Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives
Corresponding Author: Tianyi Ma
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 42
Abstract
The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.
Highlights:
1 This article mainly summarizes the challenges and the latest research progress of highly reversible zinc anodes in mild aqueous zinc-ion batteries and proposes corresponding recommendations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Obama, The irreversible momentum of clean energy. Science 355(6321), 126–129 (2017). https://doi.org/10.1126/science.aam6284
- P.E. Brockway, A. Owen, L.I. Brand-Correa, L. Hardt, Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4, 612–621 (2019). https://doi.org/10.1038/s41560-019-0425-z
- D.J. Davidson, Exnovating for a renewable energy transition. Nat. Energy 4, 254–256 (2019). https://doi.org/10.1038/s41560-019-0369-3
- S. Carley, D.M. Konisky, The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020). https://doi.org/10.1038/s41560-020-0641-6
- N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
- W.P. Schill, Electricity storage and the renewable energy transition. Joule 4(10), 2059–2064 (2020). https://doi.org/10.1016/j.joule.2020.07.022
- P.J. Heptonstall, R.J.K. Gross, A systematic review of the costs and impacts of integrating variable renewables into power grids. Nat. Energy 6, 72–83 (2021). https://doi.org/10.1038/s41560-020-00695-4
- B. Steffen, F. Egli, M. Pahle, T.S. Schmidt, Navigating the clean energy transition in the COVID-19 crisis. Joule 4(6), 1137–1141 (2020). https://doi.org/10.1016/j.joule.2020.04.011
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a
- Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
- T.B. Schon, B.T. McAllister, P.F. Li, D.S. Seferos, The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45(22), 6345–6404 (2016). https://doi.org/10.1039/c6cs00173d
- Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu et al., A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017
- B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao et al., Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater. 24, 85–112 (2020). https://doi.org/10.1016/j.ensm.2019.06.036
- H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- H. Ao, Y. Zhao, J. Zhou, W. Cai, X. Zhang et al., Rechargeable aqueous hybrid ion batteries: developments and prospects. J. Mater. Chem. A 7, 18708–18734 (2019). https://doi.org/10.1039/c9ta06433h
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
- J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Stor. Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2021). https://doi.org/10.1002/aenm.202003065
- T. Yamamoto, T. Shoji, Rechargeable Zn|ZnSO4|MnO2-type cells. Inorganica Chim. Acta 117(2), L27–L28 (1986). https://doi.org/10.1016/S0020-1693(00)82175-1
- Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12, 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
- S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13, 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
- C. Han, W. Li, H.K. Liu, S. Dou, J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 74, 104880 (2020). https://doi.org/10.1016/j.nanoen.2020.104880
- C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2, 540–560 (2020). https://doi.org/10.1002/cey2.67
- R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 129(27), 7872–7876 (2017). https://doi.org/10.1002/ange.201702099
- W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
- Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
- Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019). https://doi.org/10.1002/adma.201903778
- R. Zhang, X.B. Cheng, C.Z. Zhao, H.J. Peng, J.L. Shi et al., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28(11), 2155–2162 (2016). https://doi.org/10.1002/adma.201504117
- Y. Liu, X. Xu, M. Sadd, O.O. Kapitanova, V.A. Krivchenko et al., Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8(5), 2003301 (2021). https://doi.org/10.1002/advs.202003301
- Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu et al., Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021). https://doi.org/10.1016/j.mtener.2021.100692
- P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6(5), 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
- F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419 (2021). https://doi.org/10.1002/aenm.202003419
- L.N. Bengoa, S. Bruno, H.A. Lazzarino, P.R. Seré, W.A. Egli, Study of dendritic growth of zinc crystals on the edges of steel sheet. J. Appl. Electrochem. 44, 1261–1269 (2014). https://doi.org/10.1007/s10800-014-0722-y
- K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun et al., Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 131(33), 11486–11490 (2019). https://doi.org/10.1002/ange.201905251
- L.N. Bengoa, P. Pary, P.R. Seré, M.S. Conconi, W.A. Egli, Dendritic zinc growth in acid electrolyte: effect of the pH. J. Mater. Eng. Perform. 27, 1103–1108 (2018). https://doi.org/10.1007/s11665-018-3139-7
- M.K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang et al., How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano Energy 86, 106142 (2021). https://doi.org/10.1016/j.nanoen.2021.106142
- Z. Hong, Z. Ahmad, V. Viswanathan, Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes. ACS Energy Lett. 5(8), 2466–2474 (2020). https://doi.org/10.1021/acsenergylett.0c01235
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
- J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- X. Guo, Z. Zhang, J. Li, N. Luo, G.L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6, 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
- C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020). https://doi.org/10.1002/eem2.12067
- Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10, 2001599 (2020). https://doi.org/10.1002/aenm.202001599
- A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
- M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
- F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
- S. Zhang, J. Hao, D. Luo, P. Zhang, B. Zhang et al., Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 11(37), 2102010 (2021). https://doi.org/10.1002/aenm.202102010
- C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
- Z. Lu, Y. Wu, L. Ding, Y. Wei, H. Wang, A lamellar MXene (Ti3C2Tx )/PSS composite membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 133(41), 22439–22443 (2021). https://doi.org/10.1002/ange.202108801
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32(25), 2001755 (2020). https://doi.org/10.1002/adma.202001755
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- L. Hong, X. Wu, C. Ma, W. Huang, Y. Zhou et al., Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 9(31), 16814–16823 (2021). https://doi.org/10.1039/d1ta03967a
- H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
- Y. Yang, C. Liu, Z. Lv, H. Yang, X. Cheng et al., Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Stor. Mater. 41, 230–239 (2021). https://doi.org/10.1016/j.ensm.2021.06.002
- Z. Li, W. Deng, C. Li, W. Wang, Z. Zhou et al., Uniformizing the electric field distribution and ion migration during zinc plating/stripping via a binary polymer blend artificial interphase. J. Mater. Chem. A 8(34), 17725–17731 (2020). https://doi.org/10.1039/d0ta05253a
- Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Stor. Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
- P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
- X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/D0EE03898A
- L.T. Hieu, S. So, I.T. Kim, J. Hur, Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem. Eng. J. 411, 128584 (2021). https://doi.org/10.1016/j.cej.2021.128584
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye et al., Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 31(20), 2100398 (2021). https://doi.org/10.1002/adfm.202100398
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), e2003021 (2020). https://doi.org/10.1002/adma.202003021
- H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28(42), 1803665 (2018). https://doi.org/10.1002/adfm.201803665
- M.H. Braga, J.E. Oliveira, T. Kai, A.J. Murchison, A.J. Bard et al., Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics. J. Am. Chem. Soc. 140(51), 17968–17976 (2018). https://doi.org/10.1021/jacs.8b09603
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- Z. Zhou, Y. Zhang, P. Chen, Y. Wu, H. Yang et al., Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chem. Eng. Sci. 194, 142–147 (2019). https://doi.org/10.1016/j.ces.2018.06.048
- C. Shen, X. Li, N. Li, K. Xie, J. gan Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018)
- A. Xia, X. Pu, Y. Tao, H. Liu, Y. Wang, Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 481, 852–859 (2019). https://doi.org/10.1016/j.apsusc.2019.03.197
- Z. Li, L. Wu, S. Dong, T. Xu, S. Li et al., Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv. Funct. Mater. 31(4), 2006495 (2021). https://doi.org/10.1002/adfm.202006495
- L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
- Y. Lee, B. Ma, P. Bai, Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 13(10), 3504–3513 (2020). https://doi.org/10.1039/D0EE01874K
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215 (2020). https://doi.org/10.1002/aenm.201904215
- D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
- M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
- X. Chen, X.R. Chen, T.Z. Hou, B.Q. Li, X.B. Cheng et al., Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aau7728
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang et al., Dendrite-free zinc deposition Induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32(6), 1906803 (2020). https://doi.org/10.1002/adma.201906803
- D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16, 2001736 (2020). https://doi.org/10.1002/smll.202001736
- Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li et al., Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J. 416, 128062 (2021). https://doi.org/10.1016/j.cej.2020.128062
- W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang et al., Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 20, 100675 (2021). https://doi.org/10.1016/j.mtener.2021.100675
- S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). https://doi.org/10.1002/adma.202008424
- M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
- X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
- C. Li, X. Shi, S. Liang, X. Ma, M. Han et al., Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 122248 (2020). https://doi.org/10.1016/j.cej.2019.122248
- X. Shi, G. Xu, S. Liang, C. Li, S. Guo et al., Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain. Chem. Eng. 7(21), 17737–17746 (2019). https://doi.org/10.1021/acssuschemeng.9b04085
- Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou et al., 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7(3), 3364–3371 (2019). https://doi.org/10.1021/acssuschemeng.8b05568
- Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang et al., Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small 16(35), 2000929 (2020). https://doi.org/10.1002/smll.202000929
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11(19), 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- W. Guo, Z. Cong, Z. Guo, C. Chang, X. Liang et al., Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Stor. Mater. 30, 104–112 (2020). https://doi.org/10.1016/j.ensm.2020.04.038
- R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021). https://doi.org/10.1016/j.cej.2021.129642
