Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers
Corresponding Author: Xiaoguang Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 11
Abstract
Although advances in wireless technologies such as miniature and wearable electronics have improved the quality of our lives, the ubiquitous use of electronics comes at the expense of increased exposure to electromagnetic (EM) radiation. Up to date, extensive efforts have been made to develop high-performance EM absorbers based on synthetic materials. However, the design of an EM absorber with both exceptional EM dissipation ability and good environmental adaptability remains a substantial challenge. Here, we report the design of a class of carbon heterostructures via hierarchical assembly of graphitized lignocellulose derived from bamboo. Specifically, the assemblies of nanofibers and nanosheets behave as a nanometer-sized antenna, which results in an enhancement of the conductive loss. In addition, we show that the composition of cellulose and lignin in the precursor significantly influences the shape of the assembly and the formation of covalent bonds, which affect the dielectric response-ability and the surface hydrophobicity (the apparent contact angle of water can reach 135°). Finally, we demonstrate that the obtained carbon heterostructure maintains its wideband EM absorption with an effective absorption frequency ranging from 12.5 to 16.7 GHz under conditions that simulate the real-world environment, including exposure to rainwater with slightly acidic/alkaline pH values. Overall, the advances reported in this work provide new design principles for the synthesis of high-performance EM absorbers that can find practical applications in real-world environments.
Highlights:
1 A novel, non-porous carbon structure was obtained through pyrolysis of biomass heterostructures consisting of cellulose and lignin.
2 The novel class of biomass-derived carbon materials exhibit an enhanced electromagnetic (EM) loss capability due to the nano-antenna structure created by in-situ growth of carbon nanofibers on carbon nanosheets.
3 The designed carbon materials exhibit good hydrophobicity and acid/base resistance, suggesting a stable EM absorption performance in diverse environmental conditions, thus making it a good candidate for real world conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu et al., Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- X. Huang, M. Qiao, X. Lu, Y. Li, Y. Ma et al., Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3327-x
- B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495 (2021). https://doi.org/10.1007/s12274-020-3208-8
- C. Zhang, W.K. Cao, L.T. Wu, J.C. Ke, Q. Cheng, A reconfigurable active acoustic metalens. Appl. Phys. Lett. 118, 133502 (2021). https://doi.org/10.1063/5.0045024
- P. He, M. Cao, W. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021). https://doi.org/10.1007/s40820-021-00645-z
- Z. Lou, Q. Wang, Y. Zhang, X. Zhou, R. Li et al., In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation. Compos. Part B-Eng. 214, 108744 (2021). https://doi.org/10.1016/j.compositesb.2021.108744
- J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
- P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
- C. Zhang, S. Yin, C. Long, B.W. Dong, D.P. He et al., Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt. Express 9, 14078 (2021). https://doi.org/10.1364/OE.423245
- X. Zhao, J. Yan, Y. Huang, X. Liu, L. Ding et al., Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 595, 78–87 (2021). https://doi.org/10.1016/j.jcis.2021.03.109
- H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
- J. Wen, X. Li, G. Chen, Z. Wang, X. Zhou et al., Controllable adjustment of cavity of core-shelled Co3O4@ NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J. Colloid Interface Sci. 594, 424–434 (2021). https://doi.org/10.1016/j.jcis.2021.03.056
- J. Liu, L. Zhang, H. Wu, D. Zang, Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co (OH) F/Zn0.76Co0.24S/Co3S4 composite. Chem. Eng. J. 411, 128601 (2021). https://doi.org/10.1016/j.cej.2021.128601
- C. Zhang, B. Liu, W. Li, X. Liu, K. Wang et al., A well-designed honeycomb Co3O4@CdS photocatalyst derived from cobalt foam for high-efficiency visible-light H2 evolution. J. Mater. Chem. A 9, 11665–11673 (2021). https://doi.org/10.1039/D0TA11433B
- B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
