Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor
Corresponding Author: Hong‑Liang Lu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 206
Abstract
With the rapid development of the Internet of Things, there is a great demand for portable gas sensors. Metal oxide semiconductors (MOS) are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors. However, it is limited by high operating temperature. The current research works are directed towards fabricating high-performance flexible room-temperature (FRT) gas sensors, which are effective in simplifying the structure of MOS-based sensors, reducing power consumption, and expanding the application of portable devices. This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism, performance, flexibility characteristics, and applications. This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors, including pristine MOS, noble metal nanoparticles modified MOS, organic polymers modified MOS, carbon-based materials (carbon nanotubes and graphene derivatives) modified MOS, and two-dimensional transition metal dichalcogenides materials modified MOS. The effect of light-illuminated to improve gas sensing performance is further discussed. Furthermore, the applications and future perspectives of FRT gas sensors are also discussed.
Highlights:
1 Latest progress on flexible room temperature (FRT) gas sensor based on metal oxide semiconductors (MOS) is comprehensively reviewed.
2 FRT gas sensor based on pristine MOS and MOS modified with noble metal nanoparticles, organic polymers, carbon based materials and transition metal dichalcogenide materials are meticulously reviewed.
3 The gas sensing mechanism of MOS chemiresistive gas sensors are introduced and the applications, future perspectives, and challenges of FRT gas sensors are also proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas et al., Health monitoring and management using internet-of-things (IoT) sensing with cloud-based processing: opportunities and challenges. Proc. IEEE Int. Conf. Serv. Comput., New York, NY, USA, 285–292 (2015). https://doi.org/10.1109/Scc.2015.47
- A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Int. Things 1(1), 22–32 (2014). https://doi.org/10.1109/Jiot.2014.2306328
- H. Li, K. Ota, M.X. Dong, Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Network 32(1), 96–101 (2018). https://doi.org/10.1109/Mnet.2018.1700202
- H.S. Ning, Z.O. Wang, Future Internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011). https://doi.org/10.1109/Lcomm.2011.022411.110120
- K.P. Yuan, L.Y. Zhu, J.H. Yang, C.Z. Hang, J.J. Tao et al., Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. J. Colloid Interf. Sci. 568, 81–88 (2020). https://doi.org/10.1016/j.jcis.2020.02.042
- M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
- T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/Nnano.2011.36
- W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
- W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
- T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- X.W. Wang, Y. Gu, Z.P. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
- D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014). https://doi.org/10.1038/Nnano.2014.38
- Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
- S.M. Niu, N. Matsuhisa, L. Beker, J.X. Li, S.H. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
- S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6(2), 219–249 (2019). https://doi.org/10.1039/c8mh01062e
- S. Xu, Y.H. Zhang, L. Jia, K.E. Mathewson, K.I. Jang et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344(6179), 70–74 (2014). https://doi.org/10.1126/science.1250169
- A. Davis, D. Khazanchi, J. Murphy, I. Zigurs, D. Owens, Avatars, people, and virtual worlds: foundations for research in metaverses. J. Assoc. Inf. Syst. 10(2), 90–117 (2009). https://doi.org/10.17705/1jais.00183
- J.D.N. Dionisio, W.G. Burns, R. Gilbert, 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput. Surv. 45(3), 1–38 (2013). https://doi.org/10.1145/2480741.2480751
- S. Ionut-Cristian, D. Dan-Marius, Using inertial sensors to determine head motion-a review. J. Imaging 7(12), 265 (2021). https://doi.org/10.3390/jimaging7120265
- R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34(12–14), 2063–2101 (2000). https://doi.org/10.1016/S1352-2310(99)00460-4
