Self-Healing Liquid Metal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 79
Abstract
Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli. However, their applications are limited by challenges in terms of issues in biocompatibility, custom shape, and self-healing. Herein, a conductive, stretchable, adaptable, self-healing, and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol (PVA) with sodium tetraborate. The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion. Significantly, owing to the magnetic constituent, the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation. The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions. Additionally, the multifunctional hydrogel displays absorption-dominated electromagnetic interference (EMI) shielding properties. The total shielding performance of the composite hydrogel increases to ~ 62.5 dB from ~ 31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm. The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices.
Highlights:
1 A conductive, stretchable, adaptable, and self-healing, GaInSn/Ni--based composite hydrogel by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol with sodium tetraborate.
2 The multifunctional composite hydrogels showed outstanding performance for magnetic repair movement sensing, and EMI shielding.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 (2019). https://doi.org/10.1002/adfm.201901370
- T. Daeneke, K. Khoshmanesh, N. Mahmood, I.A. de Castro, D. Esrafilzadeh et al., Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018). https://doi.org/10.1039/C7CS00043J
- N. Kazem, T. Hellebrekers, C. Majidi, Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017). https://doi.org/10.1002/adma.201605985
- S. Liu, D.S. Shah, R. Kramer-Bottiglio, Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20, 851–858 (2021). https://doi.org/10.1038/s41563-021-00921-8
- J. Wang, G. Cai, S. Li, D. Gao, J. Xiong et al., Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal ps. Adv. Mater. 30, 1706157 (2018). https://doi.org/10.1002/adma.201706157
- E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7
- A. Zavabeti, T. Daeneke, A.F. Chrimes, A.P. O’Mullane, J. Zhen Ou et al., Ionic imbalance induced self-propulsion of liquid metals. Nat. Commun. 7, 12402 (2016). https://doi.org/10.1038/ncomms12402
- J. Zhang, Y. Yao, L. Sheng, J. Liu, Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27, 2648–2655 (2015). https://doi.org/10.1002/adma.201405438
- B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun et al., Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 11, 7440–7446 (2017). https://doi.org/10.1021/acsnano.7b03818
- Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu et al., A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 10, 1854–1861 (2017). https://doi.org/10.1039/C7EE01798G
- K. Khoshmanesh, S.Y. Tang, J.Y. Zhu, S. Schaefer, A. Mitchell et al., Liquid metal enabled microfluidics. Lab on Chip 17, 974–993 (2017). https://doi.org/10.1039/C7LC00046D
- C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27, 1605630 (2017). https://doi.org/10.1002/adfm.201605630
- X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 (2019). https://doi.org/10.1038/s41467-019-11466-5
- M.J. Ford, D.K. Patel, C. Pan, S. Bergbreiter et al., Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv. Mater. 32, 2002929 (2020). https://doi.org/10.1002/adma.202002929
- Y. Gao, H. Ota, E.W. Schaler, K. Chen, A. Zhao et al., Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 29, 1701985 (2017). https://doi.org/10.1002/adma.201701985
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
- Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
- B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/D1TA00417D
- Z. Lin, J. Liu, W. Peng, Y. Zhu, Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu et al., Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32, 2108336 (2022). https://doi.org/10.1002/adfm.202108336
- Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang et al., Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 136, 105957 (2020). https://doi.org/10.1016/j.compositesa.2020.105957
- D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan et al., A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 7, 2000177 (2020). https://doi.org/10.1002/advs.202000177
