High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures
Corresponding Author: Junwei Gu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 51
Abstract
With the rapid development of fifth-generation mobile communication technology and wearable electronic devices, electromagnetic interference and radiation pollution caused by electromagnetic waves have attracted worldwide attention. Therefore, the design and development of highly efficient EMI shielding materials are of great importance. In this work, the three-dimensional graphene oxide (GO) with regular honeycomb structure (GH) is firstly constructed by sacrificial template and freeze-drying methods. Then, the amino functionalized FeNi alloy particles (f-FeNi) are loaded on the GH skeleton followed by in-situ reduction to prepare rGH@FeNi aerogel. Finally, the rGH@FeNi/epoxy EMI shielding composites with regular honeycomb structure is obtained by vacuum-assisted impregnation of epoxy resin. Benefitting from the construction of regular honeycomb structure and electromagnetic synergistic effect, the rGH@FeNi/epoxy composites with a low rGH@FeNi mass fraction of 2.1 wt% (rGH and f-FeNi are 1.2 and 0.9 wt%, respectively) exhibit a high EMI shielding effectiveness (EMI SE) of 46 dB, which is 5.8 times of that (8 dB) for rGO/FeNi/epoxy composites with the same rGO/FeNi mass fraction. At the same time, the rGH@FeNi/epoxy composites also possess excellent thermal stability (heat-resistance index and temperature at the maximum decomposition rate are 179.1 and 389.0 °C respectively) and mechanical properties (storage modulus is 8296.2 MPa).
Highlights:
1 The rGH@FeNi/epoxy electromagnetic interference (EMI) shielding composites with regular 3D honeycomb structures were prepared by sacrificial template, freeze-drying and vacuum-assisted impregnation of epoxy resin.
2 The construction of 3D honeycomb structure and electromagnetic synergistic effect significantly increase the EMI shielding effectiveness and reduce the secondary contamination.
3 The rGH@FeNi/epoxy composites possess excellent thermal stability and mechanical properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- J. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat. Sci. Eng. R 74, 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
- Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films:preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
- R. Sun, H. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- Y. Han, K. Ruan, J. Gu. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heat performances. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4159-z
- J. Gao, J. Luo, L. Wang, X. Huang, H. Wang et al., Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190
- L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
- A. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 149, 188–197 (2018). https://doi.org/10.1016/j.compositesb.2018.05.027
- S. Huang, L. Wang, Y. Li, C. Liang, J. Zhang, Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 138(27), e50649 (2021). https://doi.org/10.1002/app.50649
- G. Wang, X. Liao, F. Zou, P. Song, W. Tang et al., Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos. Commun. 28, 100953 (2021). https://doi.org/10.1016/j.coco.2021.100953
- L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009
- M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials. Nanoscale 6(11), 5581–5591 (2014). https://doi.org/10.1039/C4NR00102H
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
- Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- H. Zhang, Q. Yan, W. Zheng, Z. He, Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011). https://doi.org/10.1021/am200021v
- H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39(11), 1908–1933 (2014). https://doi.org/10.1016/j.progpolymsci.2014.07.007
- M.A. Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009). https://doi.org/10.1016/j.carbon.2008.09.039
- Y. Ma, Y. Chen, Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2(1), 40–53 (2015). https://doi.org/10.1093/nsr/nwu072
- Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
- T. Ma, H. Ma, K. Ruan, X. Shi, H. Qiu et al., Thermally conductive polylactic acid composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. (2022). https://doi.org/10.1007/s10118-022-2673-9