- M. Ehn, J.A. Thornton, E. Kleist, M. Sipila, H. Junninen et al., A large source of low-volatility secondary organic aerosol. Nature 506(7489), 476–479 (2014). https://doi.org/10.1038/nature13032
- N. Dudareva, A. Klempien, J.K. Muhlemann, I. Kaplan, Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198(1), 16–32 (2013). https://doi.org/10.1111/nph.12145
- G. Zeng, C. Wu, Y. Chang, C. Zhou, B.B. Chen et al., Detection and discrimination of volatile organic compounds using a single film bulk acoustic wave resonator with temperature modulation as a multiparameter virtual sensor array. ACS Sens. 4(6), 1524–1533 (2019). https://doi.org/10.1021/acssensors.8b01678
- M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - a review. Atmos. Environ. 140, 117–134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
- J.H. Mo, Y.P. Zhang, Q.J. Xu, J.J. Lamson, R.Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos. Environ. 43(14), 2229–2246 (2009). https://doi.org/10.1016/j.atmosenv.2009.01.034
- X.Y. Zhang, B. Gao, A.E. Creamer, C.C. Cao, Y.C. Li, Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
- M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips et al., Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112(11), 5949–5966 (2012). https://doi.org/10.1021/cr300174a
- C.T. Chang, C.J. Yang, K.H. Huang, J.C. Huang, T.C. Lin, Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Sci. Total Environ. 806, 150552 (2022). https://doi.org/10.1016/j.scitotenv.2021.150552
- L.P. Naeher, M. Brauer, M. Lipsett, J.T. Zelikoff, C.D. Simpson et al., Woodsmoke health effects: a review. Inhal. Toxicol. 19(1), 67–106 (2007). https://doi.org/10.1080/08958370600985875
- D.N. Granger, P.R. Kvietys, Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551 (2015). https://doi.org/10.1016/j.redox.2015.08.020
- M.A. Sidell, Z.H. Chen, B.Z. Huang, T. Chow, S.P. Eckel et al., Ambient air pollution and COVID-19 incidence during four 2020–2021 case surges. Environ. Res. 208, 112758 (2022). https://doi.org/10.1016/j.envres.2022.112758
- Z. Zhang, T. Xue, X. Jin, Effects of meteorological conditions and air pollution on COVID-19 transmission: evidence from 219 Chinese cities. Sci. Total Environ. 741, 140244 (2020). https://doi.org/10.1016/j.scitotenv.2020.140244
- Y.J. Zhu, J.G. Xie, F.M. Huang, L.Q. Cao, Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ. 727, 1604215 (2020). https://doi.org/10.1016/j.scitotenv.2020.138704
- E. Conticini, B. Frediani, D. Caro, Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in northern Italy? Environ. Pollut. 261, 114465 (2020). https://doi.org/10.1016/j.envpol.2020.114465
- W.W. Hu, W.W. Wu, Y.Y. Jian, H. Haick, G.J. Zhang et al., Volatolomics in healthcare and its advanced detection technology. Nano Res. 15, 8185–8213 (2022). https://doi.org/10.1007/s12274-022-4459-3
- W. Miekisch, J.K. Schubert, G.F.E. Noeldge-Schomburg, Diagnostic potential of breath analysis-focus on volatile organic compounds. Clin. Chim. Acta 347(1–2), 25–39 (2004). https://doi.org/10.1016/j.cccn.2004.04.023
- S.M. Aghaei, A. Aasi, S. Farhangdoust, B. Panchapakesan, Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: a DFT study. Appl. Surf. Sci. 536, 147756 (2021). https://doi.org/10.1016/j.apsusc.2020.147756
- A. Amann, B. Costello, W. Miekisch, J. Schubert, B. Buszewski et al., The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 8(3), 034001 (2014). https://doi.org/10.1088/1752-7155/8/3/034001
- D.S. Li, Z.H. Xie, M.J. Qu, Q. Zhang, Y.Q. Fu et al., Virtual sensor array based on Butterworth-van Dyke equivalent model of QCM for selective detection of volatile organic compounds. ACS Appl. Mater. Interfaces 13(39), 47043–47051 (2021). https://doi.org/10.1021/acsami.1c13046
- G. Konvalina, H. Haick, Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47(1), 66–76 (2014). https://doi.org/10.1021/ar400070m
- R. Vishinkin, H. Haick, Nanoscale sensor technologies for disease detection via volatolomics. Small 11(46), 6142–6164 (2015). https://doi.org/10.1002/smll.201501904
- S. Das, M. Pal, Review-non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167(3), 037562 (2020). https://doi.org/10.1149/1945-7111/ab67a6
- X.H. Sun, K. Shao, T. Wang, Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 408(11), 2759–2780 (2016). https://doi.org/10.1007/s00216-015-9200-6