- R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
- B. Yao, X. Xu, H. Li, Z. Han, J. Hao et al., Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 410, 128288 (2021). https://doi.org/10.1016/j.cej.2020.128288
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, 1907499 (2020). https://doi.org/10.1002/adma.201907499
- Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022). https://doi.org/10.1007/s40820-021-00766-5
- F.W. Huang, Q.C. Yang, L.C. Jia, D.X. Yan, Z.M. Li, Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chem. Eng. J. 426, 131288 (2021). https://doi.org/10.1016/j.cej.2021.131288
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
- Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
- S. Sun, L.B. Mao, Z. Lei, S.H. Yu, H. Cölfen, Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics.” Angew. Chem. Int. Ed. 55, 11765–11769 (2016). https://doi.org/10.1002/anie.201602849
- Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10, 3429 (2019). https://doi.org/10.1038/s41467-019-11364-w
- Z. Jiang, B. Diggle, I.C.G. Shackleford, L.A. Connal, Tough, self-healing hydrogels capable of ultrafast shape changing. Adv. Mater. 31, 1904956 (2019). https://doi.org/10.1002/adma.201904956
- Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31, 2104536 (2021). https://doi.org/10.1002/adfm.202104536
- J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, 2106253 (2022). https://doi.org/10.1002/adma.202106253
- J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34, 2109904 (2022). https://doi.org/10.1002/adma.202109904
- J. Wei, C. Zhu, Z. Zeng, F. Pan, F. Wan et al., Bioinspired cellulose-integrated mxene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 1, 495–506 (2022). https://doi.org/10.1002/idm2.12026
- Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
- W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
- X. Luo, L. Zhu, Y.C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on mxene/pva hydrogel. Adv. Funct. Mater. 31, 2104928 (2021). https://doi.org/10.1002/adfm.202104928
- M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/Ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11, 2002832 (2021). https://doi.org/10.1002/aenm.202002832
- R. Guo, X. Sun, B. Yuan, H. Wang, J. Liu, Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. 6, 1901478 (2019). https://doi.org/10.1002/advs.201901478
- F. Hoshyargar, J. Crawford, A.P. O’Mullane, Galvanic replacement of the liquid metal galinstan. J. Am. Chem. Soc. 139, 1464–1471 (2017). https://doi.org/10.1021/jacs.6b05957
- W. Zhang, J.Z. Ou, S.Y. Tang, V. Sivan, D.D. Yao et al., Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24, 3799–3807 (2014). https://doi.org/10.1002/adfm.201304064
- A. Petitmangin, B. Gallas, C. Hebert, J. Perrière, L. Binet et al., Characterization of oxygen deficient gallium oxide films grown by pld. Appl. Surf. Sci. 278, 153–157 (2013). https://doi.org/10.1016/j.apsusc.2012.10.136
- D. Kim, P. Thissen, G. Viner, D.W. Lee, W. Choi et al., Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl. Mater. Interfaces 5, 179–185 (2013). https://doi.org/10.1021/am302357t
- R. Ricciardi, F. Auriemma, C. De Rosa, F. Lauprêtre, X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37, 1921–1927 (2004). https://doi.org/10.1021/ma035663q
- W. Kong, Z. Wang, M. Wang, K.C. Manning, A. Uppal et al., Oxide-mediated formation of chemically stable tungsten–liquid metal mixtures for enhanced thermal interfaces. Adv. Mater. 31, 1904309 (2019). https://doi.org/10.1002/adma.201904309
- Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 30, 1729–1742 (2018). https://doi.org/10.1021/acs.chemmater.8b00008
- H. Fang, J. Wang, L. Li, L. Xu, Y. Wu et al., A novel high-strength poly(ionic liquid)/pva hydrogel dressing for antibacterial applications. Chem. Eng. J. 365, 153–164 (2019). https://doi.org/10.1016/j.cej.2019.02.030
- Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11, 1890–1897 (2018). https://doi.org/10.1039/C8EE00521D
- M.B. Ghasemian, M. Mayyas, S.A. Idrus-Saidi, M.A. Jamal, J. Yang et al., Self-limiting galvanic growth of MnO2 monolayers on a liquid metal—applied to photocatalysis. Adv. Funct. Mater. 29, 1901649 (2019). https://doi.org/10.1002/adfm.201901649