- P. Sawai, P.P. Chattopadhaya, S. Banerjee, Synthesized reduce graphene oxide (rGO) filled polyetherimide based nanocomposites for EMI shielding applications. Mater. Today Proc. 5(3), 9989–9999 (2018). https://doi.org/10.1016/j.matpr.2017.10.197
- V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene-PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011). https://doi.org/10.1002/mame.201100035
- D. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- C. Liang, H. Qiu, Y. Han, H. Gu, P. Song et al., Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7(9), 2725–2733 (2019). https://doi.org/10.1039/C8TC05955A
- P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
- P. Song, C. Liang, L. Wang, H. Qiu, H. Gu et al., Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 181, 107698 (2019). https://doi.org/10.1016/j.compscitech.2019.107698
- Y. Bhattacharjee, D. Chatterjee, S. Bose, Core-multishell heterostructure with excellent heat dissipation for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(36), 30762–30773 (2018). https://doi.org/10.1021/acsami.8b10819
- H. Cheng, S. Wei, Y. Ji, J. Zhai, X. Zhang et al., Synergetic effect effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 121, 139–148 (2019). https://doi.org/10.1016/j.compositesa.2019.03.019
- H. Zhang, G. Zhang, J. Li, X. Fan, Z. Jing et al., Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 100, 128–138 (2017). https://doi.org/10.1016/j.compositesa.2017.05.009
- R. Kumar, A.V. Alaferdov, R.K. Singh, A.K. Singh, J. Shah et al., Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos. Part B Eng. 168, 66–76 (2019). https://doi.org/10.1016/j.compositesb.2018.12.047
- H. Liu, C. Liang, J. Chen, Y. Huang, F. Cheng et al., Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 169, 103–109 (2019). https://doi.org/10.1016/j.compscitech.2018.11.005
- K. Sushmita, T.V. Menon, S. Sharma, A.C. Abhyankar, G. Madras et al., Mechanistic insight into the nature of dopants in graphene derivatives influencing electromagnetic interference shielding properties in hybrid polymer nanocomposites. J. Phys. Chem. C 123(4), 2579–2590 (2019). https://doi.org/10.1021/acs.jpcc.8b10999
- A. Dong, Z. Zhiyi, W. Yanhui, C. Shuaishuai, L. Yaqing, The distinctly enhanced electromagnetic wave absorption properties of FeNi/rGO nanocomposites compared with pure FeNi alloys. J. Supercond. Nov. Magn. 32(2), 385–392 (2019). https://doi.org/10.1007/s10948-018-4681-0
- J. Li, L. Wang, D. Zhang, Y. Qu, G. Wang et al., Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Mater. Chem. Front. 1(9), 1786–1794 (2017). https://doi.org/10.1039/C7QM00067G
- P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
- A.E. Deen, M.E. Newehy, C. Kim, N. Barakat, Nitrogen-doped, FeNi alloy nanoparticle-decorated graphene as an efficient and stable electrode for electrochemical supercapacitors in acid medium. Nanoscale Res. Lett. 10(1), 104 (2015). https://doi.org/10.1186/s11671-015-0778-6
- F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao et al., Synergistic effect of graphene nanosheets and carbonyl iron-nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J. Mater. Chem. C 6(6), 1476–1486 (2018). https://doi.org/10.1039/C7TC05213H
- Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun et al., Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332 (2012). https://doi.org/10.1016/j.cej.2011.12.017
- M. Strankowski, D. Włodarczyk, Ł Piszczyk, J. Strankowska, Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J. Spectrosc. (2016). https://doi.org/10.1155/2016/7520741
- X. Wang, J. Shu, X. He, M. Zhang, X. Wang et al., Green approach to conductive PEDOT:PSS decorating magnetic-graphene to recover conductivity for highly efficient Absorption. ACS Sustain. Chem. Eng. 6(11), 14017–14025 (2018). https://doi.org/10.1021/acssuschemeng.8b02534
- X. Yang, S. Fan, Y. Li, Y. Guo, K. Ruan et al., Copper nanowires/thermally annealed graphene aerogel/epoxy nanocomposites with excellent thermal conductivities and outstanding electromagnetic interference shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
- J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
- Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
- Y. Chen, H.B. Zhang, Y.B. Yang, M. Wang, A.Y. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
- X. Li, X. Li, K. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