- G.T. Fan, C.L. Yang, C.H. Lin, C.C. Chen, C.H. Shih, Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 120, 386–390 (2014). https://doi.org/10.1016/j.talanta.2013.12.025
- X.T. Xue, L.Y. Zhu, K.P. Yuan, C. Zeng, X.X. Li et al., ZnO branched p-CuxO @n-ZnO heterojunction nanowires for improving acetone gas sensing performance. Sens. Actuat. B Chem. 324, 128729 (2020). https://doi.org/10.1016/j.snb.2020.128729
- K.P. Yuan, C.Y. Wang, L.Y. Zhu, Q. Cao, J.H. Yang et al., Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 12(12), 14095–14104 (2020). https://doi.org/10.1021/acsami.9b18863
- M.Y. Liu, C.Z. Hang, X.F. Zhao, L.Y. Zhu, R.G. Ma et al., Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 87, 106181 (2021). https://doi.org/10.1016/j.nanoen.2021.106181
- S.C. Mukhopadhyay, Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015). https://doi.org/10.1109/Jsen.2014.2370945
- E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9(40), 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
- M.C. McAlpine, H. Ahmad, D.W. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007). https://doi.org/10.1038/nmat1891
- Y. Pang, J.M. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
- E. Comini, Metal oxide nanowire chemical sensors: innovation and quality of life. Mater. Today 19(10), 559–567 (2016). https://doi.org/10.1016/j.mattod.2016.05.016
- S.H. Wu, P.H. Liu, Y. Zhang, H.N. Zhang, X.H. Qin, Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sens. Actuat. B Chem. 252, 697–705 (2017). https://doi.org/10.1016/j.snb.2017.06.062
- W. Li, R. Chen, W. Qi, L. Cai, Y. Sun et al., Reduced graphene oxide/mesoporous ZnO nss hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 4(10), 2809–2818 (2019). https://doi.org/10.1021/acssensors.9b01509
- R. Singh, E. Singh, H.S. Nalwa, Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 7(77), 48597–48630 (2017). https://doi.org/10.1039/c7ra07191d
- E. Abad, S. Zampolli, S. Marco, A. Scorzoni, B. Mazzolai et al., Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens. Actuat. B Chem. 127(1), 2–7 (2007). https://doi.org/10.1016/j.snb.2007.07.007
- S. Shrestha, M. Balachandran, M. Agarwal, V.V. Phoha, K. Varahramyan, A chipless RFID sensor system for cyber centric monitoring applications. IEEE Trans. Microw. Theory Tech. 57(5), 1303–1309 (2009). https://doi.org/10.1109/Tmtt.2009.2017298
- R. Vyas, V. Lakafosis, H. Lee, G. Shaker, L. Yang et al., Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11(12), 3139–3152 (2011). https://doi.org/10.1109/Jsen.2011.2166996
- J.S. Lee, J. Oh, J. Jun, J. Jang, Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9(8), 7783–7790 (2015). https://doi.org/10.1021/acsnano.5b02024
- S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9, 21 (2012). https://doi.org/10.1186/1743-0003-9-21
- T. Wang, Y.L. Guo, P.B. Wan, H. Zhang, X.D. Chen et al., Flexible transparent electronic gas sensors. Small 12(28), 3748–3756 (2016). https://doi.org/10.1002/smll.201601049
- H.Y. Li, C.S. Lee, D.H. Kim, J.H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10(33), 27858–27867 (2018). https://doi.org/10.1021/acsami.8b09169
- Y.S. Xu, L.L. Zheng, C. Yang, W. Zheng, X.H. Liu et al., Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl. Mater. Interfaces 12(18), 20704–20713 (2020). https://doi.org/10.1021/acsami.0c04398
- K. Rui, X. Wang, M. Du, Y. Zhang, Q. Wang et al., Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces 10(3), 2837–2842 (2018). https://doi.org/10.1021/acsami.7b16761
- R. You, D.D. Han, F. Liu, Y.L. Zhang, G. Lu, Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites. Sens. Actuat. B Chem. 277, 114–120 (2018). https://doi.org/10.1016/j.snb.2018.07.179
- C. Han, X. Li, Y. Liu, Y. Tang, M. Liu et al., Flexible all-inorganic room-temperature chemiresistors based on fibrous ceramic substrate and visible-light-powered semiconductor sensing layer. Adv. Sci. 8(23), 2102471 (2021). https://doi.org/10.1002/advs.202102471
- B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
- C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Appl. Surf. Sci. 405, 405–411 (2017). https://doi.org/10.1016/j.apsusc.2017.01.301
- M. Alvarado, E. Navarrete, A. Romero, J.L. Ramirez, E. Llobet, Flexible gas sensors employing octahedral indium oxide films. Sensors 18(4), 999 (2018). https://doi.org/10.3390/s18040999