- F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung et al., Viscosity effect on gainsn studied by XPS. Surf. Interface Anal. 36, 981–985 (2004). https://doi.org/10.1002/sia.1817
- L. Ren, N. Cheng, X. Man, D. Qi, Y. Liu et al., General programmable growth of hybrid core–shell nanostructures with liquid metal nanodroplets. Adv. Mater. 33, 2008024 (2021). https://doi.org/10.1002/adma.202008024
- C. Mu, Y. Song, W. Huang, A. Ran, R. Sun et al., Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 28, 1707503 (2018). https://doi.org/10.1002/adfm.201707503
- H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31, 2008006 (2021). https://doi.org/10.1002/adfm.202008006
- Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, 1907411 (2020). https://doi.org/10.1002/adma.201907411
- S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
- M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
- L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
- H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
- Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
- M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, 1907156 (2020). https://doi.org/10.1002/adma.201907156
- Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
- P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic ps for microwave applications. Adv. Mater. 10, 1032–1035 (1998). https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c1032::AID-ADMA1032%3e3.0.CO;2-M
References
B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29, 1901370 (2019). https://doi.org/10.1002/adfm.201901370
T. Daeneke, K. Khoshmanesh, N. Mahmood, I.A. de Castro, D. Esrafilzadeh et al., Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018). https://doi.org/10.1039/C7CS00043J
N. Kazem, T. Hellebrekers, C. Majidi, Soft multifunctional composites and emulsions with liquid metals. Adv. Mater. 29, 1605985 (2017). https://doi.org/10.1002/adma.201605985
S. Liu, D.S. Shah, R. Kramer-Bottiglio, Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20, 851–858 (2021). https://doi.org/10.1038/s41563-021-00921-8
J. Wang, G. Cai, S. Li, D. Gao, J. Xiong et al., Printable superelastic conductors with extreme stretchability and robust cycling endurance enabled by liquid-metal ps. Adv. Mater. 30, 1706157 (2018). https://doi.org/10.1002/adma.201706157
E.J. Markvicka, M.D. Bartlett, X. Huang, C. Majidi, An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 17, 618–624 (2018). https://doi.org/10.1038/s41563-018-0084-7
A. Zavabeti, T. Daeneke, A.F. Chrimes, A.P. O’Mullane, J. Zhen Ou et al., Ionic imbalance induced self-propulsion of liquid metals. Nat. Commun. 7, 12402 (2016). https://doi.org/10.1038/ncomms12402
J. Zhang, Y. Yao, L. Sheng, J. Liu, Self-fueled biomimetic liquid metal mollusk. Adv. Mater. 27, 2648–2655 (2015). https://doi.org/10.1002/adma.201405438
B. Zhang, L. Zhang, W. Deng, L. Jin, F. Chun et al., Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring. ACS Nano 11, 7440–7446 (2017). https://doi.org/10.1021/acsnano.7b03818
Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu et al., A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 10, 1854–1861 (2017). https://doi.org/10.1039/C7EE01798G
K. Khoshmanesh, S.Y. Tang, J.Y. Zhu, S. Schaefer, A. Mitchell et al., Liquid metal enabled microfluidics. Lab on Chip 17, 974–993 (2017). https://doi.org/10.1039/C7LC00046D
C.B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin et al., Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers. Adv. Funct. Mater. 27, 1605630 (2017). https://doi.org/10.1002/adfm.201605630
X. Li, M. Li, J. Xu, J. You, Z. Yang et al., Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation. Nat. Commun. 10, 3514 (2019). https://doi.org/10.1038/s41467-019-11466-5
M.J. Ford, D.K. Patel, C. Pan, S. Bergbreiter et al., Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites. Adv. Mater. 32, 2002929 (2020). https://doi.org/10.1002/adma.202002929
Y. Gao, H. Ota, E.W. Schaler, K. Chen, A. Zhao et al., Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv. Mater. 29, 1701985 (2017). https://doi.org/10.1002/adma.201701985
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14, 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: a review. Adv. Funct. Mater. 30, 2000883 (2020). https://doi.org/10.1002/adfm.202000883
