Mixed-Dimensional Assembly Strategy to Construct Reduced Graphene Oxide/Carbon Foams Heterostructures for Microwave Absorption, Anti-Corrosion and Thermal Insulation
Corresponding Author: Hualiang Lv
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 221
Abstract
Considering the serious electromagnetic wave (EMW) pollution problems and complex application condition, there is a pressing need to amalgamate multiple functionalities within a single substance. However, the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges. Herein, reduced graphene oxide/carbon foams (RGO/CFs) with two-dimensional/three-dimensional (2D/3D) van der Waals (vdWs) heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying, immersing absorption, secondary freeze-drying, followed by carbonization treatment. Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching, the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances, achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of − 50.58 dB with the low matching thicknesses. Furthermore, the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties, good corrosion resistance performances as well as outstanding thermal insulation capabilities, displaying the great potential in complex and variable environments. Accordingly, this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures, but also outlined a powerful mixed-dimensional assembly strategy for engineering multifunctional foams for electromagnetic protection, aerospace and other complex conditions.
Highlights:
1 Reduced graphene oxide/carbon foams (RGO/CFs) vdWs heterostructures are efficiently fabricated via a simple mixed-dimensional assembly strategy.
2 Linkage effect of optimized impedance matching and enhanced dielectric loss abilities endows the excellent microwave absorption performances of RGO/CFs vdWs heterostructures.
3 Multiple functions such as good corrosion resistance performances and outstanding thermal insulation capabilities can be integrated into RGO/CFs vdWs heterostructures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Shu, Y. Wang, M. Cao, PEDOT:PSS-patched magnetic graphene films with tunable dielectric genes for electromagnetic interference shielding and infrared stealth. J. Mater. Sci. Technol. 186, 28–36 (2024). https://doi.org/10.1016/j.jmst.2023.10.046
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like coni/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- H. Lv, J. Cui, B. Li, M. Yuan, J. Liu et al., Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315722
- L. Yao, Y. Wang, J. Zhao, Y. Zhu, M. Cao, Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19(25), 2208101 (2023). https://doi.org/10.1002/smll.202208101
- R. Peymanfar, A. Mirkhan, Biomass-derived materials: promising, affordable, capable, simple, and lightweight microwave absorbing structures. Chem. Eng. J. 446, 136903 (2022). https://doi.org/10.1016/j.cej.2022.136903
- P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
- R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, A. Ghaffari, M.M. Mojtahedi et al., Electromagnetic and optical characteristics of wrinkled ni nanostructure coated on carbon microspheres. Chem. Eng. J. 405, 126985 (2021). https://doi.org/10.1016/j.cej.2020.126985
- Z. Zhang, J. Wang, J. Shang, Y. Xu, Y.J. Wan et al., A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small 19(4), 2205716 (2022). https://doi.org/10.1002/smll.202205716
- L. Xiang, A.K. Darboe, Z. Luo, X. Qi, J.-J. Shao et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 6, 215 (2023). https://doi.org/10.1007/s42114-023-00793-3
- Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
- Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
- Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
- J. Yan, Z. Ye, W. Chen, P. Liu, Y. Huang, Metal Mo and nonmetal N, S co-doped 3D flowers-like porous carbon framework for efficient electromagnetic wave absorption. Carbon 216, 118563 (2024). https://doi.org/10.1016/j.carbon.2023.118563
- M. Zhang, C. Han, W. Cao, M. Cao, H. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
- B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33(34), 2302172 (2023). https://doi.org/10.1002/adfm.202302172
- P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34(10), 2311983 (2023). https://doi.org/10.1002/adfm.202311983
