admt.202300236
D.X. Luong, K.V. Bets, W.A. Algozeeb, M.G. Stanford, C. Kittrell et al., Gram-scale bottom-up flash graphene synthesis. Nature 577(7792), 647–651 (2020). https://doi.org/10.1038/s41586-020-1938-0
Y. Wang, P. Meng, Z. Yang, M. Jiang, J. Yang et al., Regulation of atomic Fe-spin state by crystal field and magnetic field for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries. Angew. Chem. Int. Ed. 62(28), e202304229 (2023). https://doi.org/10.1002/anie.202304229
X. Lei, Q. Tang, Y. Zheng, P. Kidkhunthod, X. Zhou et al., High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nat. Sustain. 6(7), 816–826 (2023). https://doi.org/10.1038/s41893-023-01101-z
L. Huang, L. Cheng, T. Ma, J.J. Zhang, H. Wu et al., Direct synthesis of ammonia from nitrate on amorphous graphene with near 100% efficiency. Adv. Mater. 35(24), e2211856 (2023). https://doi.org/10.1002/adma.202211856
J. Cho, A. Medina, I. Saih, J.I. Choi, M. Drexler et al., 2D metal/graphene and 2D metal/graphene/metal systems for electrocatalytic conversion of CO2 to formic acid. Angew. Chem. Int. Ed. 63(12), e202320268 (2024). https://doi.org/10.1002/anie.202320268
J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang et al., Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(42), 15089–15097 (2019). https://doi.org/10.1002/anie.201907915
Y. Wang, J. Wu, S. Tang, J. Yang, C. Ye et al., Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem. Int. Ed. 62(15), e202219191 (2023). https://doi.org/10.1002/anie.202219191