- X. Geng, C. Zhang, Y. Luo, M. Debliquy, Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1-X coatings deposited on polypropylene papers by suspension flame spraying. J. Taiwan Inst. Chem. Eng. 75, 280–286 (2017). https://doi.org/10.1016/j.jtice.2017.03.021
- K.K. Sadasivuni, D. Ponnamma, H.U. Ko, H.C. Kim, L. Zhai et al., Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sens. Actuat. B Chem. 233, 633–638 (2016). https://doi.org/10.1016/j.snb.2016.04.134
- U. Yaqoob, A.S.M.I. Uddin, G.S. Chung, A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sens. Actuat. B Chem. 224, 738–746 (2016). https://doi.org/10.1016/j.snb.2015.10.088
- U. Yacioob, P. Duy-Thach, A.S.M.I. Uddin, G.S. Chung, Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanops hybrid on a PET substrate. Sens. Actuat. B Chem. 221, 760–768 (2015). https://doi.org/10.1016/j.snb.2015.06.137
- S.J. Choi, H.J. Choi, W.T. Koo, D. Huh, H. Lee et al., Metal-organic framework-templated PdO-Co3O4 nanocubes functionalized by SWCNTs: improved NO2 reaction kinetics on flexible heating film. ACS Appl. Mater. Interfaces 9(46), 40593–40603 (2017). https://doi.org/10.1021/acsami.7b11317
- S. Knobelspies, B. Bierer, A. Daus, A. Takabayashi, G.A. Salvatore et al., Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil. Sensors 18(2), 358 (2018). https://doi.org/10.3390/s18020358
- V. Annapureddy, Y. Kim, G.T. Hwang, H.W. Jang, S.D. Kim et al., Room-temperature solid-state grown WO3-delta film on plastic substrate for extremely sensitive flexible NO2 gas sensors. Adv. Mater. Interfaces 5(1), 1700811 (2018). https://doi.org/10.1002/admi.201700811
- G.Y. Lu, J. Xu, J.B. Sun, Y.S. Yu, Y.Q. Zhang et al., UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanops. Sens. Actuat. B Chem. 162(1), 82–88 (2012). https://doi.org/10.1016/j.snb.2011.12.039
- X.X. Wang, H.Y. Li, X. Guo, Flexible and transparent sensors for ultra-low NO2 detection at room temperature under visible light illumination. J. Mater. Chem. A 8(29), 14482–14490 (2020). https://doi.org/10.1039/d0ta02934c
- S. Li, Y. Diao, Z. Yang, J. He, J. Wang et al., Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuat. B Chem. 276, 526–533 (2018). https://doi.org/10.1016/j.snb.2018.08.120
- T. Huang, Z. Lou, S. Chen, R. Li, K. Jiang et al., Fabrication of rigid and flexible SrGe4O9 nanotube-based sensors for room-temperature ammonia detection. Nano Res. 11(1), 431–439 (2018). https://doi.org/10.1007/s12274-017-1650-z
- D.K. Bandgar, S.T. Navale, Y.H. Navale, S.M. Ingole, F.J. Stadler et al., Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Mater. Chem. Phys. 189, 191–197 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.050
- B. Sakthivel, L. Manjakkal, G. Nammalvar, High performance CuO nanorectangles-based room temperature flexible NH3 sensor. IEEE Sens. J. 17(20), 6529–6536 (2017). https://doi.org/10.1109/jsen.2017.2749334
- C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du et al., A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuat. B Chem. 261, 587–597 (2018). https://doi.org/10.1016/j.snb.2017.12.022
- R.D. Alharthy, A. Saleh, A novel trace-level ammonia gas sensing based on flexible PAni-CoFe2O4 nanocomposite film at room temperature. Polymers 13(18), 3077 (2021). https://doi.org/10.3390/polym13183077
- C. Zhu, U. Cakmak, O. Sheikhnejad, X. Cheng, X. Zhang et al., One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30(25), 255502 (2019). https://doi.org/10.1088/1361-6528/ab076e
- S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian et al., Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens. Actuat. B Chem. 226, 540–547 (2016). https://doi.org/10.1016/j.snb.2015.12.007
- S. Li, P. Lin, L. Zhao, C. Wang, D. Liu et al., The room temperature gas sensor based on polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sens. Actuat. B Chem. 259, 505–513 (2018). https://doi.org/10.1016/j.snb.2017.11.081
- R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang et al., SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors. RSC Adv. 7(83), 52503–52509 (2017). https://doi.org/10.1039/c7ra10537a
- D.K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler et al., Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5(84), 68964–68971 (2015). https://doi.org/10.1039/c5ra11512d
- W.L. Ong, C. Zhang, G.W. Ho, Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates. Nanoscale 3(10), 4206–4214 (2011). https://doi.org/10.1039/c1nr10527b