- J. Wang, Z. Cai, R. Xiao, Y. Ou, R. Zhan et al., A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12(20), 23028–23034 (2020). https://doi.org/10.1021/acsami.0c05661
- S. Zhai, N. Wang, X. Tan, K. Jiang, Z. Quan et al., Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv. Funct. Mater. 31(13), 2008894 (2021). https://doi.org/10.1002/adfm.202008894
- H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12, 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
- T. Chen, Y. Wang, Y. Yang, F. Huang, M. Zhu et al., Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 31(24), 2101607 (2021). https://doi.org/10.1002/adfm.202101607
- L.P. Wang, N.W. Li, T.S. Wang, Y.X. Yin, Y.G. Guo et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675
- Y. Du, X. Chi, J. Huang, Q. Qiu, Y. Liu, Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network. J. Power Sour. 479, 228808 (2020). https://doi.org/10.1016/j.jpowsour.2020.228808
- Q. Li, Y. Wang, F. Mo, D. Wang, G. Liang et al., Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11(14), 2003931 (2021). https://doi.org/10.1002/aenm.202003931
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- C. Lu, H. Zhou, Is the electrodeposition of metals really epitaxial in battery anodes? Sci. Bull. 65(18), 1524–1526 (2020). https://doi.org/10.1016/j.scib.2020.05.028
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous Lithium metal batteries. ACS Nano 13(10), 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
- C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
- J. Gu, Q. Zhu, Y. Shi, H. Chen, D. Zhang et al., Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 14(1), 891–898 (2020). https://doi.org/10.1021/acsnano.9b08141
- Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Stor. Mater. 41, 343–353 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
- C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen et al., Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 6(2), 675–683 (2021). https://doi.org/10.1021/acsenergylett.0c02569
- H. Jia, Z. Wang, M. Dirican, S. Qiu, C.Y. Chan et al., A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J. Mater. Chem. A 9, 5597–5605 (2021). https://doi.org/10.1039/d0ta11828a
- X. Fan, H. Yang, X. Wang, J. Han, Y. Wu et al., Enabling stable Zn anode via a facile alloying strategy and 3D foam structure. Adv. Mater. Interfaces 8(7), 2002184 (2021). https://doi.org/10.1002/admi.202002184
- Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Stor. Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
- M. Fayette, H.J. Chang, I.A. Rodrĺguez-Pérez, X. Li, D. Reed, Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(38), 42763–42772 (2020). https://doi.org/10.1021/acsami.0c10956
- Y. Zhang, J.D. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 6(2), 404–412 (2021). https://doi.org/10.1021/acsenergylett.0c02343
- Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021). https://doi.org/10.1039/D0TA12177K
- Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13(14), 16869–16875 (2021). https://doi.org/10.1021/acsami.0c22911
- S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
- H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox et al., Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021). https://doi.org/10.1038/s41467-020-20334-6
- T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9(10), 6013–6028 (2021). https://doi.org/10.1039/d0ta09111a
- W.J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sour. 196(3), 877–885 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.114
- S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin et al., Solid–solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142(19), 8818–8826 (2020). https://doi.org/10.1021/jacs.0c01811
- T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
- Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2021). https://doi.org/10.1002/aenm.202002529
- N. Liu, X. Wu, Y. Zhang, Y. Yin, C. Sun et al., Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries. Adv. Sci. 7(14), 2000146 (2020). https://doi.org/10.1002/advs.202000146
- Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 31(3), 2005092 (2021). https://doi.org/10.1002/adfm.202005092
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- Y. Zhang, M. Zhu, K. Wu, F. Yu, G. Wang et al., An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. J. Mater. Chem. A 9, 4253–4261 (2021). https://doi.org/10.1039/D0TA11668H
- Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8(37), 19367–19374 (2020). https://doi.org/10.1039/d0ta06622b
- R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60(13), 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chem. ElectroChem. 5, 2409–2418 (2018). https://doi.org/10.1002/celc.201800572
- Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
- M. Yan, C. Xu, Y. Sun, H. Pan, H. Li, Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy 82, 105739 (2021). https://doi.org/10.1016/j.nanoen.2020.105739
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu et al., Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 31(45), 2103514 (2021). https://doi.org/10.1002/adfm.202103514
- F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
- S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Stor. Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
- D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
- Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/D1EE00308A
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic–zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. Ed. 60(34), 18845–18851 (2021). https://doi.org/10.1002/anie.202107378
- L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and sendrite-free All-solid-state Zn-ion batteries. Adv. Mater. 32(14), 1908121 (2020). https://doi.org/10.1002/adma.201908121
- Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Stor. Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
- Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang et al., A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
- H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
- J. Huang, X. Chi, Y. Du, Q. Qiu, Y. Liu, Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13(3), 4008–4016 (2021). https://doi.org/10.1021/acsami.0c20241
- Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma et al., Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14, 3492–3501 (2021). https://doi.org/10.1039/D1EE00409C
- S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. A Eur. J. 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
- D. Lee, H.I. Kim, W.Y. Kim, S.K. Cho, K. Baek et al., Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv. Funct. Mater. 31(36), 2103850 (2021). https://doi.org/10.1002/adfm.202103850
- J. Cong, X. Shen, Z. Wen, X. Wang, L. Peng et al., Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Stor. Mater. 35, 586–594 (2021). https://doi.org/10.1016/j.ensm.2020.11.041
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Stor. Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- Q. Han, X. Chi, Y. Liu, L. Wang, Y. Du et al., An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. J. Mater. Chem. A 7(39), 22287–22295 (2019). https://doi.org/10.1039/c9ta07218g
- M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn–MnO2 batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8(14), 6828–6841 (2020). https://doi.org/10.1039/d0ta01553a
- M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
- J. Liu, J. Long, Z. Shen, X. Jin, T. Han et al., A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes. Adv. Sci. 8(8), 2004689 (2021). https://doi.org/10.1002/advs.202004689
- W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan et al., High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11), 15776–15785 (2020). https://doi.org/10.1021/acsnano.0c06834
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- B. Wu, Y. Wu, Z. Lu, J. Zhang, N. Han et al., A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 9(8), 4734–4743 (2021). https://doi.org/10.1039/d0ta11841a
- C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
- Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
- Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat. Commun. 12, 3083 (2021). https://doi.org/10.1038/s41467-021-23352-0
- J. Cao, D. Zhang, C. Gu, X. Zhang, M. Okhawilai et al., Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 89, 106322 (2021). https://doi.org/10.1016/j.nanoen.2021.106322
- J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
- S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
- Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO2 battery. Nano Lett. 21(3), 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
References
B. Obama, The irreversible momentum of clean energy. Science 355(6321), 126–129 (2017). https://doi.org/10.1126/science.aam6284
P.E. Brockway, A. Owen, L.I. Brand-Correa, L. Hardt, Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 4, 612–621 (2019). https://doi.org/10.1038/s41560-019-0425-z
D.J. Davidson, Exnovating for a renewable energy transition. Nat. Energy 4, 254–256 (2019). https://doi.org/10.1038/s41560-019-0369-3
S. Carley, D.M. Konisky, The justice and equity implications of the clean energy transition. Nat. Energy 5, 569–577 (2020). https://doi.org/10.1038/s41560-020-0641-6
N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2, 17125 (2017). https://doi.org/10.1038/nenergy.2017.125
W.P. Schill, Electricity storage and the renewable energy transition. Joule 4(10), 2059–2064 (2020). https://doi.org/10.1016/j.joule.2020.07.022
P.J. Heptonstall, R.J.K. Gross, A systematic review of the costs and impacts of integrating variable renewables into power grids. Nat. Energy 6, 72–83 (2021). https://doi.org/10.1038/s41560-020-00695-4
B. Steffen, F. Egli, M. Pahle, T.S. Schmidt, Navigating the clean energy transition in the COVID-19 crisis. Joule 4(6), 1137–1141 (2020). https://doi.org/10.1016/j.joule.2020.04.011
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/c8ee01419a
Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 49(23), 8790–8839 (2020). https://doi.org/10.1039/d0cs00305k
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/c7cs00863e
T.B. Schon, B.T. McAllister, P.F. Li, D.S. Seferos, The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45(22), 6345–6404 (2016). https://doi.org/10.1039/c6cs00173d
Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu et al., A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83–99 (2021). https://doi.org/10.1016/j.jechem.2020.10.017
B. Liu, Y. Jia, C. Yuan, L. Wang, X. Gao et al., Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review. Energy Storage Mater. 24, 85–112 (2020). https://doi.org/10.1016/j.ensm.2019.06.036
H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
H. Ao, Y. Zhao, J. Zhou, W. Cai, X. Zhang et al., Rechargeable aqueous hybrid ion batteries: developments and prospects. J. Mater. Chem. A 7, 18708–18734 (2019). https://doi.org/10.1039/c9ta06433h
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
J. Wang, Y. Yang, Y. Zhang, Y. Li, R. Sun et al., Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Stor. Mater. 35, 19–46 (2021). https://doi.org/10.1016/j.ensm.2020.10.027
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy Mater. 11(1), 2003065 (2021). https://doi.org/10.1002/aenm.202003065
T. Yamamoto, T. Shoji, Rechargeable Zn|ZnSO4|MnO2-type cells. Inorganica Chim. Acta 117(2), L27–L28 (1986). https://doi.org/10.1016/S0020-1693(00)82175-1