- S. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50(8), 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
- H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2021). https://doi.org/10.1002/adfm.202108194
- J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2021). https://doi.org/10.1002/adma.202106195
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- S. Wang, X. Zhang, S. Hao, J. Qiao, Z. Wang et al., Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 16(1), 16 (2023). https://doi.org/10.1007/s40820-023-01244-w
- S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15(1), 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
- X. Tang, C. Liu, X. Chen, Y. Deng, X. Chen et al., Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes. Carbon 146, 147–154 (2019). https://doi.org/10.1016/j.carbon.2019.01.096
- Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
- X. Chen, M. Zhou, Y. Zhao, W. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 24(13), 5280–5290 (2022). https://doi.org/10.1039/d2gc01604d
- W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
- R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloys Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
- C. Wei, M. He, M. Li, X. Ma, W. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023). https://doi.org/10.1016/j.mtphys.2023.101142
- L. He, F. Weniger, H. Neumann, M. Beller, Synthesis, characterization, and application of metal nanops supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem. Int. Ed. 55(41), 12582–12594 (2016). https://doi.org/10.1002/anie.201603198
- J. Tao, L. Xu, C. Pei, Y. Gu, Y. He et al., Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 33(8), 2211996 (2022). https://doi.org/10.1002/adfm.202211996
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like pan/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
- X. Jiang, X. Zeng, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanops for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023). https://doi.org/10.26599/jac.2023.9220772
- Z. Wu, X. Tan, J. Wang, Y. Xing, P. Huang et al., MXene hollow spheres supported by a C-Co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 16, 107 (2024). https://doi.org/10.1007/s40820-024-01326-3
- X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
- M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci (Weinh) 9(10), e2105553 (2022). https://doi.org/10.1002/advs.202105553
- X. Zhang, K. Qian, J. Fang, S. Thaiboonrod, M. Miao et al., Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Res. 17(3), 2038–2049 (2023). https://doi.org/10.1007/s12274-023-6189-6
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- Q. Liang, L. Wang, X. Qi, Q. Peng, X. Gong et al., Hierarchical engineering of CoNi@air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 147, 37–46 (2023). https://doi.org/10.1016/j.jmst.2022.10.069
- T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
- J. Yan, Y. Wang, W. Liu, P. Liu, W. Chen, Two-dimensional metal organic framework derived nitrogen-doped graphene-like carbon nanomesh toward efficient electromagnetic wave absorption. J. Colloid Interface Sci. 643, 318–327 (2023). https://doi.org/10.1016/j.jcis.2023.04.040
- W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12(25), 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
- Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
- J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong et al., Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 431, 134284 (2022). https://doi.org/10.1016/j.cej.2021.134284
- Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou et al., Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021). https://doi.org/10.1016/j.cej.2021.129781
- T. Li, D. Zhi, Y. Chen, B. Li, Z. Zhou et al., Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 13(2), 477–484 (2020). https://doi.org/10.1007/s12274-020-2632-0
- X. Huang, X. Liu, Y. Zhang, J. Zhou, G. Wu et al., Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 147, 16–25 (2023). https://doi.org/10.1016/j.jmst.2022.12.001
- H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei et al., Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035
- D. Zhi, T. Li, Z. Qi, J. Li, Y. Tian et al., Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 433, 134496 (2022). https://doi.org/10.1016/j.cej.2022.134496
