Transition Metal Aluminum Boride as a New Candidate for Ambient-Condition Electrochemical Ammonia Synthesis
Corresponding Author: Tianyi Ma
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 65
Abstract
Achieving more meaningful N2 conversion by reducing the energy input and carbon footprint is now being investigated through a method of N2 fixation instead of the Haber–Bosch process. Unfortunately, the electrochemical N2 reduction reaction (NRR) method as a rising approach currently still shows low selectivity (Faradaic efficiency < 10%) and high-energy consumption [applied potential at least − 0.2 V versus the reversible hydrogen electrode (RHE)]. Here, the role of molybdenum aluminum boride single crystals, belonging to a family of ternary transition metal aluminum borides known as MAB phases, is reported for the electrochemical NRR for the first time, at a low applied potential (− 0.05 V versus RHE) under ambient conditions and in alkaline media. Due to the unique nano-laminated crystal structure of the MAB phase, these inexpensive materials have been found to exhibit excellent electrocatalytic performances (NH3 yield: 9.2 µg h−1 cm−2 mg−1cat., Faradaic efficiency: 30.1%) at the low overpotential, and to display a high chemical stability and sustained catalytic performance. In conjunction, further mechanism studies indicate B and Al as main-group metals show a highly selective affinity to N2 due to the strong interaction between the B 2p/Al 3p band and the N 2p orbitals, while Mo exhibits specific catalytic activity toward the subsequent reduction reaction. Overall, the MAB-phase catalyst under the synergy of the elements within ternary compound can suppress the hydrogen evolution reaction and achieve enhanced NRR performance. The significance of this work is to provide a promising candidate in the future synthesis of ammonia.
Highlights:
1 Molybdenum aluminum boride single crystals as layered ternary borides were firstly applied for the electrochemical N2 reduction reaction under ambient conditions and in alkaline media, displaying excellent electrocatalytic performances at the low overpotential.
2 Through the combination of the strong interaction of Al/B band and N orbitals and the special crystal structure exposing more active sites, synergistic effect of the elements was verified to achieve the enhancement of N2 reduction reaction process and the limitation of hydrogen evolution reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Appl, Ammonia Principles and Industrial Practice (Wiley-VCH, New York, 2007), pp. 1–310
- I. Coric, B.Q. Mercado, E. Bill, D.J. Vinyard, P.L. Holland, Binding of dinitrogen to an iron–sulfur–carbon site. Nature 526, 96–99 (2015). https://doi.org/10.1038/nature15246
- T. Spatzal, K.A. Perez, O. Einsle, J.B. Howard, D.C. Rees, Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345(6204), 1620–1623 (2014). https://doi.org/10.1126/science.1256679
- G.-F. Chen, S.Y. Ren, L.L. Zhang, H. Cheng, Y.R. Luo, K.H. Zhu, L.-X. Ding, H.H. Wang, Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods 3, 1800337 (2019). https://doi.org/10.1002/smtd.201800337
- N. Cao, G.F. Zheng, Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 11(6), 2992–3008 (2018). https://doi.org/10.1007/s12274-018-1987-y
- M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P.V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015). https://doi.org/10.1038/ncomms7731
- C. Rebreyend, B. de Bruin, Photolytic N2 splitting: a road to sustainable NH3 production? Angew. Chem. Int. Ed. 54(1), 42–44 (2015). https://doi.org/10.1002/anie.201409727
- T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55(12), 3942–3946 (2016). https://doi.org/10.1002/anie.201511189
- S. Giddey, S.P.S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38(34), 14576 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.054
- K. Chu, Y.-P. Liu, Y.-B. Li, J. Wang, H. Zhang, Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 11, 31806–31815 (2019). https://doi.org/10.1021/acsami.9b08055
- C. Tang, S.-Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48(12), 3166–3180 (2019). https://doi.org/10.1039/c9cs00280d