- Y. Du, X. Kan, F. Yang, L. Gan, U. Schwingenschlogl, MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 10(38), 32867–32873 (2018). https://doi.org/10.1021/acsami.8b10729
- J. Fu, J. Yun, S. Wu, L. Li, L. Yu et al., Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 10(40), 34212–34221 (2018). https://doi.org/10.1021/acsami.8b10195
- H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
- A. Sheng, Y. Yang, W. Ren, H. Duan, B. Liu et al., Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection. J. Mater. Sci. Mater. Electron. 30(15), 14669–14678 (2019). https://doi.org/10.1007/s10854-019-01838-4
- C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
- M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
- Y. Bhattacharjee, I. Arief, S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. J. Mater. Chem. C 5(30), 7390–7403 (2017). https://doi.org/10.1039/C7TC02172K
- X. Zhong, X. Yang, K. Ruan, J. Zhang, H. Zhang et al., Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol. Rapid Commun. 43(1), 2100580 (2021). https://doi.org/10.1002/marc.202100580
- Y. Zou, L. Fang, T. Chen, M. Sun, C. Lu et al., Near-infrared light and solar light activated self-healing epoxy coating having enhanced properties using MXene flakes as multifunctional fillers. Polymers 10(5), 474 (2018). https://doi.org/10.3390/polym10050474
- R. Kang, Z. Zhang, L. Guo, J. Cui, Y. Chen et al., Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading. Sci. Rep. 9(1), 9135 (2019). https://doi.org/10.1038/s41598-019-45664-4
- S. Chhetri, N.C. Adak, P. Samanta, N.C. Murmu, S.K. Srivastava et al., Synergistic effect of Fe3O4 anchored N-doped rGO hybrid on mechanical, thermal and electromagnetic shielding properties of epoxy composites. Compos. Part B Eng. 166, 371–381 (2019). https://doi.org/10.1016/j.compositesb.2019.02.036
- H. Zhang, L. Wang, A. Zhou, C. Shen, Y. Dai et al., Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. RSC Adv. 6(90), 87341–87352 (2016). https://doi.org/10.1039/C6RA14560D
References
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13, 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
J. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat. Sci. Eng. R 74, 211–232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
Y. Zhang, Y. Yan, H. Qiu, Z. Ma, K. Ruan et al., A mini-review of MXene porous films:preparation, mechanism and application. J. Mater. Sci. Technol. 103, 42–49 (2022). https://doi.org/10.1016/j.jmst.2021.08.001
R. Sun, H. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride (MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
Y. Han, K. Ruan, J. Gu. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and joule heat performances. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4159-z
J. Gao, J. Luo, L. Wang, X. Huang, H. Wang et al., Flexible, superhydrophobic and highly conductive composite based on non-woven polypropylene fabric for electromagnetic interference shielding. Chem. Eng. J. 364, 493–502 (2019). https://doi.org/10.1016/j.cej.2019.01.190
L. Wang, Z. Ma, Y. Zhang, L. Chen, D. Cao et al., Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 1(3), 413–431 (2021). https://doi.org/10.1002/sus2.21
A. Singh, A. Shishkin, T. Koppel, N. Gupta, A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 149, 188–197 (2018). https://doi.org/10.1016/j.compositesb.2018.05.027
S. Huang, L. Wang, Y. Li, C. Liang, J. Zhang, Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 138(27), e50649 (2021). https://doi.org/10.1002/app.50649
G. Wang, X. Liao, F. Zou, P. Song, W. Tang et al., Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity. Compos. Commun. 28, 100953 (2021). https://doi.org/10.1016/j.coco.2021.100953
L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang et al., Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009
M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials. Nanoscale 6(11), 5581–5591 (2014). https://doi.org/10.1039/C4NR00102H
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32(14), 1907411 (2020). https://doi.org/10.1002/adma.201907411
Z. Yu, T. Dai, S. Yuan, H. Zou, P. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
H. Zhang, Q. Yan, W. Zheng, Z. He, Z. Yu, Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011). https://doi.org/10.1021/am200021v
H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39(11), 1908–1933 (2014). https://doi.org/10.1016/j.progpolymsci.2014.07.007