- T. Zhao, Z. Jia, J. Liu, Y. Zhang, G. Wu et al., Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 16, 6 (2023). https://doi.org/10.1007/s40820-023-01212-4
- A. Feng, D. Lan, J. Liu, G. Wu, Z. Jia, Dual strategy of a-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J. Mater. Sci. Technol. 180, 1–11 (2024). https://doi.org/10.1016/j.jmst.2023.08.060
- K. Qian, S. Li, J. Fang, Y. Yang, S. Cao et al., C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 127, 71–77 (2022). https://doi.org/10.1016/j.jmst.2022.03.022
- L. Yu, Q. Zhu, Z. Guo, Y. Cheng, Z. Jia et al., Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 170, 129–139 (2024). https://doi.org/10.1016/j.jmst.2023.06.024
- H. Lv, Y. Yao, S. Li, G. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023). https://doi.org/10.1038/s41467-023-37436-6
- S.H. Kim, S.Y. Lee, Y. Zhang, S.J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10(32), 2303104 (2023). https://doi.org/10.1002/advs.202303104
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
- Y. Li, Y. Qing, Y. Zhang, H. Xu, Simultaneously tuning structural defects and crystal phase in accordion-like TixO2x-1 derived from Ti3C2Tx MXene for enhanced electromagnetic attenuation. J. Adv. Ceram. 12(10), 1946–1960 (2023). https://doi.org/10.26599/jac.2023.9220799
- X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023). https://doi.org/10.1002/smll.202303393
- J. Zhou, D. Lan, F. Zhang, Y. Cheng, Z. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 19(52), 2304932 (2023). https://doi.org/10.1002/smll.202304932
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- Z. Guo, P. Ren, J. Wang, X. Hou, J. Tang et al., Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 451, 138667 (2023). https://doi.org/10.1016/j.cej.2022.138667
References
J. Shu, Y. Wang, M. Cao, PEDOT:PSS-patched magnetic graphene films with tunable dielectric genes for electromagnetic interference shielding and infrared stealth. J. Mater. Sci. Technol. 186, 28–36 (2024). https://doi.org/10.1016/j.jmst.2023.10.046
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like coni/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
H. Lv, J. Cui, B. Li, M. Yuan, J. Liu et al., Insights into civilian electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315722
L. Yao, Y. Wang, J. Zhao, Y. Zhu, M. Cao, Multifunctional nanocrystalline-assembled porous hierarchical material and device for integrating microwave absorption, electromagnetic interference shielding, and energy storage. Small 19(25), 2208101 (2023). https://doi.org/10.1002/smll.202208101
R. Peymanfar, A. Mirkhan, Biomass-derived materials: promising, affordable, capable, simple, and lightweight microwave absorbing structures. Chem. Eng. J. 446, 136903 (2022). https://doi.org/10.1016/j.cej.2022.136903
P. Liu, S. Gao, Y. Wang, Y. Huang, W. He et al., Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653
R. Peymanfar, A. Ahmadi, E. Selseleh-Zakerin, A. Ghaffari, M.M. Mojtahedi et al., Electromagnetic and optical characteristics of wrinkled ni nanostructure coated on carbon microspheres. Chem. Eng. J. 405, 126985 (2021). https://doi.org/10.1016/j.cej.2020.126985
Z. Zhang, J. Wang, J. Shang, Y. Xu, Y.J. Wan et al., A through-thickness arrayed carbon fibers elastomer with horizontal segregated magnetic network for highly efficient thermal management and electromagnetic wave absorption. Small 19(4), 2205716 (2022). https://doi.org/10.1002/smll.202205716
L. Xiang, A.K. Darboe, Z. Luo, X. Qi, J.-J. Shao et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 6, 215 (2023). https://doi.org/10.1007/s42114-023-00793-3
Y. Wu, Y. Zhao, M. Zhou, S. Tan, R. Peymanfar et al., Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 14, 171 (2022). https://doi.org/10.1007/s40820-022-00906-5
Z. Wu, H.W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, 2107538 (2022). https://doi.org/10.1002/adma.202107538
Y. Wang, Y. Yang, M. Miao, X. Feng, Carbon nanotube arrays@cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption. Mater. Today Phys. 35, 101110 (2023). https://doi.org/10.1016/j.mtphys.2023.101110
J. Yan, Z. Ye, W. Chen, P. Liu, Y. Huang, Metal Mo and nonmetal N, S co-doped 3D flowers-like porous carbon framework for efficient electromagnetic wave absorption. Carbon 216, 118563 (2024). https://doi.org/10.1016/j.carbon.2023.118563