- H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
- P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. B 202, 108406 (2020). https://doi.org/10.1016/j.compositesb.2020.108406
- J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 61, 646–687 (2021). https://doi.org/10.1080/15583724.2020.1870490
- C. Zhang, C. Long, Y. Sheng, R.G. Song et al., Graphene-based anisotropic polarization meta-filter. Mater. Design 206, 109768 (2021). https://doi.org/10.1016/j.matdes.2021.19768
- H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, X.G. Wang et al., Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 9, 19710 (2021). https://doi.org/10.1039/D1TA02785A
- Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng et al., The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4, 1–9 (2012). https://doi.org/10.1007/BF03353684
- S. Gholami, J. Lopez, A. Rezvani, V. Vatanpour, J. Luis Cortina, Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes. Rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance. Chem. Eng. J. 384, 123348 (2020). https://doi.org/10.1016/j.cej.2019.123348
- H. Korucu, B. Simsek, T. Uygunoglu, A.B. Guvenc, A. Yartasi, Statistical approach to carbon based materials reinforced cementitious composites: mechanical, thermal, electrical and sulfuric acid resistance properties. Compos. B 171, 347–360 (2019). https://doi.org/10.1016/j.compositesb.2019.05.017
- X. Zhu, F. Qian, Y. Liu, D. Matera, G. Wu et al., Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: an overlooked influence. Carbon 99, 338–347 (2016). https://doi.org/10.1016/j.carbon.2015.12.044
- M. Park, S. Wu, I.J. Lopez, J.Y. Chang, T. Karanfil et al., Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 170, 115364 (2020). https://doi.org/10.1016/j.watres.2019.115364
- H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou et al., A flexible electromagnetic wave-electricity harvester. Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
- Y. Wei, C.Q. Jia, Intrinsic wettability of graphitic carbon. Carbon 87, 10–17 (2015). https://doi.org/10.1016/j.carbon.2015.02.019
- X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
- H.L. Lv, Y.H. Guo, G.L. Wu, Y. Zhao, G.B. Ji et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660 (2017). https://doi.org/10.1021/acsami.6b16223
- J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng et al., Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2020.100486
- X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu et al., Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 86, 171 (2021). https://doi.org/10.1016/j.jmst.2021.02.009
- S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020). https://doi.org/10.1002/smll.201906668
- M.S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
- C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi et al., Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11, 22590 (2019). https://doi.org/10.1039/c9nr06022g
- H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang et al., A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 5, 491–512 (2017). https://doi.org/10.1039/C6TC03026B
- H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30, 1907251 (2020). https://doi.org/10.1002/adfm.201907251
- H. Lv, Y. Li, Z. Jia, L. Wang, X. Guo et al., Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos. Part B-Eng. 196, 108122 (2020). https://doi.org/10.1016/j.compositesb.2020.108122
- S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
- L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang et al., Wire-in-tube ZnO@carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, 122860 (2020). https://doi.org/10.1016/j.cej.2019.122860
- H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11, 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei et al., Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035
- Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid Interface Sci. 589, 462–471 (2021). https://doi.org/10.1016/j.jcis.2021.01.013
- X. Zhao, J. Yan, Y. Huang, X. Liu, L. Ding et al., Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 595, 78–87 (2021). https://doi.org/10.1016/j.jcis.2021.03.109
- C. Jin, Q. Yao, J. Li, B. Fan, Q. Sun et al., Fabrication, superhydrophobicity, and microwave absorbing properties of the magnetic gamma-Fe2O3/bamboo composites. Mater. Des. 85, 205–210 (2015). https://doi.org/10.1016/j.matdes.2015.07.016