- T.R. Brauns, D.T. Phan, G.S. Chung, Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuat. B Chem. 193, 869–876 (2014). https://doi.org/10.1016/j.snb.2013.08.049
- S.M. Mohammad, Z. Hassan, R.A. Talib, N.M. Ahmed, M.A. Al-Azawi et al., Fabrication of a highly flexible low-cost H2 gas sensor using ZnO nanorods grown on an ultra-thin nylon substrate. J. Mater. Sci. Mater. Electron. 27(9), 9461–9469 (2016). https://doi.org/10.1007/s10854-016-4993-4
- T.R. Rashid, D.T. Phan, G.S. Chung, A flexible hydrogen sensor based on Pd nanops decorated ZnO nanorods grown on polyimide tape. Sens. Actuat. B Chem. 185, 777–784 (2013). https://doi.org/10.1016/j.snb.2013.01.015
- D. Punetha, M. Kar, S.K. Pandey, A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 10(1), 2151 (2020). https://doi.org/10.1038/s41598-020-58965-w
- W. Hittini, A.F. Abu-Hani, N. Reddy, S.T. Mahmoud, Cellulose-copper oxide hybrid nanocomposites membranes for H2S gas detection at low temperatures. Sci. Rep. 10(1), 2940 (2020). https://doi.org/10.1038/s41598-020-60069-4
- A.F.S. Abu-Hani, F. Awwad, Y.E. Greish, A.I. Ayesh, S.T. Mahmoud, Design, fabrication, and characterization of low-power gas sensors based on organic-inorganic nano-composite. Org. Electron. 42, 284–292 (2017). https://doi.org/10.1016/j.orgel.2016.12.050
- F.I.M. Ali, F. Awwad, Y.E. Greish, A.F.S. Abu-Hani, S.T. Mahmoud, Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane. Org. Electron. 76, 105486 (2020). https://doi.org/10.1016/j.orgel.2019.105486
- D.Z. Zhang, Z.L. Wu, X.Q. Zong, Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuat. B Chem. 289, 32–41 (2019). https://doi.org/10.1016/j.snb.2019.03.055
- A.S.M.I. Uddin, G.S. Chung, Effects of Ag nanops decorated on ZnO nanorods under visible light illumination on flexible acetylene gas sensing properties. J. Electroceram. 40(1), 42–49 (2018). https://doi.org/10.1007/s10832-017-0096-8
- Z. Gao, Z. Lou, S. Chen, L. Li, K. Jiang et al., Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res. 11(1), 511–519 (2018). https://doi.org/10.1007/s12274-017-1661-9
- P. Krcmar, I. Kuritka, J. Maslik, P. Urbanek, P. Bazant et al., Fully inkjet-printed CuO sensor on flexible polymer substrate for alcohol vapours and humidity sensing at room temperature. Sensors 19(14), 3068 (2019). https://doi.org/10.3390/s19143068
- Z.Q. Zheng, J.D. Yao, B. Wang, G.W. Yang, Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanops for wearable devices. Sci. Rep. 5, 11070 (2015). https://doi.org/10.1038/srep11070
- M. Seetha, P. Meena, D. Mangalaraj, Y. Masuda, K. Senthil, Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors. Mater. Chem. Phys. 133(1), 47–54 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.034
- D.K. Subbiah, G.K. Mani, K.J. Babu, A. Das, J.B.B. Rayappan, Nanostructured ZnO on cotton fabrics-a novel flexible gas sensor & UV filter. J. Clean Prod. 194, 372–382 (2018). https://doi.org/10.1016/j.jclepro.2018.05.110
- Y.K. Jo, S.Y. Jeong, Y.K. Moon, Y.M. Jo, J.W. Yoon et al., Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 12, 4955 (2021). https://doi.org/10.1038/s41467-021-25290-3
- D.Z. Zhang, Z.L. Wu, X.Q. Zong, Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens. Actuat. B Chem. 288, 232–242 (2019). https://doi.org/10.1016/j.snb.2019.02.093
- G. Kiriakidis, K. Moschovis, I. Kortidis, R. Skarvelakis, Highly sensitive InOx ozone sensing films on flexible substrates. J. Sens. 2009, 727893 (2009). https://doi.org/10.1155/2009/727893
- T.M. Perfecto, C.A. Zito, T. Mazon, D.P. Volanti, Flexible room-temperature volatile organic compound sensors based on reduced graphene oxide-WO3 center dot 0.33H2O nano-needles. J. Mater. Chem. C 6(11), 2822–2829 (2018). https://doi.org/10.1039/c8tc00324f
- P.M. Perillo, D.F. Rodriguez, Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloy. Compd. 657, 765–769 (2016). https://doi.org/10.1016/j.jallcom.2015.10.167
- L. Quan, J.H. Sun, S.L. Bai, R.X. Luo, D.Q. Li et al., A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature. Appl. Surf. Sci. 399, 583–591 (2017). https://doi.org/10.1016/j.apsusc.2016.12.133
- S.L. Bai, Y.H. Zhao, J.H. Sun, Z.F. Tong, R.X. Luo et al., Preparation of conducting films based on alpha-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature. Sens. Actuat. B Chem. 239, 131–138 (2017). https://doi.org/10.1016/j.snb.2016.07.174
