Bi2S3 for Aqueous Zn Ion Battery with Enhanced Cycle Stability
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 8
Abstract
Aqueous Zn ion batteries (ZIBs) are promising in energy storage due to the low cost, high safety, and material abundance. The development of metal oxides as the cathode for ZIBs is limited by the strong electrostatic forces between O2− and Zn2+ which leads to poor cyclic stability. Herein, Bi2S3 is proposed as a promising cathode material for rechargeable aqueous ZIBs. Improved cyclic stability and fast diffusion of Zn2+ is observed. Also, the layered structure of Bi2S3 with the weak van der Waals interaction between layers offers paths for diffusion and occupancy of Zn2+. As a result, the Zn/Bi2S3 battery delivers high capacity of 161 mAh g−1 at 0.2 A g−1 and good cycling stability up to 100 cycles with ca. 100% retention. The battery also demonstrates good cyclic performance of ca. 80.3% over 2000 cycles at 1 A g−1. The storage mechanism in the Bi2S3 cathode is related to the reversible Zn ion intercalation/extraction reactions and the capacitive contribution. This work indicates that Bi2S3 shows great potential as the cathode of ZIBs with good performance and stability.
Highlights
1 Bi2S3 is proposed as a promising cathode material for rechargeable aqueous Zn ion battery.
2 The Zn/Bi2S3 battery shows a reversible capacity of 161 mAh g−1 at 0.2 A g−1 and good cyclic stability of up to 100 cycles with ca. 100% retention.
3 The storage mechanism in the Bi2S3 cathode is related to the reversible Zn ion intercalation/extraction reactions and the capacitive contribution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles. J. Power Sources 168, 2–11 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
- X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
- P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19, 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018). https://doi.org/10.1002/advs.201700322
- M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, New York, 2008), pp. 1–452
- Google Scholar
- H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009). https://doi.org/10.1002/adma.200901710
- N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
- F. Beck, P. Rüetschi, Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467–2482 (2000). https://doi.org/10.1016/S0013-4686(00)00344-3
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040
- S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012). https://doi.org/10.1002/aenm.201200026
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
- W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 310, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9, 1803815 (2019). https://doi.org/10.1002/aenm.201803815
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 36, 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894 (2016). https://doi.org/10.1021/jacs.6b05958
- L.X. Geng, G.C. Lv, X.B. Xing, J.C. Guo, Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015). https://doi.org/10.1021/acs.chemmater.5b01918
- J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Ma, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao, C. Yan, L. Li, Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 4, 1400798 (2014). https://doi.org/10.1002/aenm.201400798
- H. Liang, J. Ni, L. Li, Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 33, 213–220 (2017). https://doi.org/10.1016/j.nanoen.2017.01.033
- S.-Q. Zhan, H. Wan, L. Xu, W.-Q. Huang, G.-F. Huang, J.-P. Long, P. Peng, Native vacancy defects in bismuth sulfide. Int. J. Mod. Phys. B 28, 1450150 (2014). https://doi.org/10.1142/S0217979214501501
- G. Qin, H. Zhang, C. Wang, Ultrasmall TiO2 nanoparticles embedded in nitrogen doped porous graphene for high rate and long life lithium ion batteries. J. Power Sources 272, 491–500 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.105
- K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985). https://doi.org/10.1351/pac198557040603
- T. Xiong, Z.G. Yu, W.S.V. Lee, J. Xue, o-Benzenediol-functionalized carbon nanosheets as low self-discharge aqueous supercapacitors. Chemsuschem 11, 3307–3314 (2018). https://doi.org/10.1002/cssc.201801076
- K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
- D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong et al., Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2, 3048–3058 (2016). https://doi.org/10.1002/smll.201600633
References
E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles. J. Power Sources 168, 2–11 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.090
X. Wang, X. Lu, B. Liu, D. Chen, Y. Tong, G. Shen, Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26, 4763–4782 (2014). https://doi.org/10.1002/adma.201400910
P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19, 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018). https://doi.org/10.1002/advs.201700322
M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, New York, 2008), pp. 1–452
Google Scholar
H. Li, Z. Wang, L. Chen, X. Huang, Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593–4607 (2009). https://doi.org/10.1002/adma.200901710
N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011). https://doi.org/10.1039/C1EE01598B
F. Beck, P. Rüetschi, Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467–2482 (2000). https://doi.org/10.1016/S0013-4686(00)00344-3
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, Y. Xia, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode. ACS Energy Lett. 2, 1115–1121 (2017). https://doi.org/10.1021/acsenergylett.7b00040
S.-W. Kim, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2, 710–721 (2012). https://doi.org/10.1002/aenm.201200026
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 310, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
T. Xiong, Z.G. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9, 1803815 (2019). https://doi.org/10.1002/aenm.201803815
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang et al., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 36, 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894 (2016). https://doi.org/10.1021/jacs.6b05958
L.X. Geng, G.C. Lv, X.B. Xing, J.C. Guo, Reversible electrochemical intercalation of aluminum in Mo6S8. Chem. Mater. 27, 4926–4929 (2015). https://doi.org/10.1021/acs.chemmater.5b01918
J. Huang, Z. Wang, M. Hou, X. Dong, Y. Liu, Y. Wang, Y. Xia, Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30, 1703725 (2018). https://doi.org/10.1002/adma.201703725
P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Ma, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao, C. Yan, L. Li, Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 4, 1400798 (2014). https://doi.org/10.1002/aenm.201400798
H. Liang, J. Ni, L. Li, Bio-inspired engineering of Bi2S3-PPy yolk-shell composite for highly durable lithium and sodium storage. Nano Energy 33, 213–220 (2017). https://doi.org/10.1016/j.nanoen.2017.01.033
S.-Q. Zhan, H. Wan, L. Xu, W.-Q. Huang, G.-F. Huang, J.-P. Long, P. Peng, Native vacancy defects in bismuth sulfide. Int. J. Mod. Phys. B 28, 1450150 (2014). https://doi.org/10.1142/S0217979214501501
G. Qin, H. Zhang, C. Wang, Ultrasmall TiO2 nanoparticles embedded in nitrogen doped porous graphene for high rate and long life lithium ion batteries. J. Power Sources 272, 491–500 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.105
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985). https://doi.org/10.1351/pac198557040603
T. Xiong, Z.G. Yu, W.S.V. Lee, J. Xue, o-Benzenediol-functionalized carbon nanosheets as low self-discharge aqueous supercapacitors. Chemsuschem 11, 3307–3314 (2018). https://doi.org/10.1002/cssc.201801076
K. Zhang, M. Park, L. Zhou, G.-H. Lee, W. Li, Y.-M. Kang, J. Chen, Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 26, 6728–6735 (2016). https://doi.org/10.1002/adfm.201602608
D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu et al., Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 7, 12122 (2016). https://doi.org/10.1038/ncomms12122
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
X. Xia, D. Chao, Y. Zhang, J. Zhan, Y. Zhong et al., Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage. Small 2, 3048–3058 (2016). https://doi.org/10.1002/smll.201600633