- I. Usov, G. Nyström, J. Adamcik, S. Handschin, C. Schütz et al., Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 6, 7564 (2015). https://doi.org/10.1038/ncomms8564
- K. Li, S. Jin, Y. Zhou, J. Luo, J. Li et al., Bioins[ired interface design of multifunctional soy protein-based biomaterials with excellent mechanical strength and UV-blocking performance. Compos. Part B-Eng. 224, 109187 (2021). https://doi.org/10.1016/j.compositesb.2021.109187
- R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
- X. Xiao, B. Chen, A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ. Sci. Technol. 51, 5473–5482 (2017). https://doi.org/10.1021/acs.est.6b06300
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- H. Muramatsu, Y.A. Kim, K.-S. Yang, R. Cruz-Silva, I. Toda et al., Rice husk-derived graphene with nano-sized domains and clean edges. Small 10, 2766–2770 (2014). https://doi.org/10.1002/smll.201400017
- A. Manjavacas, R. Fenollosa, I. Rodriguez, M. Jiménez, M. Miranda et al., Magnetic light and forbidden photochemistry: the case of singlet oxygen. J. Mater. Chem. C 5, 11824–11831 (2017). https://doi.org/10.1039/C7TC04130F
- M. Li, D. Liu, D. Wei, X. Song, D. Wei et al., Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications. Adv. Sci. 3, 1600003 (2016). https://doi.org/10.1002/advs.201600003
- R. Shu, Z. Wan, J. Zhang, Y. Wu, J. Shi, Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance. Compos. Sci. Technol. 210, 108818 (2021). https://doi.org/10.1016/j.compscitech.2021.108818
- N. Li, R. Shu, J. Zhang, Y. Wu, Synthesis of ultralight three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite composite aerogel for highly efficient electromagnetic wave absorption. J. Colloid Interface Sci. 596, 364–375 (2021). https://doi.org/10.1016/j.jcis.2021.03.143
- J. He, S. Gao, Y. Zhang, H. Li, Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity. J. Alloy. Compd. 874, 159878 (2021). https://doi.org/10.1016/j.jallcom.2021.159878
- X. Tian, Y. Wang, F. Peng, F. Huang, W. Tian et al., Defect-enhanced electromagnetic wave absorption property of hierarchical graphite capsules@helical carbon nanotube hybrid nanocomposites. ACS Appl. Mater. Interfaces 13, 28710–28720 (2021). https://doi.org/10.1021/acsami.1c06871
- Q. Sun, X. Zhang, R. Liu, S. Shen, F. Wu et al., Tuning the dielectric and microwaves absorption properties of N-doped carbon nanotubes by boron insertion. Nanomaterials 11, 1164 (2021). https://doi.org/10.3390/nano11051164
- Y. Qin, M. Wang, W. Gao, S. Liang, Rationally designed structure of mesoporous carbon hollow microspheres to acquire excellent microwave absorption performance. RSC Adv. 11, 14787–14795 (2021). https://doi.org/10.1039/D1RA00465D
- X.-J. Zhang, G.-S. Wang, W.-Q. Cao, Y.-Z. Wei, M.-S. Cao et al., Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties. RSC Adv. 4, 19594–19601 (2014). https://doi.org/10.1039/C4RA02040E
- Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175, 101–111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
- M. Liu, X. Yang, W. Shao, T. Wu, R. Ji et al., Superior microwave absorbing properties of O, S, N codoped carbon planar helixes via carbonization of polypyrrole spiral nanowires. Carbon 174, 625–637 (2021). https://doi.org/10.1016/j.carbon.2020.11.093
- M. Zhang, C. Han, W. Cao, M. Cao, H. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
- Z. Jia, Z. Gao, A. Feng, Y. Zhang, C. Zhang et al., Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. B 176, 107246 (2019). https://doi.org/10.1016/j.compositesb.2019.107246
- Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11, 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
- M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, 1907156 (2020). https://doi.org/10.1002/adma.201907156
- Y. Zhou, S. Wang, D. Li, L. Jiang, Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. B 213, 108701 (2021). https://doi.org/10.1016/j.compositesb.2021.108701
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- J. Shu, X. Huang, M. Cao, Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 174, 638–646 (2021). https://doi.org/10.1016/j.carbon.2020.11.087
- J. Shu, W. Cao, M. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31, 2100470 (2021). https://doi.org/10.1002/adfm.202100470
References
F. Qi, L. Wang, Y. Zhang, Z. Ma, H. Qiu et al., Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation. Mater. Today Phys. 21, 100512 (2021). https://doi.org/10.1016/j.mtphys.2021.100512