- M. Asad, M.H. Sheikhi, Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuat. B Chem. 231, 474–483 (2016). https://doi.org/10.1016/j.snb.2016.03.021
- J. Kroutil, A. Laposa, J. Voves, M. Davydova, J. Nahlik et al., Performance evaluation of low-cost flexible gas sensor array with nanocomposite polyaniline films. IEEE Sens. J. 18(9), 3759–3766 (2018). https://doi.org/10.1109/Jsen.2018.2811461
- Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
- H.J. Choi, J.H. Chung, J.W. Yoon, J.H. Lee, Highly selective, sensitive, and rapidly responding acetone sensor using ferroelectric ε-WO3 spheres doped with Nb for monitoring ketogenic diet efficiency. Sens. Actuat. B Chem. 338, 129823 (2021). https://doi.org/10.1016/j.snb.2021.129823
- V. Ruzsanyi, M.P. Kalapos, Breath acetone as a potential marker in clinical practice. J. Breath Res. 11(2), 024002 (2017). https://doi.org/10.1088/1752-7163/aa66d3
- M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic, Semiconductor gas sensors: materials, technology, design, and application. Sensors 20(22), 6694 (2020). https://doi.org/10.3390/s20226694
- N. Joshi, T. Hayasaka, Y.M. Liu, H.L. Liu, O.N. Oliveira et al., A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185(4), 213 (2018). https://doi.org/10.1007/s00604-018-2750-5
- I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuat. B Chem. 220, 534–548 (2015). https://doi.org/10.1016/j.snb.2015.05.107
- J. Zhang, X.H. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
- R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors: a review. Mater. Des. 156, 154–166 (2018). https://doi.org/10.1016/j.matdes.2018.06.041
- L.Y. Zhu, K.P. Yuan, J.G. Yang, H.P. Ma, T. Wang et al., Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actuat. B Chem. 290, 233–241 (2019). https://doi.org/10.1016/j.snb.2019.03.092
- A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Adv. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
- H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
- D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
- K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong et al., Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuat. B Chem. 160(1), 580–591 (2011). https://doi.org/10.1016/j.snb.2011.08.032
- L.Y. Zhu, K.P. Yuan, J.H. Yang, C.Z. Hang, H.P. Ma et al., Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst. Nanoeng. 6(1), 30 (2020). https://doi.org/10.1038/s41378-020-0142-6
- J.H. Yang, K.P. Yuan, L.Y. Zhu, C.Z. Hang, X.X. Li et al., Facile synthesis of alpha-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing. Sens. Actuat. B Chem. 307, 127617 (2020). https://doi.org/10.1016/j.snb.2019.127617
- X.R. Zhou, X.W. Cheng, Y.H. Zhu, A.A. Elzatahry, A. Alghamdi et al., Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29(3), 405–416 (2018). https://doi.org/10.1016/j.cclet.2017.06.021
- R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22(16), 3326–3370 (2012). https://doi.org/10.1002/adfm.201201008
- A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42(14), 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
- L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuat. A Phys. 267, 242–261 (2017). https://doi.org/10.1016/j.sna.2017.10.021
- E. Llobet, Gas sensors using carbon nanomaterials: a review. Sens. Actuat. B Chem. 179, 32–45 (2013). https://doi.org/10.1016/j.snb.2012.11.014
- J.H. Xu, Y.Z. Wang, S.S. Hu, Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 184(1), 1–44 (2017). https://doi.org/10.1007/s00604-016-2007-0
- S.X. Yang, C.B. Jiang, S.H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
- H. Zhang, J.C. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanops-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuat. B Chem. 190, 472–478 (2014). https://doi.org/10.1016/j.snb.2013.08.067
- D.Z. Zhang, H.Y. Chang, P. Li, R.H. Liu, Q.Z. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuat. B Chem. 225, 233–240 (2016). https://doi.org/10.1016/j.snb.2015.11.024
- S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanops hybrids. Sens. Actuat. B Chem. 202, 272–278 (2014). https://doi.org/10.1016/j.snb.2014.05.086
- L.L. Wang, H. Huang, S.H. Xiao, D.P. Cai, Y. Liu et al., Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanops@cross-linked PANI with p-n heterojunctions. ACS Appl. Mater. Interfaces 6(16), 14131–14140 (2014). https://doi.org/10.1021/am503286h