M. Zhang, C. Han, W. Cao, M. Cao, H. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13, 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33(34), 2302172 (2023). https://doi.org/10.1002/adfm.202302172
P. Wu, X. Kong, Y. Feng, W. Ding, Z. Sheng et al., Phase engineering on amorphous/crystalline γ-Fe2O3 nanosheets for boosting dielectric loss and high-performance microwave absorption. Adv. Funct. Mater. 34(10), 2311983 (2023). https://doi.org/10.1002/adfm.202311983
S. Seyedian, A. Ghaffari, A. Mirkhan, G. Ji, S. Tan et al., Manipulating the phase and morphology of MgFe2O4 nanops for promoting their optical, magnetic, and microwave absorbing/shielding characteristics. Ceram. Int. 50(8), 13447–13458 (2024). https://doi.org/10.1016/j.ceramint.2024.01.257
H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 32(6), 2108194 (2021). https://doi.org/10.1002/adfm.202108194
J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2021). https://doi.org/10.1002/adma.202106195
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
S. Wang, X. Zhang, S. Hao, J. Qiao, Z. Wang et al., Nitrogen-doped magnetic-dielectric-carbon aerogel for high-efficiency electromagnetic wave absorption. Nano-Micro Lett. 16(1), 16 (2023). https://doi.org/10.1007/s40820-023-01244-w
S. Zhang, X. Liu, C. Jia, Z. Sun, H. Jiang et al., Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics. Nano-Micro Lett. 15(1), 204 (2023). https://doi.org/10.1007/s40820-023-01179-2
X. Tang, C. Liu, X. Chen, Y. Deng, X. Chen et al., Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes. Carbon 146, 147–154 (2019). https://doi.org/10.1016/j.carbon.2019.01.096
Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
X. Chen, M. Zhou, Y. Zhao, W. Gu, Y. Wu et al., Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chem. 24(13), 5280–5290 (2022). https://doi.org/10.1039/d2gc01604d
W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen et al., Environmentally friendly and multifunctional shaddock peel-based carbon aerogel for thermal-insulation and microwave absorption. Nano-Micro Lett. 13(1), 102 (2021). https://doi.org/10.1007/s40820-021-00635-1
R. Peymanfar, E. Selseleh-Zakerin, A. Ahmadi, Tailoring energy band gap and microwave absorbing features of graphite-like carbon nitride (g-C3N4). J. Alloys Compd. 867, 159039 (2021). https://doi.org/10.1016/j.jallcom.2021.159039
C. Wei, M. He, M. Li, X. Ma, W. Dang et al., Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 36, 101142 (2023). https://doi.org/10.1016/j.mtphys.2023.101142
L. He, F. Weniger, H. Neumann, M. Beller, Synthesis, characterization, and application of metal nanops supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chem. Int. Ed. 55(41), 12582–12594 (2016). https://doi.org/10.1002/anie.201603198
J. Tao, L. Xu, C. Pei, Y. Gu, Y. He et al., Catfish effect induced by anion sequential doping for microwave absorption. Adv. Funct. Mater. 33(8), 2211996 (2022). https://doi.org/10.1002/adfm.202211996
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like pan/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
X. Jiang, X. Zeng, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanops for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023). https://doi.org/10.26599/jac.2023.9220772
Z. Wu, X. Tan, J. Wang, Y. Xing, P. Huang et al., MXene hollow spheres supported by a C-Co exoskeleton grow MWCNTs for efficient microwave absorption. Nano-Micro Lett. 16, 107 (2024). https://doi.org/10.1007/s40820-024-01326-3
X. Huang, G. Yu, Y. Zhang, M. Zhang, G. Shao, Design of cellular structure of graphene aerogels for electromagnetic wave absorption. Chem. Eng. J. 426, 131894 (2021). https://doi.org/10.1016/j.cej.2021.131894
M. Qin, L. Zhang, H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci (Weinh) 9(10), e2105553 (2022). https://doi.org/10.1002/advs.202105553
X. Zhang, K. Qian, J. Fang, S. Thaiboonrod, M. Miao et al., Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Res. 17(3), 2038–2049 (2023). https://doi.org/10.1007/s12274-023-6189-6
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29(10), 1807624 (2019). https://doi.org/10.1002/adfm.201807624
Q. Liang, L. Wang, X. Qi, Q. Peng, X. Gong et al., Hierarchical engineering of CoNi@air@C/SiO2@polypyrrole multicomponent nanocubes to improve the dielectric loss capability and magnetic-dielectric synergy. J. Mater. Sci. Technol. 147, 37–46 (2023). https://doi.org/10.1016/j.jmst.2022.10.069