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
X. Huang, M. Qiao, X. Lu, Y. Li, Y. Ma et al., Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3327-x
B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao et al., From intrinsic dielectric loss to geometry patterns: dual-principles strategy for ultrabroad band microwave absorption. Nano Res. 14, 1495 (2021). https://doi.org/10.1007/s12274-020-3208-8
C. Zhang, W.K. Cao, L.T. Wu, J.C. Ke, Q. Cheng, A reconfigurable active acoustic metalens. Appl. Phys. Lett. 118, 133502 (2021). https://doi.org/10.1063/5.0045024
P. He, M. Cao, W. Cao, J. Yuan, Developing MXenes from wireless communication to electromagnetic attenuation. Nano-Micro Lett. 13, 115 (2021). https://doi.org/10.1007/s40820-021-00645-z
Z. Lou, Q. Wang, Y. Zhang, X. Zhou, R. Li et al., In-situ formation of low-dimensional, magnetic core-shell nanocrystal for electromagnetic dissipation. Compos. Part B-Eng. 214, 108744 (2021). https://doi.org/10.1016/j.compositesb.2021.108744
J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
P. Song, B. Liu, H. Qiu, X. Shi, D. Cao et al., MXenes for polymer matrix electromagnetic interference shielding composites: a review. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2021.100653
C. Zhang, S. Yin, C. Long, B.W. Dong, D.P. He et al., Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt. Express 9, 14078 (2021). https://doi.org/10.1364/OE.423245
X. Zhao, J. Yan, Y. Huang, X. Liu, L. Ding et al., Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 595, 78–87 (2021). https://doi.org/10.1016/j.jcis.2021.03.109
H.L. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao et al., A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163
J. Wen, X. Li, G. Chen, Z. Wang, X. Zhou et al., Controllable adjustment of cavity of core-shelled Co3O4@ NiCo2O4 composites via facile etching and deposition for electromagnetic wave absorption. J. Colloid Interface Sci. 594, 424–434 (2021). https://doi.org/10.1016/j.jcis.2021.03.056
J. Liu, L. Zhang, H. Wu, D. Zang, Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co (OH) F/Zn0.76Co0.24S/Co3S4 composite. Chem. Eng. J. 411, 128601 (2021). https://doi.org/10.1016/j.cej.2021.128601
C. Zhang, B. Liu, W. Li, X. Liu, K. Wang et al., A well-designed honeycomb Co3O4@CdS photocatalyst derived from cobalt foam for high-efficiency visible-light H2 evolution. J. Mater. Chem. A 9, 11665–11673 (2021). https://doi.org/10.1039/D0TA11433B
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi et al., Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014). https://doi.org/10.1002/adma.201400108
H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
P. Liu, S. Gao, Y. Wang, F. Zhou, Y. Huang et al., Metal-organic polymer coordination materials derived Co/N-doped porous carbon composites for frequency-selective microwave absorption. Compos. B 202, 108406 (2020). https://doi.org/10.1016/j.compositesb.2020.108406
J. Yan, Y. Huang, X. Liu, X. Zhao, T. Li et al., Polypyrrole-based composite materials for electromagnetic wave absorption. Polym. Rev. 61, 646–687 (2021). https://doi.org/10.1080/15583724.2020.1870490
C. Zhang, C. Long, Y. Sheng, R.G. Song et al., Graphene-based anisotropic polarization meta-filter. Mater. Design 206, 109768 (2021). https://doi.org/10.1016/j.matdes.2021.19768
H.L. Lv, X.D. Zhou, G.L. Wu, U.I. Kara, X.G. Wang et al., Engineering defects in 2D g-C3N4 for wideband, efficient electromagnetic absorption at elevated temperature. J. Mater. Chem. A 9, 19710 (2021). https://doi.org/10.1039/D1TA02785A
Z. Yang, R. Gao, N. Hu, J. Chai, Y. Cheng et al., The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications. Nano-Micro Lett. 4, 1–9 (2012). https://doi.org/10.1007/BF03353684
S. Gholami, J. Lopez, A. Rezvani, V. Vatanpour, J. Luis Cortina, Fabrication of thin-film nanocomposite nanofiltration membranes incorporated with aromatic amine-functionalized multiwalled carbon nanotubes. Rejection performance of inorganic pollutants from groundwater with improved acid and chlorine resistance. Chem. Eng. J. 384, 123348 (2020). https://doi.org/10.1016/j.cej.2019.123348
H. Korucu, B. Simsek, T. Uygunoglu, A.B. Guvenc, A. Yartasi, Statistical approach to carbon based materials reinforced cementitious composites: mechanical, thermal, electrical and sulfuric acid resistance properties. Compos. B 171, 347–360 (2019). https://doi.org/10.1016/j.compositesb.2019.05.017