J.C. Shu, M.S. Cao, M. Zhang, X.X. Wang, W.Q. Cao et al., Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission. Adv. Funct. Mater. 30, 1908299 (2020). https://doi.org/10.1002/adfm.201908299
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube–multilayered graphene edge plane core–shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013). https://doi.org/10.1002/adma.201204196
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
Y. Cheng, X. Li, Y. Qin, Y. Fang, G. Liu et al., Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 7, eabj1663 (2021). https://doi.org/10.1126/sciadv.abj1663
B. Zhao, M. Hamidinejad, S. Wang, P. Bai, R. Che et al., Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 9, 8896–8949 (2021). https://doi.org/10.1039/D1TA00417D
Z. Lin, J. Liu, W. Peng, Y. Zhu, Zhao et al., Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano 14(2), 2109–2117 (2020). https://doi.org/10.1021/acsnano.9b08832
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu et al., Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32, 2108336 (2022). https://doi.org/10.1002/adfm.202108336
Z. Wang, J. Ren, R. Liu, X. Sun, D. Huang et al., Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 136, 105957 (2020). https://doi.org/10.1016/j.compositesa.2020.105957
D. Yu, Y. Liao, Y. Song, S. Wang, H. Wan et al., A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport. Adv. Sci. 7, 2000177 (2020). https://doi.org/10.1002/advs.202000177
R. Zhu, Z. Li, G. Deng, Y. Yu, J. Shui et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 92, 106700 (2022). https://doi.org/10.1016/j.nanoen.2021.106700
B. Yao, X. Xu, H. Li, Z. Han, J. Hao et al., Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 410, 128288 (2021). https://doi.org/10.1016/j.cej.2020.128288
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32, 1907499 (2020). https://doi.org/10.1002/adma.201907499
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 29 (2022). https://doi.org/10.1007/s40820-021-00766-5
F.W. Huang, Q.C. Yang, L.C. Jia, D.X. Yan, Z.M. Li, Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chem. Eng. J. 426, 131288 (2021). https://doi.org/10.1016/j.cej.2021.131288
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, eaaf3627 (2017). https://doi.org/10.1126/science.aaf3627
Y. Zhu, J. Liu, T. Guo, J.J. Wang, X. Tang et al., Multifunctional Ti3C2Tx MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15, 1465–1474 (2021). https://doi.org/10.1021/acsnano.0c08830
S. Sun, L.B. Mao, Z. Lei, S.H. Yu, H. Cölfen, Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics.” Angew. Chem. Int. Ed. 55, 11765–11769 (2016). https://doi.org/10.1002/anie.201602849
Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10, 3429 (2019). https://doi.org/10.1038/s41467-019-11364-w
Z. Jiang, B. Diggle, I.C.G. Shackleford, L.A. Connal, Tough, self-healing hydrogels capable of ultrafast shape changing. Adv. Mater. 31, 1904956 (2019). https://doi.org/10.1002/adma.201904956
Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31, 2104536 (2021). https://doi.org/10.1002/adfm.202104536
J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34, 2106253 (2022). https://doi.org/10.1002/adma.202106253
J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34, 2109904 (2022). https://doi.org/10.1002/adma.202109904
J. Wei, C. Zhu, Z. Zeng, F. Pan, F. Wan et al., Bioinspired cellulose-integrated mxene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater. 1, 495–506 (2022). https://doi.org/10.1002/idm2.12026
Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable mxene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 14, 77 (2022). https://doi.org/10.1007/s40820-022-00819-3
W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
X. Luo, L. Zhu, Y.C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on mxene/pva hydrogel. Adv. Funct. Mater. 31, 2104928 (2021). https://doi.org/10.1002/adfm.202104928
M. Salauddin, S.M.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park et al., A novel MXene/Ecoflex nanocomposite-coated fabric as a highly negative and stable friction layer for high-output triboelectric nanogenerators. Adv. Energy Mater. 11, 2002832 (2021). https://doi.org/10.1002/aenm.202002832