M.A. Saleh, U. Sundararaj, A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1), 2–22 (2009). https://doi.org/10.1016/j.carbon.2008.09.039
Y. Ma, Y. Chen, Three-dimensional graphene networks: synthesis, properties and applications. Natl. Sci. Rev. 2(1), 40–53 (2015). https://doi.org/10.1093/nsr/nwu072
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei et al., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10(6), 424–428 (2011). https://doi.org/10.1038/nmat3001
T. Ma, H. Ma, K. Ruan, X. Shi, H. Qiu et al., Thermally conductive polylactic acid composites with superior electromagnetic shielding performances via 3D printing technology. Chinese J. Polym. Sci. (2022). https://doi.org/10.1007/s10118-022-2673-9
P. Sawai, P.P. Chattopadhaya, S. Banerjee, Synthesized reduce graphene oxide (rGO) filled polyetherimide based nanocomposites for EMI shielding applications. Mater. Today Proc. 5(3), 9989–9999 (2018). https://doi.org/10.1016/j.matpr.2017.10.197
V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene-PVDF foam composites for EMI shielding. Macromol. Mater. Eng. 296(10), 894–898 (2011). https://doi.org/10.1002/mame.201100035
D. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
C. Liang, H. Qiu, Y. Han, H. Gu, P. Song et al., Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 7(9), 2725–2733 (2019). https://doi.org/10.1039/C8TC05955A
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
Z. Ma, X. Zhou, W. Deng, D. Lei, Z. Liu, 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 10(4), 3634–3643 (2018). https://doi.org/10.1021/acsami.7b17386
P. Song, C. Liang, L. Wang, H. Qiu, H. Gu et al., Obviously improved electromagnetic interference shielding performances for epoxy composites via constructing honeycomb structural reduced graphene oxide. Compos. Sci. Technol. 181, 107698 (2019). https://doi.org/10.1016/j.compscitech.2019.107698
Y. Bhattacharjee, D. Chatterjee, S. Bose, Core-multishell heterostructure with excellent heat dissipation for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(36), 30762–30773 (2018). https://doi.org/10.1021/acsami.8b10819
H. Cheng, S. Wei, Y. Ji, J. Zhai, X. Zhang et al., Synergetic effect effect of Fe3O4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos. Part A Appl. Sci. Manuf. 121, 139–148 (2019). https://doi.org/10.1016/j.compositesa.2019.03.019
H. Zhang, G. Zhang, J. Li, X. Fan, Z. Jing et al., Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 100, 128–138 (2017). https://doi.org/10.1016/j.compositesa.2017.05.009
R. Kumar, A.V. Alaferdov, R.K. Singh, A.K. Singh, J. Shah et al., Self-assembled nanostructures of 3D hierarchical faceted-iron oxide containing vertical carbon nanotubes on reduced graphene oxide hybrids for enhanced electromagnetic interface shielding. Compos. Part B Eng. 168, 66–76 (2019). https://doi.org/10.1016/j.compositesb.2018.12.047
H. Liu, C. Liang, J. Chen, Y. Huang, F. Cheng et al., Novel 3D network porous graphene nanoplatelets/Fe3O4/epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 169, 103–109 (2019). https://doi.org/10.1016/j.compscitech.2018.11.005
K. Sushmita, T.V. Menon, S. Sharma, A.C. Abhyankar, G. Madras et al., Mechanistic insight into the nature of dopants in graphene derivatives influencing electromagnetic interference shielding properties in hybrid polymer nanocomposites. J. Phys. Chem. C 123(4), 2579–2590 (2019). https://doi.org/10.1021/acs.jpcc.8b10999
A. Dong, Z. Zhiyi, W. Yanhui, C. Shuaishuai, L. Yaqing, The distinctly enhanced electromagnetic wave absorption properties of FeNi/rGO nanocomposites compared with pure FeNi alloys. J. Supercond. Nov. Magn. 32(2), 385–392 (2019). https://doi.org/10.1007/s10948-018-4681-0
J. Li, L. Wang, D. Zhang, Y. Qu, G. Wang et al., Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers. Mater. Chem. Front. 1(9), 1786–1794 (2017). https://doi.org/10.1039/C7QM00067G
P. Song, H. Qiu, L. Wang, X. Liu, Y. Zhang et al., Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain. Mater. Technol. 24, e00153 (2020). https://doi.org/10.1016/j.susmat.2020.e00153
A.E. Deen, M.E. Newehy, C. Kim, N. Barakat, Nitrogen-doped, FeNi alloy nanoparticle-decorated graphene as an efficient and stable electrode for electrochemical supercapacitors in acid medium. Nanoscale Res. Lett. 10(1), 104 (2015). https://doi.org/10.1186/s11671-015-0778-6