X. Zhu, F. Qian, Y. Liu, D. Matera, G. Wu et al., Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: an overlooked influence. Carbon 99, 338–347 (2016). https://doi.org/10.1016/j.carbon.2015.12.044
M. Park, S. Wu, I.J. Lopez, J.Y. Chang, T. Karanfil et al., Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: roles of hydrophobicity of PFAS and carbon characteristics. Water Res. 170, 115364 (2020). https://doi.org/10.1016/j.watres.2019.115364
H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou et al., A flexible electromagnetic wave-electricity harvester. Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9
Y. Wei, C.Q. Jia, Intrinsic wettability of graphitic carbon. Carbon 87, 10–17 (2015). https://doi.org/10.1016/j.carbon.2015.02.019
X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian et al., Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8
H.L. Lv, Y.H. Guo, G.L. Wu, Y. Zhao, G.B. Ji et al., Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces 9, 5660 (2017). https://doi.org/10.1021/acsami.6b16223
J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng et al., Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 24, 100653 (2021). https://doi.org/10.1016/j.coco.2020.100486
X. Li, X. Sheng, Y. Guo, X. Lu, H. Wu et al., Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J. Mater. Sci. Technol. 86, 171 (2021). https://doi.org/10.1016/j.jmst.2021.02.009
S. Gao, G.-S. Wang, L. Guo, S.-H. Yu, Tunable and ultraefficient microwave absorption properties of trace N-doped two-dimensional carbon-based nanocomposites loaded with multi-rare earth oxides. Small 16, 1906668 (2020). https://doi.org/10.1002/smll.201906668
M.S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao et al., Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019). https://doi.org/10.1002/adfm.201807398
C. Liang, P. Song, H. Qiu, Y. Zhang, X. Ma, F. Qi et al., Constructing interconnected spherical hollow conductive networks in silver platelets/reduced graphene oxide foam/epoxy nanocomposites for superior electromagnetic interference shielding effectiveness. Nanoscale 11, 22590 (2019). https://doi.org/10.1039/c9nr06022g
H. Lv, Y. Guo, Z. Yang, Y. Cheng, L.P. Wang et al., A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C 5, 491–512 (2017). https://doi.org/10.1039/C6TC03026B
H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch-driven flexible electromagnetic absorber. Adv. Funct. Mater. 30, 1907251 (2020). https://doi.org/10.1002/adfm.201907251
H. Lv, Y. Li, Z. Jia, L. Wang, X. Guo et al., Exceptionally porous three-dimensional architectural nanostructure derived from CNTs/graphene aerogel towards the ultra-wideband EM absorption. Compos. Part B-Eng. 196, 108122 (2020). https://doi.org/10.1016/j.compositesb.2020.108122
S. Wang, D. Li, Y. Zhou, L. Jiang, Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 14, 8634–8645 (2020). https://doi.org/10.1021/acsnano.0c03013
L. Yan, M. Zhang, S. Zhao, T. Sun, B. Zhang et al., Wire-in-tube ZnO@carbon by molecular layer deposition: accurately tunable electromagnetic parameters and remarkable microwave absorption. Chem. Eng. J. 382, 122860 (2020). https://doi.org/10.1016/j.cej.2019.122860
H. Jiang, L. Huang, Y. Wei, B. Wang, H. Wu et al., Bio-derived hierarchical multicore–shell Fe2N-nanoparticle-impregnated N-doped carbon nanofiber bundles: a host material for lithium-/potassium-ion storage. Nano-Micro Lett. 11, 56 (2019). https://doi.org/10.1007/s40820-019-0290-0
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei et al., Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035
Y. Wang, X. Di, Z. Lu, X. Wu, Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. J. Colloid Interface Sci. 589, 462–471 (2021). https://doi.org/10.1016/j.jcis.2021.01.013
X. Zhao, J. Yan, Y. Huang, X. Liu, L. Ding et al., Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption. J. Colloid Interface Sci. 595, 78–87 (2021). https://doi.org/10.1016/j.jcis.2021.03.109
C. Jin, Q. Yao, J. Li, B. Fan, Q. Sun et al., Fabrication, superhydrophobicity, and microwave absorbing properties of the magnetic gamma-Fe2O3/bamboo composites. Mater. Des. 85, 205–210 (2015). https://doi.org/10.1016/j.matdes.2015.07.016
I. Usov, G. Nyström, J. Adamcik, S. Handschin, C. Schütz et al., Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 6, 7564 (2015). https://doi.org/10.1038/ncomms8564