- X.-Y. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018). https://doi.org/10.1002/aenm.201800369
- A.R. Singh, B.A. Rohr, J.A. Schwalbe, M. Cargnello, K. Chan, T.F. Jaramillo, I. Chorkendorff, J.K. Norskov, Electrochemical ammonia synthesis—the selectivity challenge. ACS Catal. 7, 706–709 (2017). https://doi.org/10.1021/acscatal.6b03035
- C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/c7ee02220d
- D. Yan, H. Li, C. Chen, Y. Zou, S. Wang, Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2, 1800331 (2018). https://doi.org/10.1002/smtd.201800331
- B.L. Sheets, G.G. Botte, Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte. Chem. Commun. 54, 4250 (2018). https://doi.org/10.1039/c8cc00657a
- D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi et al., Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 1604799 (2017). https://doi.org/10.1002/adma.201604799
- Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen et al., Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 8, 1186–1191 (2018). https://doi.org/10.1021/acscatal.7b02165
- D. Yang, T. Chen, Z. Wang, Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 5, 18967 (2017). https://doi.org/10.1039/c7ta06139k
- K. Chu, Y.-P. Liu, Y.-B. Li, H. Zhang, Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 7, 4389–4394 (2019). https://doi.org/10.1039/c9ta00016j
- K. Chu, Y.-P. Liu, Y.-B. Li, Y.-L. Guo, Y. Tian, H. Zhang, Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B 264, 118525 (2020). https://doi.org/10.1016/j.apcatb.2019.118525
- E. Skúlason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisal et al., A theoretical evaluation of possible transition metal electro catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/c1cp22271f
- J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Nørskov, Te challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015). https://doi.org/10.1002/cssc.201500322
- V. Kordali, G. Kyriacou, C. Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. (2000). https://doi.org/10.1039/b004885m
- R. Lan, J.T.S. Irvine, S.W. Tao, Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013). https://doi.org/10.1038/srep01145
- S.M. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D.-S. Su, G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017). https://doi.org/10.1002/anie.201609533
- G.-F. Chen, X.-R. Cao, S.-Q. Wu, X.-Y. Zeng, L.-X. Ding, M. Zhu, H.H. Wang, Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393
- S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017). https://doi.org/10.1002/adma.201700001
- M.M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29, 1606550 (2017). https://doi.org/10.1002/adma.201606550
- C.-D. Lv, C.-S. Yan, G. Chen, Y. Ding, J.-X. Sun, Y.S. Zhou, G.H. Yu, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073–6076 (2018). https://doi.org/10.1002/anie.201801538
- Y. Yao, S.Q. Zhu, H.J. Wang, H. Li, M.H. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018). https://doi.org/10.1021/jacs.7b12101
- J. Wang, L. Yu, L. Hu, G. Chen, H.-L. Xin, X.-F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018). https://doi.org/10.1038/s41467-018-04213-9
- F.L. Zhou, L.M. Azofra, M. Ali, M. Kar, A.N. Simonow et al., Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017). https://doi.org/10.1039/c7ee02716h
- H.K. Lee, C.S.L. Koh, Y.H. Lee, C. Liu, I.Y. Phang, X.M. Han, C. Tsung, X.Y. Ling, Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, eaar3208 (2018). https://doi.org/10.1126/sciadv.aar3208
- S.Z. Andersen, V. Čolić, S. Yang, J.A. Schwalbe, A.C. Nielander et al., A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019). https://doi.org/10.1038/s41586-019-1260-x
- B. Hu, M.W. Hu, L. Seefeldt, T.L. Liu, Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition? ACS Energy Lett. 4, 1053–1054 (2019). https://doi.org/10.1021/acsenergylett.9b00648
- L.T. Alameda, C.F. Holder, J.L. Fenton, R.E. Schaak, Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 29, 8953–8957 (2017). https://doi.org/10.1021/acs.chemmater.7b02511