- S. Mallakpour, E. Khadem, Carbon nanotube-metal oxide nanocomposites: fabrication, properties and applications. Chem. Eng. J. 302, 344–367 (2016). https://doi.org/10.1016/j.cej.2016.05.038
- X.H. Liu, W. Zheng, R. Kumar, M. Kumar, J. Zhang, Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 462, 214517 (2022). https://doi.org/10.1016/j.ccr.2022.214517
- Y.Y. Jian, W.W. Hu, Z.H. Zhao, P.F. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
- T. Pandhi, A. Chandnani, H. Subbaraman, D. Estrada, A review of inkjet printed graphene and carbon nanotubes based gas sensors. Sensors 20(19), 5642 (2020). https://doi.org/10.3390/s20195642
- S. Park, M. Vosguerichian, Z.A. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013). https://doi.org/10.1039/c3nr33560g
- D.D. Dong, J.W. Zhang, J. Tang, J. Wang, K. Yang et al., Fabrication of conductive materials based on natural polymers and their application in flexible sensors. Acta Polym. Sin. 51(8), 864–879 (2020). https://doi.org/10.11777/j.issn1000-3304.2020.20114
- R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuat. A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875
- K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10(4), 4083–4099 (2010). https://doi.org/10.3390/s100404083
- Z.J. Li, H. Li, Z.L. Wu, M.K. Wang, J.T. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horizons 6(3), 470–506 (2019). https://doi.org/10.1039/c8mh01365a
- B.K.S. Reddy, P.H. Borse, Review-recent material advances and their mechanistic approaches for room temperature chemiresistive gas sensors. J. Electrochem. Soc. 168(5), 057521 (2021). https://doi.org/10.1149/1945-7111/abf4ea
- S. Das, S. Mojumder, D. Saha, M. Pal, Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: a review focused on personalized healthcare. Sens. Actuat. B Chem. 352, 131066 (2022). https://doi.org/10.1016/j.snb.2021.131066
- H.C. Ji, W. Zeng, Y.Q. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664–22684 (2019). https://doi.org/10.1039/c9nr07699a
- L.Y. Gai, R.P. Lai, X.H. Dong, X. Wu, Q.T. Luan et al., Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41(6), 1818–1842 (2022). https://doi.org/10.1007/s12598-021-01937-4
- T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens. Actuat. B Chem. 118(1–2), 78–83 (2006). https://doi.org/10.1016/j.snb.2006.04.004
- A. Gurlo, Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7(10), 2041–2052 (2006). https://doi.org/10.1002/cphc.200600292
- Y.V. Kaneti, J. Yue, X.C. Jiang, A.B. Yu, Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J. Phys. Chem. C 117(25), 13153–13162 (2013). https://doi.org/10.1021/jp404329q
- Z.J. Li, Z.J. Lin, N.N. Wang, Y.W. Huang, J.Q. Wang et al., Facile synthesis of alpha-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection. Mater. Des. 110, 532–539 (2016). https://doi.org/10.1016/j.matdes.2016.08.035
- J. Zhang, Z.Y. Qin, D.W. Zeng, C.S. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19(9), 6313–6329 (2017). https://doi.org/10.1039/c6cp07799d
- P.T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: a review. Meas. Sci. Technol. 28(8), 082001 (2017). https://doi.org/10.1088/1361-6501/aa7443
- D. Zappa, V. Galstyan, N. Kaur, H.M.M.M. Arachchige, O. Sisman et al., “Metal oxide-based heterostructures for gas sensors”-a review. Anal. Chim. Acta 1039, 1–23 (2018). https://doi.org/10.1016/j.aca.2018.09.020
- C.B. Jacobs, A.B. Maksov, E.S. Muckley, L. Collins, M. Mahjouri-Samani et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017). https://doi.org/10.1038/s41598-017-05265-5
- M. Hubner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan et al., Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuat. B Chem. 153(2), 347–353 (2011). https://doi.org/10.1016/j.snb.2010.10.046
- Y.F. Luo, C. Zhang, B.B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrog. Energy 42(31), 20386–20397 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.066
- J.H. Ma, Y. Ren, X.R. Zhou, L.L. Liu, Y.H. Zhu et al., Pt nanops sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
- L. Satyanarayana, K.M. Reddy, S.V. Manorama, Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater. Chem. Phys. 82(1), 21–26 (2003). https://doi.org/10.1016/S0254-0584(03)00170-6
- M.S. Barbosa, P.H. Suman, J.J. Kim, H.L. Tuller, J.A. Varela et al., Gas sensor properties of Ag- and Pd-decorated SnO micro-disks to NO2, H2 and CO: catalyst enhanced sensor response and selectivity. Sens. Actuat. B Chem. 239, 253–261 (2017). https://doi.org/10.1016/j.snb.2016.07.157