K. Li, S. Jin, Y. Zhou, J. Luo, J. Li et al., Bioins[ired interface design of multifunctional soy protein-based biomaterials with excellent mechanical strength and UV-blocking performance. Compos. Part B-Eng. 224, 109187 (2021). https://doi.org/10.1016/j.compositesb.2021.109187
R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/C0CS00108B
X. Xiao, B. Chen, A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ. Sci. Technol. 51, 5473–5482 (2017). https://doi.org/10.1021/acs.est.6b06300
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
H. Muramatsu, Y.A. Kim, K.-S. Yang, R. Cruz-Silva, I. Toda et al., Rice husk-derived graphene with nano-sized domains and clean edges. Small 10, 2766–2770 (2014). https://doi.org/10.1002/smll.201400017
A. Manjavacas, R. Fenollosa, I. Rodriguez, M. Jiménez, M. Miranda et al., Magnetic light and forbidden photochemistry: the case of singlet oxygen. J. Mater. Chem. C 5, 11824–11831 (2017). https://doi.org/10.1039/C7TC04130F
M. Li, D. Liu, D. Wei, X. Song, D. Wei et al., Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications. Adv. Sci. 3, 1600003 (2016). https://doi.org/10.1002/advs.201600003
R. Shu, Z. Wan, J. Zhang, Y. Wu, J. Shi, Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance. Compos. Sci. Technol. 210, 108818 (2021). https://doi.org/10.1016/j.compscitech.2021.108818
N. Li, R. Shu, J. Zhang, Y. Wu, Synthesis of ultralight three-dimensional nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes/zinc ferrite composite aerogel for highly efficient electromagnetic wave absorption. J. Colloid Interface Sci. 596, 364–375 (2021). https://doi.org/10.1016/j.jcis.2021.03.143
J. He, S. Gao, Y. Zhang, H. Li, Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity. J. Alloy. Compd. 874, 159878 (2021). https://doi.org/10.1016/j.jallcom.2021.159878
X. Tian, Y. Wang, F. Peng, F. Huang, W. Tian et al., Defect-enhanced electromagnetic wave absorption property of hierarchical graphite capsules@helical carbon nanotube hybrid nanocomposites. ACS Appl. Mater. Interfaces 13, 28710–28720 (2021). https://doi.org/10.1021/acsami.1c06871
Q. Sun, X. Zhang, R. Liu, S. Shen, F. Wu et al., Tuning the dielectric and microwaves absorption properties of N-doped carbon nanotubes by boron insertion. Nanomaterials 11, 1164 (2021). https://doi.org/10.3390/nano11051164
Y. Qin, M. Wang, W. Gao, S. Liang, Rationally designed structure of mesoporous carbon hollow microspheres to acquire excellent microwave absorption performance. RSC Adv. 11, 14787–14795 (2021). https://doi.org/10.1039/D1RA00465D
X.-J. Zhang, G.-S. Wang, W.-Q. Cao, Y.-Z. Wei, M.-S. Cao et al., Fabrication of multi-functional PVDF/RGO composites via a simple thermal reduction process and their enhanced electromagnetic wave absorption and dielectric properties. RSC Adv. 4, 19594–19601 (2014). https://doi.org/10.1039/C4RA02040E
Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma et al., Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon 175, 101–111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
M. Liu, X. Yang, W. Shao, T. Wu, R. Ji et al., Superior microwave absorbing properties of O, S, N codoped carbon planar helixes via carbonization of polypyrrole spiral nanowires. Carbon 174, 625–637 (2021). https://doi.org/10.1016/j.carbon.2020.11.093
M. Zhang, C. Han, W. Cao, M. Cao, H. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2021). https://doi.org/10.1007/s40820-020-00552-9
Z. Jia, Z. Gao, A. Feng, Y. Zhang, C. Zhang et al., Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. B 176, 107246 (2019). https://doi.org/10.1016/j.compositesb.2019.107246
Y. Zhang, X. Wang, M. Cao, Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 11, 1426–1436 (2018). https://doi.org/10.1007/s12274-017-1758-1
M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, 1907156 (2020). https://doi.org/10.1002/adma.201907156
Y. Zhou, S. Wang, D. Li, L. Jiang, Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption. Compos. B 213, 108701 (2021). https://doi.org/10.1016/j.compositesb.2021.108701
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
J. Shu, X. Huang, M. Cao, Assembling 3D flower-like Co3O4-MWCNT architecture for optimizing low-frequency microwave absorption. Carbon 174, 638–646 (2021). https://doi.org/10.1016/j.carbon.2020.11.087
J. Shu, W. Cao, M. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31, 2100470 (2021). https://doi.org/10.1002/adfm.202100470