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- C.-F. Hu, H.-B. Zhang, F.-Z. Li, Q. Huang, Y.-W. Bao, New phases’ discovery in MAX family. Int. J. Refract. Metals Hard Mater. 36, 300–312 (2013). https://doi.org/10.1016/j.ijrmhm.2012.10.011
- M.W. Barsoum, The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
- S.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54, 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
- D.K. Mann, J.Y. Xu, N.E. Mordvinova, V. Yannello, Y. Ziouani et al., Electrocatalytic water oxidation over AlFe2B2. Chem. Sci. 10, 2796 (2019). https://doi.org/10.1039/c8sc04106g
- M. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- B. Jun, S. Kim, J. Heo, C.M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12(3), 471–487 (2019). https://doi.org/10.1007/s12274-018-2225-3
- T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016). https://doi.org/10.1002/ange.201509758
- Y.N. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B.B. Tian, C.L. Su, Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
- S. Kota, E. Zapata-Solvas, A. Ly, J. Lu, O. Elkassabany et al., Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep. 6, 26475 (2016). https://doi.org/10.1038/srep26475
- F.-Z. Dai, Z.-F. Feng, Y.-C. Zhou, First-principles investigation on the chemical bonding, elastic properties and ideal strengths of MoAlB and WAlB nanolaminated MAB phases. Comput. Mater. Sci. 147, 331–337 (2018). https://doi.org/10.1016/j.commatsci.2018.02.033
- V. Natu, S.S. Kota, M.W. Barsoum, X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides. J. Eur. Ceram. Soc. 40, 305–314 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.09.040
- Q.L. Shi, L.D. Xu, A. Jiang, Q. Xu, Y.T. Xiao, D.G. Zhu, S. Grasso, C.F. Hu, Synthesis and oxidation resistance of MoAlB single crystals. Ceram. Int. 45, 2446–2450 (2019). https://doi.org/10.1016/j.ceramint.2018.10.170
- X.Q. Wang, Z.J. Li, Y.T. Qu, T.W. Yuan, W.Y. Wang, Y.E. Wu, Y.D. Li, Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1485–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
- B. Yu, H. Li, J. White, S. Donne, J.B. Yi et al., Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 30, 1905665 (2020). https://doi.org/10.1002/adfm.201905665
- Y.X. Zhao, R. Shi, X.N. Bian, C. Zhou, Y.F. Zhao et al., Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv. Sci. 6, 1802109 (2019). https://doi.org/10.1002/advs.201802109
- Y.Z. Wen, Y.F. Mao, Z.F. Kang, Q.H. Luo, Application of an ammonium ion-selective electrode for the real-time measurement of ammonia nitrogen based on pH and temperature compensation. Measurement 137, 98–101 (2019). https://doi.org/10.1016/j.measurement.2019.01.031
- Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
- H.Q. Ma, Z.Y. Shi, S. Li, N. Liu, Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment. Appl. Surf. Sci. 379, 309–315 (2016). https://doi.org/10.1016/j.apsusc.2016.04.085
References
M. Appl, Ammonia Principles and Industrial Practice (Wiley-VCH, New York, 2007), pp. 1–310
I. Coric, B.Q. Mercado, E. Bill, D.J. Vinyard, P.L. Holland, Binding of dinitrogen to an iron–sulfur–carbon site. Nature 526, 96–99 (2015). https://doi.org/10.1038/nature15246
T. Spatzal, K.A. Perez, O. Einsle, J.B. Howard, D.C. Rees, Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345(6204), 1620–1623 (2014). https://doi.org/10.1126/science.1256679
G.-F. Chen, S.Y. Ren, L.L. Zhang, H. Cheng, Y.R. Luo, K.H. Zhu, L.-X. Ding, H.H. Wang, Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods 3, 1800337 (2019). https://doi.org/10.1002/smtd.201800337
N. Cao, G.F. Zheng, Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 11(6), 2992–3008 (2018). https://doi.org/10.1007/s12274-018-1987-y
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P.V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015). https://doi.org/10.1038/ncomms7731
C. Rebreyend, B. de Bruin, Photolytic N2 splitting: a road to sustainable NH3 production? Angew. Chem. Int. Ed. 54(1), 42–44 (2015). https://doi.org/10.1002/anie.201409727
T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55(12), 3942–3946 (2016). https://doi.org/10.1002/anie.201511189