Q. Li, X. Rui, D. Chen, Y. Feng, N. Xiao et al., A high-capacity ammonium vanadate cathode for zinc-ion battery. Nano-Micro Lett. 12, 67 (2020). https://doi.org/10.1007/s40820-020-0401-y
S. Ding, M. Zhang, R. Qin, J. Fang, H. Ren et al., Oxygen-deficient β-MnO2@graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries. Nano-Micro Lett. 13, 173 (2021). https://doi.org/10.1007/s40820-021-00691-7
C. Han, W. Li, H.K. Liu, S. Dou, J. Wang, Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy 74, 104880 (2020). https://doi.org/10.1016/j.nanoen.2020.104880
C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2, 540–560 (2020). https://doi.org/10.1002/cey2.67
R. Zhang, X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 129(27), 7872–7876 (2017). https://doi.org/10.1002/ange.201702099
W. Du, E.H. Ang, Y. Yang, Y. Zhang, M. Ye et al., Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13(10), 3330–3360 (2020). https://doi.org/10.1039/d0ee02079f
Q. Zhang, J. Luan, Y. Tang, X. Ji, H. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 59(32), 13180–13191 (2020). https://doi.org/10.1002/anie.202000162
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31(43), 1903778 (2019). https://doi.org/10.1002/adma.201903778
R. Zhang, X.B. Cheng, C.Z. Zhao, H.J. Peng, J.L. Shi et al., Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28(11), 2155–2162 (2016). https://doi.org/10.1002/adma.201504117
Y. Liu, X. Xu, M. Sadd, O.O. Kapitanova, V.A. Krivchenko et al., Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal. Adv. Sci. 8(5), 2003301 (2021). https://doi.org/10.1002/advs.202003301
Y. Zuo, K. Wang, P. Pei, M. Wei, X. Liu et al., Zinc dendrite growth and inhibition strategies. Mater. Today Energy 20, 100692 (2021). https://doi.org/10.1016/j.mtener.2021.100692
P. He, J. Huang, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS Energy Lett. 6(5), 1990–1995 (2021). https://doi.org/10.1021/acsenergylett.1c00638
F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11, 2003419 (2021). https://doi.org/10.1002/aenm.202003419
L.N. Bengoa, S. Bruno, H.A. Lazzarino, P.R. Seré, W.A. Egli, Study of dendritic growth of zinc crystals on the edges of steel sheet. J. Appl. Electrochem. 44, 1261–1269 (2014). https://doi.org/10.1007/s10800-014-0722-y
K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun et al., Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 131(33), 11486–11490 (2019). https://doi.org/10.1002/ange.201905251
L.N. Bengoa, P. Pary, P.R. Seré, M.S. Conconi, W.A. Egli, Dendritic zinc growth in acid electrolyte: effect of the pH. J. Mater. Eng. Perform. 27, 1103–1108 (2018). https://doi.org/10.1007/s11665-018-3139-7
M.K. Aslam, Y. Niu, T. Hussain, H. Tabassum, W. Tang et al., How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression. Nano Energy 86, 106142 (2021). https://doi.org/10.1016/j.nanoen.2021.106142
Z. Hong, Z. Ahmad, V. Viswanathan, Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes. ACS Energy Lett. 5(8), 2466–2474 (2020). https://doi.org/10.1021/acsenergylett.0c01235
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/d0ee02162h
J. Hao, X. Li, S. Zhang, F. Yang, X. Zeng et al., Designing dendrite-free zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 30(30), 2001263 (2020). https://doi.org/10.1002/adfm.202001263
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
X. Guo, Z. Zhang, J. Li, N. Luo, G.L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6, 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3, 146–159 (2020). https://doi.org/10.1002/eem2.12067
Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen et al., Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater. 10, 2001599 (2020). https://doi.org/10.1002/aenm.202001599
A. Bayaguud, Y. Fu, C. Zhu, Interfacial parasitic reactions of zinc anodes in zinc ion batteries: underestimated corrosion and hydrogen evolution reactions and their suppression strategies. J. Energy Chem. 64, 246–262 (2022). https://doi.org/10.1016/j.jechem.2021.04.016
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
M. Zhu, J. Hu, Q. Lu, H. Dong, D.D. Karnaushenko et al., A patternable and in situ formed polymeric zinc blanket for a reversible zinc anode in a skin-mountable microbattery. Adv. Mater. 33(8), 2007497 (2021). https://doi.org/10.1002/adma.202007497
F. Xie, H. Li, X. Wang, X. Zhi, D. Chao et al., Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 11(9), 2003419 (2021). https://doi.org/10.1002/aenm.202003419
S. Zhang, J. Hao, D. Luo, P. Zhang, B. Zhang et al., Dual-function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 11(37), 2102010 (2021). https://doi.org/10.1002/aenm.202102010
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6(3), 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
Z. Lu, Y. Wu, L. Ding, Y. Wei, H. Wang, A lamellar MXene (Ti3C2Tx )/PSS composite membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 133(41), 22439–22443 (2021). https://doi.org/10.1002/ange.202108801
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59(38), 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
Q. Yang, Y. Guo, B. Yan, C. Wang, Z. Liu et al., Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes. Adv. Mater. 32(25), 2001755 (2020). https://doi.org/10.1002/adma.202001755
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
L. Hong, X. Wu, C. Ma, W. Huang, Y. Zhou et al., Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries. J. Mater. Chem. A 9(31), 16814–16823 (2021). https://doi.org/10.1039/d1ta03967a
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11(18), 2100186 (2021). https://doi.org/10.1002/aenm.202100186
Y. Yang, C. Liu, Z. Lv, H. Yang, X. Cheng et al., Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Stor. Mater. 41, 230–239 (2021). https://doi.org/10.1016/j.ensm.2021.06.002