T. Hou, Z. Jia, Y. Dong, X. Liu, G. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 431, 133919 (2022). https://doi.org/10.1016/j.cej.2021.133919
J. Yan, Y. Wang, W. Liu, P. Liu, W. Chen, Two-dimensional metal organic framework derived nitrogen-doped graphene-like carbon nanomesh toward efficient electromagnetic wave absorption. J. Colloid Interface Sci. 643, 318–327 (2023). https://doi.org/10.1016/j.jcis.2023.04.040
W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12(25), 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
Z. Wu, K. Tian, T. Huang, W. Hu, F. Xie et al., Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance. ACS Appl. Mater. Interfaces 10(13), 11108–11115 (2018). https://doi.org/10.1021/acsami.7b17264
J. Cheng, L. Cai, Y. Shi, F. Pan, Y. Dong et al., Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 431, 134284 (2022). https://doi.org/10.1016/j.cej.2021.134284
Y. Tian, D. Estevez, H. Wei, M. Peng, L. Zhou et al., Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 421, 129781 (2021). https://doi.org/10.1016/j.cej.2021.129781
T. Li, D. Zhi, Y. Chen, B. Li, Z. Zhou et al., Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 13(2), 477–484 (2020). https://doi.org/10.1007/s12274-020-2632-0
X. Huang, X. Liu, Y. Zhang, J. Zhou, G. Wu et al., Construction of NiCeOx nanosheets-skeleton cross-linked by carbon nanotubes networks for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 147, 16–25 (2023). https://doi.org/10.1016/j.jmst.2022.12.001
H. Zhao, Y. Cheng, Z. Zhang, B. Zhang, C. Pei et al., Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 173, 501–511 (2021). https://doi.org/10.1016/j.carbon.2020.11.035
D. Zhi, T. Li, Z. Qi, J. Li, Y. Tian et al., Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation. Chem. Eng. J. 433, 134496 (2022). https://doi.org/10.1016/j.cej.2022.134496
T. Zhao, Z. Jia, J. Liu, Y. Zhang, G. Wu et al., Multiphase interfacial regulation based on hierarchical porous molybdenum selenide to build anticorrosive and multiband tailorable absorbers. Nano-Micro Lett. 16, 6 (2023). https://doi.org/10.1007/s40820-023-01212-4
A. Feng, D. Lan, J. Liu, G. Wu, Z. Jia, Dual strategy of a-site ion substitution and self-assembled MoS2 wrapping to boost permittivity for reinforced microwave absorption performance. J. Mater. Sci. Technol. 180, 1–11 (2024). https://doi.org/10.1016/j.jmst.2023.08.060
K. Qian, S. Li, J. Fang, Y. Yang, S. Cao et al., C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 127, 71–77 (2022). https://doi.org/10.1016/j.jmst.2022.03.022
L. Yu, Q. Zhu, Z. Guo, Y. Cheng, Z. Jia et al., Unique electromagnetic wave absorber for three-dimensional framework engineering with copious heterostructures. J. Mater. Sci. Technol. 170, 129–139 (2024). https://doi.org/10.1016/j.jmst.2023.06.024
H. Lv, Y. Yao, S. Li, G. Wu, B. Zhao et al., Staggered circular nanoporous graphene converts electromagnetic waves into electricity. Nat. Commun. 14, 1982 (2023). https://doi.org/10.1038/s41467-023-37436-6
S.H. Kim, S.Y. Lee, Y. Zhang, S.J. Park, J. Gu, Carbon-based radar absorbing materials toward stealth technologies. Adv. Sci. 10(32), 2303104 (2023). https://doi.org/10.1002/advs.202303104
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202313544
Y. Li, Y. Qing, Y. Zhang, H. Xu, Simultaneously tuning structural defects and crystal phase in accordion-like TixO2x-1 derived from Ti3C2Tx MXene for enhanced electromagnetic attenuation. J. Adv. Ceram. 12(10), 1946–1960 (2023). https://doi.org/10.26599/jac.2023.9220799
X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023). https://doi.org/10.1002/smll.202303393
J. Zhou, D. Lan, F. Zhang, Y. Cheng, Z. Jia et al., Self-assembled MoS2 cladding for corrosion resistant and frequency-modulated electromagnetic wave absorption materials from X-band to Ku-band. Small 19(52), 2304932 (2023). https://doi.org/10.1002/smll.202304932
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14(1), 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
Z. Guo, P. Ren, J. Wang, X. Hou, J. Tang et al., Methylene blue adsorption derived thermal insulating N, S-co-doped TiC/carbon hybrid aerogel for high-efficient absorption-dominant electromagnetic interference shielding. Chem. Eng. J. 451, 138667 (2023). https://doi.org/10.1016/j.cej.2022.138667