S. Giddey, S.P.S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 38(34), 14576 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.054
K. Chu, Y.-P. Liu, Y.-B. Li, J. Wang, H. Zhang, Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 11, 31806–31815 (2019). https://doi.org/10.1021/acsami.9b08055
C. Tang, S.-Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 48(12), 3166–3180 (2019). https://doi.org/10.1039/c9cs00280d
X.-Y. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018). https://doi.org/10.1002/aenm.201800369
A.R. Singh, B.A. Rohr, J.A. Schwalbe, M. Cargnello, K. Chan, T.F. Jaramillo, I. Chorkendorff, J.K. Norskov, Electrochemical ammonia synthesis—the selectivity challenge. ACS Catal. 7, 706–709 (2017). https://doi.org/10.1021/acscatal.6b03035
C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/c7ee02220d
D. Yan, H. Li, C. Chen, Y. Zou, S. Wang, Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2, 1800331 (2018). https://doi.org/10.1002/smtd.201800331
B.L. Sheets, G.G. Botte, Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte. Chem. Commun. 54, 4250 (2018). https://doi.org/10.1039/c8cc00657a
D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi et al., Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 29, 1604799 (2017). https://doi.org/10.1002/adma.201604799
Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen et al., Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 8, 1186–1191 (2018). https://doi.org/10.1021/acscatal.7b02165
D. Yang, T. Chen, Z. Wang, Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 5, 18967 (2017). https://doi.org/10.1039/c7ta06139k
K. Chu, Y.-P. Liu, Y.-B. Li, H. Zhang, Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 7, 4389–4394 (2019). https://doi.org/10.1039/c9ta00016j
K. Chu, Y.-P. Liu, Y.-B. Li, Y.-L. Guo, Y. Tian, H. Zhang, Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation. Appl. Catal. B 264, 118525 (2020). https://doi.org/10.1016/j.apcatb.2019.118525
E. Skúlason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisal et al., A theoretical evaluation of possible transition metal electro catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/c1cp22271f
J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Nørskov, Te challenge of electrochemical ammonia synthesis: a new perspective on the role of nitrogen scaling relations. ChemSusChem 8, 2180–2186 (2015). https://doi.org/10.1002/cssc.201500322
V. Kordali, G. Kyriacou, C. Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. (2000). https://doi.org/10.1039/b004885m
R. Lan, J.T.S. Irvine, S.W. Tao, Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 3, 1145 (2013). https://doi.org/10.1038/srep01145
S.M. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D.-S. Su, G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017). https://doi.org/10.1002/anie.201609533
G.-F. Chen, X.-R. Cao, S.-Q. Wu, X.-Y. Zeng, L.-X. Ding, M. Zhu, H.H. Wang, Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393
S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan, Q. Jiang, Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 29, 1700001 (2017). https://doi.org/10.1002/adma.201700001
M.M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan, Q. Jiang, Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 29, 1606550 (2017). https://doi.org/10.1002/adma.201606550
C.-D. Lv, C.-S. Yan, G. Chen, Y. Ding, J.-X. Sun, Y.S. Zhou, G.H. Yu, An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 6073–6076 (2018). https://doi.org/10.1002/anie.201801538
Y. Yao, S.Q. Zhu, H.J. Wang, H. Li, M.H. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 140, 1496–1501 (2018). https://doi.org/10.1021/jacs.7b12101
J. Wang, L. Yu, L. Hu, G. Chen, H.-L. Xin, X.-F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018). https://doi.org/10.1038/s41467-018-04213-9
F.L. Zhou, L.M. Azofra, M. Ali, M. Kar, A.N. Simonow et al., Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 10, 2516–2520 (2017). https://doi.org/10.1039/c7ee02716h
H.K. Lee, C.S.L. Koh, Y.H. Lee, C. Liu, I.Y. Phang, X.M. Han, C. Tsung, X.Y. Ling, Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Sci. Adv. 4, eaar3208 (2018). https://doi.org/10.1126/sciadv.aar3208