Z. Li, W. Deng, C. Li, W. Wang, Z. Zhou et al., Uniformizing the electric field distribution and ion migration during zinc plating/stripping via a binary polymer blend artificial interphase. J. Mater. Chem. A 8(34), 17725–17731 (2020). https://doi.org/10.1039/d0ta05253a
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Stor. Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
P. Chen, X. Yuan, Y. Xia, Y. Zhang, L. Fu et al., An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries. Adv. Sci. 8(11), 2100309 (2021). https://doi.org/10.1002/advs.202100309
X. Zhang, J. Li, D. Liu, M. Liu, T. Zhou et al., Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 14(5), 3120–3129 (2021). https://doi.org/10.1039/D0EE03898A
L.T. Hieu, S. So, I.T. Kim, J. Hur, Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life. Chem. Eng. J. 411, 128584 (2021). https://doi.org/10.1016/j.cej.2021.128584
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13(12), 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye et al., Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 31(20), 2100398 (2021). https://doi.org/10.1002/adfm.202100398
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), e2003021 (2020). https://doi.org/10.1002/adma.202003021
H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28(42), 1803665 (2018). https://doi.org/10.1002/adfm.201803665
M.H. Braga, J.E. Oliveira, T. Kai, A.J. Murchison, A.J. Bard et al., Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics. J. Am. Chem. Soc. 140(51), 17968–17976 (2018). https://doi.org/10.1021/jacs.8b09603
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid–electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
Z. Zhou, Y. Zhang, P. Chen, Y. Wu, H. Yang et al., Graphene oxide-modified zinc anode for rechargeable aqueous batteries. Chem. Eng. Sci. 194, 142–147 (2019). https://doi.org/10.1016/j.ces.2018.06.048
C. Shen, X. Li, N. Li, K. Xie, J. gan Wang et al., Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018)
A. Xia, X. Pu, Y. Tao, H. Liu, Y. Wang, Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Appl. Surf. Sci. 481, 852–859 (2019). https://doi.org/10.1016/j.apsusc.2019.03.197
Z. Li, L. Wu, S. Dong, T. Xu, S. Li et al., Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries. Adv. Funct. Mater. 31(4), 2006495 (2021). https://doi.org/10.1002/adfm.202006495
L. Dong, W. Yang, W. Yang, H. Tian, Y. Huang et al., Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors. Chem. Eng. J. 384, 123355 (2020). https://doi.org/10.1016/j.cej.2019.123355
Y. Lee, B. Ma, P. Bai, Concentration polarization and metal dendrite initiation in isolated electrolyte microchannels. Energy Environ. Sci. 13(10), 3504–3513 (2020). https://doi.org/10.1039/D0EE01874K
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215 (2020). https://doi.org/10.1002/aenm.201904215
D. Chao, C.R. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au particles as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
X. Chen, X.R. Chen, T.Z. Hou, B.Q. Li, X.B. Cheng et al., Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aau7728
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11, 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang et al., Dendrite-free zinc deposition Induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 32(6), 1906803 (2020). https://doi.org/10.1002/adma.201906803
D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui et al., A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 16, 2001736 (2020). https://doi.org/10.1002/smll.202001736
Y. Zhang, G. Wang, F. Yu, G. Xu, Z. Li et al., Highly reversible and dendrite-free Zn electrodeposition enabled by a thin metallic interfacial layer in aqueous batteries. Chem. Eng. J. 416, 128062 (2021). https://doi.org/10.1016/j.cej.2020.128062
W. Guo, Y. Zhang, X. Tong, X. Wang, L. Zhang et al., Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Mater. Today Energy 20, 100675 (2021). https://doi.org/10.1016/j.mtener.2021.100675
S. Li, J. Fu, G. Miao, S. Wang, W. Zhao et al., Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface. Adv. Mater. 33(21), 2008424 (2021). https://doi.org/10.1002/adma.202008424
M. Zhou, S. Guo, J. Li, X. Luo, Z. Liu et al., Surface-preferred crystal plane for a stable and reversible zinc anode. Adv. Mater. 33(21), 2100187 (2021). https://doi.org/10.1002/adma.202100187
X. Jia, C. Liu, Z.G. Neale, J. Yang, G. Cao, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120(15), 7795–7866 (2020). https://doi.org/10.1021/acs.chemrev.9b00628
C. Li, X. Shi, S. Liang, X. Ma, M. Han et al., Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode. Chem. Eng. J. 379, 122248 (2020). https://doi.org/10.1016/j.cej.2019.122248
X. Shi, G. Xu, S. Liang, C. Li, S. Guo et al., Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain. Chem. Eng. 7(21), 17737–17746 (2019). https://doi.org/10.1021/acssuschemeng.9b04085
Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou et al., 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7(3), 3364–3371 (2019). https://doi.org/10.1021/acssuschemeng.8b05568
Q. Zhang, J. Luan, X. Huang, L. Zhu, Y. Tang et al., Simultaneously regulating the ion distribution and electric field to achieve dendrite-free Zn anode. Small 16(35), 2000929 (2020). https://doi.org/10.1002/smll.202000929
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11(19), 2003927 (2021). https://doi.org/10.1002/aenm.202003927
W. Guo, Z. Cong, Z. Guo, C. Chang, X. Liang et al., Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Stor. Mater. 30, 104–112 (2020). https://doi.org/10.1016/j.ensm.2020.04.038
R. Xiao, Z. Cai, R. Zhan, J. Wang, Y. Ou et al., Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem. Eng. J. 420, 129642 (2021). https://doi.org/10.1016/j.cej.2021.129642