F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao et al., Synergistic effect of graphene nanosheets and carbonyl iron-nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J. Mater. Chem. C 6(6), 1476–1486 (2018). https://doi.org/10.1039/C7TC05213H
Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun et al., Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332 (2012). https://doi.org/10.1016/j.cej.2011.12.017
M. Strankowski, D. Włodarczyk, Ł Piszczyk, J. Strankowska, Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J. Spectrosc. (2016). https://doi.org/10.1155/2016/7520741
X. Wang, J. Shu, X. He, M. Zhang, X. Wang et al., Green approach to conductive PEDOT:PSS decorating magnetic-graphene to recover conductivity for highly efficient Absorption. ACS Sustain. Chem. Eng. 6(11), 14017–14025 (2018). https://doi.org/10.1021/acssuschemeng.8b02534
X. Yang, S. Fan, Y. Li, Y. Guo, K. Ruan et al., Copper nanowires/thermally annealed graphene aerogel/epoxy nanocomposites with excellent thermal conductivities and outstanding electromagnetic interference shielding effectiveness. Compos. Part A Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
J. Yang, E. Zhang, X. Li, Y. Zhang, J. Qu et al., Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98, 50–57 (2016). https://doi.org/10.1016/j.carbon.2015.10.082
Y. Yue, N. Liu, Y. Ma, S. Wang, W. Liu et al., Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 12(5), 4224–4232 (2018). https://doi.org/10.1021/acsnano.7b07528
Y. Chen, H.B. Zhang, Y.B. Yang, M. Wang, A.Y. Cao et al., High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26(3), 447–455 (2016). https://doi.org/10.1002/adfm.201503782
X. Li, X. Li, K. Liao, P. Min, T. Liu et al., Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl. Mater. Interfaces 8(48), 33230–33239 (2016). https://doi.org/10.1021/acsami.6b12295
Y. Du, X. Kan, F. Yang, L. Gan, U. Schwingenschlogl, MXene/graphene heterostructures as high-performance electrodes for Li-ion batteries. ACS Appl. Mater. Interfaces 10(38), 32867–32873 (2018). https://doi.org/10.1021/acsami.8b10729
J. Fu, J. Yun, S. Wu, L. Li, L. Yu et al., Architecturally robust graphene-encapsulated MXene Ti2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 10(40), 34212–34221 (2018). https://doi.org/10.1021/acsami.8b10195
H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
A. Sheng, Y. Yang, W. Ren, H. Duan, B. Liu et al., Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection. J. Mater. Sci. Mater. Electron. 30(15), 14669–14678 (2019). https://doi.org/10.1007/s10854-019-01838-4
C. Liang, Z. Gu, Y. Zhang, Z. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Y. Zhang, K. Ruan, J. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42), 2101951 (2021). https://doi.org/10.1002/smll.202101951
M. Han, C.E. Shuck, R. Rakhmanov, D. Parchment, B. Anasori et al., Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14(4), 5008–5016 (2020). https://doi.org/10.1021/acsnano.0c01312
Y. Bhattacharjee, I. Arief, S. Bose, Recent trends in multi-layered architectures towards screening electromagnetic radiation: challenges and perspectives. J. Mater. Chem. C 5(30), 7390–7403 (2017). https://doi.org/10.1039/C7TC02172K
X. Zhong, X. Yang, K. Ruan, J. Zhang, H. Zhang et al., Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol. Rapid Commun. 43(1), 2100580 (2021). https://doi.org/10.1002/marc.202100580
Y. Zou, L. Fang, T. Chen, M. Sun, C. Lu et al., Near-infrared light and solar light activated self-healing epoxy coating having enhanced properties using MXene flakes as multifunctional fillers. Polymers 10(5), 474 (2018). https://doi.org/10.3390/polym10050474
R. Kang, Z. Zhang, L. Guo, J. Cui, Y. Chen et al., Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading. Sci. Rep. 9(1), 9135 (2019). https://doi.org/10.1038/s41598-019-45664-4
S. Chhetri, N.C. Adak, P. Samanta, N.C. Murmu, S.K. Srivastava et al., Synergistic effect of Fe3O4 anchored N-doped rGO hybrid on mechanical, thermal and electromagnetic shielding properties of epoxy composites. Compos. Part B Eng. 166, 371–381 (2019). https://doi.org/10.1016/j.compositesb.2019.02.036
H. Zhang, L. Wang, A. Zhou, C. Shen, Y. Dai et al., Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. RSC Adv. 6(90), 87341–87352 (2016). https://doi.org/10.1039/C6RA14560D