S.Z. Andersen, V. Čolić, S. Yang, J.A. Schwalbe, A.C. Nielander et al., A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019). https://doi.org/10.1038/s41586-019-1260-x
B. Hu, M.W. Hu, L. Seefeldt, T.L. Liu, Electrochemical dinitrogen reduction to ammonia by Mo2N: catalysis or decomposition? ACS Energy Lett. 4, 1053–1054 (2019). https://doi.org/10.1021/acsenergylett.9b00648
L.T. Alameda, C.F. Holder, J.L. Fenton, R.E. Schaak, Partial etching of Al from MoAlB single crystals to expose catalytically active basal planes for the hydrogen evolution reaction. Chem. Mater. 29, 8953–8957 (2017). https://doi.org/10.1021/acs.chemmater.7b02511
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
C.-F. Hu, H.-B. Zhang, F.-Z. Li, Q. Huang, Y.-W. Bao, New phases’ discovery in MAX family. Int. J. Refract. Metals Hard Mater. 36, 300–312 (2013). https://doi.org/10.1016/j.ijrmhm.2012.10.011
M.W. Barsoum, The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
S.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acsenergylett.6b00247
M. Ade, H. Hillebrecht, Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorg. Chem. 54, 6122–6135 (2015). https://doi.org/10.1021/acs.inorgchem.5b00049
D.K. Mann, J.Y. Xu, N.E. Mordvinova, V. Yannello, Y. Ziouani et al., Electrocatalytic water oxidation over AlFe2B2. Chem. Sci. 10, 2796 (2019). https://doi.org/10.1039/c8sc04106g
M. Zhao, C.E. Ren, Z. Ling, M.R. Lukatskaya, C. Zhang et al., Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Adv. Mater. 27, 339–345 (2015). https://doi.org/10.1002/adma.201404140
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
B. Jun, S. Kim, J. Heo, C.M. Park, N. Her et al., Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 12(3), 471–487 (2019). https://doi.org/10.1007/s12274-018-2225-3
T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem. Int. Ed. 55, 1138–1142 (2016). https://doi.org/10.1002/ange.201509758
Y.N. Jiang, T. Sun, X. Xie, W. Jiang, J. Li, B.B. Tian, C.L. Su, Oxygen-functionalized ultrathin Ti3C2Tx MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 12, 1368–1373 (2019). https://doi.org/10.1002/cssc.201803032
S. Kota, E. Zapata-Solvas, A. Ly, J. Lu, O. Elkassabany et al., Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep. 6, 26475 (2016). https://doi.org/10.1038/srep26475
F.-Z. Dai, Z.-F. Feng, Y.-C. Zhou, First-principles investigation on the chemical bonding, elastic properties and ideal strengths of MoAlB and WAlB nanolaminated MAB phases. Comput. Mater. Sci. 147, 331–337 (2018). https://doi.org/10.1016/j.commatsci.2018.02.033
V. Natu, S.S. Kota, M.W. Barsoum, X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides. J. Eur. Ceram. Soc. 40, 305–314 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.09.040
Q.L. Shi, L.D. Xu, A. Jiang, Q. Xu, Y.T. Xiao, D.G. Zhu, S. Grasso, C.F. Hu, Synthesis and oxidation resistance of MoAlB single crystals. Ceram. Int. 45, 2446–2450 (2019). https://doi.org/10.1016/j.ceramint.2018.10.170
X.Q. Wang, Z.J. Li, Y.T. Qu, T.W. Yuan, W.Y. Wang, Y.E. Wu, Y.D. Li, Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design. Chem 5(6), 1485–1511 (2019). https://doi.org/10.1016/j.chempr.2019.03.002
B. Yu, H. Li, J. White, S. Donne, J.B. Yi et al., Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 30, 1905665 (2020). https://doi.org/10.1002/adfm.201905665
Y.X. Zhao, R. Shi, X.N. Bian, C. Zhou, Y.F. Zhao et al., Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv. Sci. 6, 1802109 (2019). https://doi.org/10.1002/advs.201802109
Y.Z. Wen, Y.F. Mao, Z.F. Kang, Q.H. Luo, Application of an ammonium ion-selective electrode for the real-time measurement of ammonia nitrogen based on pH and temperature compensation. Measurement 137, 98–101 (2019). https://doi.org/10.1016/j.measurement.2019.01.031
Y.C. Hao, Y. Guo, L.W. Chen, M. Shu, X.Y. Wang et al., Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019). https://doi.org/10.1038/s41929-019-0241-7
H.Q. Ma, Z.Y. Shi, S. Li, N. Liu, Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment. Appl. Surf. Sci. 379, 309–315 (2016). https://doi.org/10.1016/j.apsusc.2016.04.085