J. Wang, Z. Cai, R. Xiao, Y. Ou, R. Zhan et al., A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12(20), 23028–23034 (2020). https://doi.org/10.1021/acsami.0c05661
S. Zhai, N. Wang, X. Tan, K. Jiang, Z. Quan et al., Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery. Adv. Funct. Mater. 31(13), 2008894 (2021). https://doi.org/10.1002/adfm.202008894
H. Li, Z. Liu, G. Liang, Y. Huang, Y. Huang et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12, 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
T. Chen, Y. Wang, Y. Yang, F. Huang, M. Zhu et al., Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 31(24), 2101607 (2021). https://doi.org/10.1002/adfm.202101607
L.P. Wang, N.W. Li, T.S. Wang, Y.X. Yin, Y.G. Guo et al., Conductive graphite fiber as a stable host for zinc metal anodes. Electrochim. Acta 244, 172–177 (2017). https://doi.org/10.1016/j.electacta.2017.05.072
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675
Y. Du, X. Chi, J. Huang, Q. Qiu, Y. Liu, Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network. J. Power Sour. 479, 228808 (2020). https://doi.org/10.1016/j.jpowsour.2020.228808
Q. Li, Y. Wang, F. Mo, D. Wang, G. Liang et al., Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy Mater. 11(14), 2003931 (2021). https://doi.org/10.1002/aenm.202003931
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
C. Lu, H. Zhou, Is the electrodeposition of metals really epitaxial in battery anodes? Sci. Bull. 65(18), 1524–1526 (2020). https://doi.org/10.1016/j.scib.2020.05.028
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous Lithium metal batteries. ACS Nano 13(10), 11676–11685 (2019). https://doi.org/10.1021/acsnano.9b05599
C. Wei, Y. Tao, Y. An, Y. Tian, Y. Zhang et al., Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv. Funct. Mater. 30(45), 2004613 (2020). https://doi.org/10.1002/adfm.202004613
J. Gu, Q. Zhu, Y. Shi, H. Chen, D. Zhang et al., Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 14(1), 891–898 (2020). https://doi.org/10.1021/acsnano.9b08141
Y. Tian, Y. An, C. Liu, S. Xiong, J. Feng et al., Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Stor. Mater. 41, 343–353 (2021). https://doi.org/10.1016/j.ensm.2021.06.019
C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen et al., Liquid alloy interlayer for aqueous zinc-ion battery. ACS Energy Lett. 6(2), 675–683 (2021). https://doi.org/10.1021/acsenergylett.0c02569
H. Jia, Z. Wang, M. Dirican, S. Qiu, C.Y. Chan et al., A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. J. Mater. Chem. A 9, 5597–5605 (2021). https://doi.org/10.1039/d0ta11828a
X. Fan, H. Yang, X. Wang, J. Han, Y. Wu et al., Enabling stable Zn anode via a facile alloying strategy and 3D foam structure. Adv. Mater. Interfaces 8(7), 2002184 (2021). https://doi.org/10.1002/admi.202002184
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Stor. Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
M. Fayette, H.J. Chang, I.A. Rodrĺguez-Pérez, X. Li, D. Reed, Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(38), 42763–42772 (2020). https://doi.org/10.1021/acsami.0c10956
Y. Zhang, J.D. Howe, S. Ben-Yoseph, Y. Wu, N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries. ACS Energy Lett. 6(2), 404–412 (2021). https://doi.org/10.1021/acsenergylett.0c02343
Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021). https://doi.org/10.1039/D0TA12177K
Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13(14), 16869–16875 (2021). https://doi.org/10.1021/acsami.0c22911
S.B. Wang, Q. Ran, R.Q. Yao, H. Shi, Z. Wen et al., Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11, 1634 (2020). https://doi.org/10.1038/s41467-020-15478-4
H. Tian, Z. Li, G. Feng, Z. Yang, D. Fox et al., Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat. Commun. 12, 237 (2021). https://doi.org/10.1038/s41467-020-20334-6
T.C. Li, D. Fang, J. Zhang, M.E. Pam, Z.Y. Leong et al., Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A 9(10), 6013–6028 (2021). https://doi.org/10.1039/d0ta09111a
W.J. Zhang, Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries. J. Power Sour. 196(3), 877–885 (2011). https://doi.org/10.1016/j.jpowsour.2010.08.114
S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin et al., Solid–solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142(19), 8818–8826 (2020). https://doi.org/10.1021/jacs.0c01811
T. Wang, C. Li, X. Xie, B. Lu, Z. He et al., Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives. ACS Nano 14(12), 16321–16347 (2020). https://doi.org/10.1021/acsnano.0c07041
Y. Tian, Y. An, C. Wei, B. Xi, S. Xiong et al., Recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv. Energy Mater. 11(5), 2002529 (2021). https://doi.org/10.1002/aenm.202002529
N. Liu, X. Wu, Y. Zhang, Y. Yin, C. Sun et al., Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries. Adv. Sci. 7(14), 2000146 (2020). https://doi.org/10.1002/advs.202000146
Y. Yang, J. Xiao, J. Cai, G. Wang, W. Du et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: an insight into its intercalation/extraction kinetics and charge storage mechanism. Adv. Funct. Mater. 31(3), 2005092 (2021). https://doi.org/10.1002/adfm.202005092
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/c8cc07730d
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
Y. Zhang, M. Zhu, K. Wu, F. Yu, G. Wang et al., An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte. J. Mater. Chem. A 9, 4253–4261 (2021). https://doi.org/10.1039/D0TA11668H
Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8(37), 19367–19374 (2020). https://doi.org/10.1039/d0ta06622b
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60(13), 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