R. Guo, X. Sun, B. Yuan, H. Wang, J. Liu, Magnetic liquid metal (Fe-EGaIn) based multifunctional electronics for remote self-healing materials, degradable electronics, and thermal transfer printing. Adv. Sci. 6, 1901478 (2019). https://doi.org/10.1002/advs.201901478
F. Hoshyargar, J. Crawford, A.P. O’Mullane, Galvanic replacement of the liquid metal galinstan. J. Am. Chem. Soc. 139, 1464–1471 (2017). https://doi.org/10.1021/jacs.6b05957
W. Zhang, J.Z. Ou, S.Y. Tang, V. Sivan, D.D. Yao et al., Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 24, 3799–3807 (2014). https://doi.org/10.1002/adfm.201304064
A. Petitmangin, B. Gallas, C. Hebert, J. Perrière, L. Binet et al., Characterization of oxygen deficient gallium oxide films grown by pld. Appl. Surf. Sci. 278, 153–157 (2013). https://doi.org/10.1016/j.apsusc.2012.10.136
D. Kim, P. Thissen, G. Viner, D.W. Lee, W. Choi et al., Recovery of nonwetting characteristics by surface modification of gallium-based liquid metal droplets using hydrochloric acid vapor. ACS Appl. Mater. Interfaces 5, 179–185 (2013). https://doi.org/10.1021/am302357t
R. Ricciardi, F. Auriemma, C. De Rosa, F. Lauprêtre, X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37, 1921–1927 (2004). https://doi.org/10.1021/ma035663q
W. Kong, Z. Wang, M. Wang, K.C. Manning, A. Uppal et al., Oxide-mediated formation of chemically stable tungsten–liquid metal mixtures for enhanced thermal interfaces. Adv. Mater. 31, 1904309 (2019). https://doi.org/10.1002/adma.201904309
Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 30, 1729–1742 (2018). https://doi.org/10.1021/acs.chemmater.8b00008
H. Fang, J. Wang, L. Li, L. Xu, Y. Wu et al., A novel high-strength poly(ionic liquid)/pva hydrogel dressing for antibacterial applications. Chem. Eng. J. 365, 153–164 (2019). https://doi.org/10.1016/j.cej.2019.02.030
Z.Y. Yu, C.C. Lang, M.R. Gao, Y. Chen, Q.Q. Fu et al., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 11, 1890–1897 (2018). https://doi.org/10.1039/C8EE00521D
M.B. Ghasemian, M. Mayyas, S.A. Idrus-Saidi, M.A. Jamal, J. Yang et al., Self-limiting galvanic growth of MnO2 monolayers on a liquid metal—applied to photocatalysis. Adv. Funct. Mater. 29, 1901649 (2019). https://doi.org/10.1002/adfm.201901649
F. Scharmann, G. Cherkashinin, V. Breternitz, C. Knedlik, G. Hartung et al., Viscosity effect on gainsn studied by XPS. Surf. Interface Anal. 36, 981–985 (2004). https://doi.org/10.1002/sia.1817
L. Ren, N. Cheng, X. Man, D. Qi, Y. Liu et al., General programmable growth of hybrid core–shell nanostructures with liquid metal nanodroplets. Adv. Mater. 33, 2008024 (2021). https://doi.org/10.1002/adma.202008024
C. Mu, Y. Song, W. Huang, A. Ran, R. Sun et al., Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Adv. Funct. Mater. 28, 1707503 (2018). https://doi.org/10.1002/adfm.201707503
H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31, 2008006 (2021). https://doi.org/10.1002/adfm.202008006
Q. Wei, S. Pei, X. Qian, H. Liu, Z. Liu et al., Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 32, 1907411 (2020). https://doi.org/10.1002/adma.201907411
S. Gong, X. Sheng, X. Li, M. Sheng, H. Wu et al., A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick–mortar” sandwich structure. Adv. Funct. Mater. 32, 2200570 (2022). https://doi.org/10.1002/adfm.202200570
M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013). https://doi.org/10.1016/j.carbon.2013.04.008
L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2022). https://doi.org/10.1007/s40820-021-00759-4
H. Duan, H. Zhu, J. Gao, D.X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8, 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14, 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
M.S. Cao, X.X. Wang, M. Zhang, W.Q. Cao, X.Y. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32, 1907156 (2020). https://doi.org/10.1002/adma.201907156
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022). https://doi.org/10.1002/adfm.202112294
Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanops suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019). https://doi.org/10.1002/adfm.201901448
P. Toneguzzo, G. Viau, O. Acher, F. Fiévet-Vincent, F. Fiévet, Monodisperse ferromagnetic ps for microwave applications. Adv. Mater. 10, 1032–1035 (1998). https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c1032::AID-ADMA1032%3e3.0.CO;2-M