A. Mitha, A.Z. Yazdi, M. Ahmed, P. Chen, Surface adsorption of polyethylene glycol to suppress dendrite formation on zinc anodes in rechargeable aqueous batteries. Chem. ElectroChem. 5, 2409–2418 (2018). https://doi.org/10.1002/celc.201800572
Y. Jin, K.S. Han, Y. Shao, M.L. Sushko, J. Xiao et al., Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes. Adv. Funct. Mater. 30(43), 2003932 (2020). https://doi.org/10.1002/adfm.202003932
M. Yan, C. Xu, Y. Sun, H. Pan, H. Li, Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive. Nano Energy 82, 105739 (2021). https://doi.org/10.1016/j.nanoen.2020.105739
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13, 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
H. Lu, X. Zhang, M. Luo, K. Cao, Y. Lu et al., Amino acid-induced interface charge engineering enables highly reversible Zn anode. Adv. Funct. Mater. 31(45), 2103514 (2021). https://doi.org/10.1002/adfm.202103514
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135(11), 4450–4456 (2013). https://doi.org/10.1021/ja312241y
S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Stor. Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5(9), 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao et al., Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62, 275–281 (2019). https://doi.org/10.1016/j.nanoen.2019.05.042
D. Li, L. Cao, T. Deng, S. Liu, C. Wang, Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 60(23), 13035–13041 (2021). https://doi.org/10.1002/anie.202103390
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31(26), 2101886 (2021). https://doi.org/10.1002/adfm.202101886
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/D1EE00308A
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic–zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. Ed. 60(34), 18845–18851 (2021). https://doi.org/10.1002/anie.202107378
L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and sendrite-free All-solid-state Zn-ion batteries. Adv. Mater. 32(14), 1908121 (2020). https://doi.org/10.1002/adma.201908121
Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Stor. Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang et al., A MOF-based single-ion Zn2+ solid electrolyte leading to dendrite-free rechargeable Zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
H. Dong, J. Li, J. Guo, F. Lai, F. Zhao et al., Insights on flexible zinc-ion batteries from lab research to commercialization. Adv. Mater. 33(20), 2007548 (2021). https://doi.org/10.1002/adma.202007548
J. Huang, X. Chi, Y. Du, Q. Qiu, Y. Liu, Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS Appl. Mater. Interfaces 13(3), 4008–4016 (2021). https://doi.org/10.1021/acsami.0c20241
Z. Chen, X. Li, D. Wang, Q. Yang, L. Ma et al., Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14, 3492–3501 (2021). https://doi.org/10.1039/D1EE00409C
S. Huang, J. Zhu, J. Tian, Z. Niu, Recent progress in the electrolytes of aqueous zinc-ion batteries. Chem. A Eur. J. 25(64), 14480–14494 (2019). https://doi.org/10.1002/chem.201902660
D. Lee, H.I. Kim, W.Y. Kim, S.K. Cho, K. Baek et al., Water-repellent ionic liquid skinny gels customized for aqueous Zn-ion battery anodes. Adv. Funct. Mater. 31(36), 2103850 (2021). https://doi.org/10.1002/adfm.202103850
J. Cong, X. Shen, Z. Wen, X. Wang, L. Peng et al., Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte. Energy Stor. Mater. 35, 586–594 (2021). https://doi.org/10.1016/j.ensm.2020.11.041
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Stor. Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
Q. Han, X. Chi, Y. Liu, L. Wang, Y. Du et al., An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. J. Mater. Chem. A 7(39), 22287–22295 (2019). https://doi.org/10.1039/c9ta07218g
M. Chen, W. Zhou, A. Wang, A. Huang, J. Chen et al., Anti-freezing flexible aqueous Zn–MnO2 batteries working at -35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. J. Mater. Chem. A 8(14), 6828–6841 (2020). https://doi.org/10.1039/d0ta01553a
M. Chen, J. Chen, W. Zhou, X. Han, Y. Yao et al., Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn–MnO2 batteries. Adv. Mater. 33(9), 2007559 (2021). https://doi.org/10.1002/adma.202007559
J. Liu, J. Long, Z. Shen, X. Jin, T. Han et al., A self-healing flexible quasi-solid zinc-ion battery using all-in-one electrodes. Adv. Sci. 8(8), 2004689 (2021). https://doi.org/10.1002/advs.202004689
W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan et al., High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11), 15776–15785 (2020). https://doi.org/10.1021/acsnano.0c06834
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
B. Wu, Y. Wu, Z. Lu, J. Zhang, N. Han et al., A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 9(8), 4734–4743 (2021). https://doi.org/10.1039/d0ta11841a
C. Li, Z. Sun, T. Yang, L. Yu, N. Wei et al., Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes. Adv. Mater. 32(33), 2003425 (2020). https://doi.org/10.1002/adma.202003425
Z. Wang, L. Dong, W. Huang, H. Jia, Q. Zhao et al., Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 13, 73 (2021). https://doi.org/10.1007/s40820-021-00594-7
Z. Hou, Y. Gao, H. Tan, B. Zhang, Realizing high-power and high-capacity zinc/sodium metal anodes through interfacial chemistry regulation. Nat. Commun. 12, 3083 (2021). https://doi.org/10.1038/s41467-021-23352-0
J. Cao, D. Zhang, C. Gu, X. Zhang, M. Okhawilai et al., Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy 89, 106322 (2021). https://doi.org/10.1016/j.nanoen.2021.106322
J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
S. Higashi, S.W. Lee, J.S. Lee, K. Takechi, Y. Cui, Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016). https://doi.org/10.1038/ncomms11801
Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO2 battery. Nano Lett. 21(3), 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519