- H.S. Gu, Z. Wang, Y.M. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12(5), 5517–5550 (2012). https://doi.org/10.3390/s120505517
- C. Liu, Q. Kuang, Z.X. Xie, L.S. Zheng, The effect of noble metal (Au, Pd and Pt) nanops on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm 17(33), 6308–6313 (2015). https://doi.org/10.1039/c5ce01162k
- A. Sutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuat. B Chem. 222, 95–105 (2016). https://doi.org/10.1016/j.snb.2015.08.027
- N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuat. B Chem. 5(1–4), 7–19 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
- P. Jaroenapibal, P. Boonma, N. Saksilaporn, M. Horprathum, V. Amornkitbamrung et al., Improved NO2 sensing performance of electrospun WO3 nanofibers with silver doping. Sens. Actuat. B Chem. 255, 1831–1840 (2018). https://doi.org/10.1016/j.snb.2017.08.199
- U.T. Nakate, R.N. Bulakhe, C.D. Lokhande, S.N. Kale, Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl. Surf. Sci. 371, 224–230 (2016). https://doi.org/10.1016/j.apsusc.2016.02.196
- A. Liu, S.Y. Lv, L.J. Zhao, F.M. Liu, J. Wang et al., Room temperature flexible NH3 sensor based on polyaniline coated Rh-doped SnO2 hollow nanotubes. Sens. Actuat. B Chem. 330, 129313 (2021). https://doi.org/10.1016/j.snb.2020.129313
- E. Song, J.W. Choi, Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3), 498–523 (2013). https://doi.org/10.3390/nano3030498
- H. Bai, G.Q. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007). https://doi.org/10.3390/s7030267
- D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008). https://doi.org/10.1021/cr068112h
- X.L. Huang, N.T. Hu, R.G. Gao, Y. Yu, Y.Y. Wang et al., Reduced graphene oxide-polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488–22495 (2012). https://doi.org/10.1039/c2jm34340a
- F.L. Meng, Z. Guo, X.J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAc Trend Anal. Chem. 68, 37–47 (2015). https://doi.org/10.1016/j.trac.2015.02.008
- J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuat. B Chem. 229, 239–248 (2016). https://doi.org/10.1016/j.snb.2016.01.086
- J.H. Sun, X. Shu, Y.L. Tian, Z.F. Tong, S.L. Bai et al., Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuat. B Chem. 241, 658–664 (2017). https://doi.org/10.1016/j.snb.2016.10.047
- Y. Yan, G.Q. Yang, J.L. Xu, M. Zhang, C.C. Kuo et al., Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Sci. Technol. Adv. Mater. 21(1), 768–786 (2020). https://doi.org/10.1080/14686996.2020.1820845
- Z.H. Zhao, J. Tian, Y.H. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27(16), 2557–2582 (2015). https://doi.org/10.1002/adma.201405589
- C.M. Hangarter, N. Chartuprayoon, S.C. Hernandez, Y. Choa, N.V. Myung, Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8(1), 39–55 (2013). https://doi.org/10.1016/j.nantod.2012.12.005
- Y.C. Wong, B.C. Ang, A.S.M.A. Haseeb, A.A. Baharuddin et al., Review-conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167(1), 037503 (2019). https://doi.org/10.1149/2.0032003jes
- Z.Q. Wu, X.D. Chen, S.B. Zhu, Z.W. Zhou, Y. Yao et al., Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuat. B Chem. 178, 485–493 (2013). https://doi.org/10.1016/j.snb.2013.01.014
- S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuat. B Chem. 221, 1523–1534 (2015). https://doi.org/10.1016/j.snb.2015.08.002
- A. Liu, C.L. Wang, X.L. Yang, F.M. Liu, S.Q. Li et al., Polyaniline @ porous nanosphere SnO2/Zn2SnO4 nanohybrid for selective room temperature flexible NH3 sensor. Sens. Actuat. B Chem. 317, 128218 (2020). https://doi.org/10.1016/j.snb.2020.128218
- Y.N. Liang, Z.X. Wu, Y.N. Wei, Q.L. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
- Y.Q. Lin, Z.X. Wu, C.W. Li, Q.L. Ding, K. Tao et al., Deformable, transparent, high-performance, room-temperature oxygen sensors based on ion-conductive, environment-tolerant, and green organohydrogels. Ecomat. (2022). https://doi.org/10.1002/eom2.12220
- J. Wu, Z.X. Wu, W.X. Huang, X. Yang, Y.N. Liang et al., Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12(46), 52070–52081 (2020). https://doi.org/10.1021/acsami.0c17669
- Y.M. Wei, H. Wang, Q.L. Ding, Z.X. Wu, H. Zhang et al., Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater. Horizons 9(7), 1921–1934 (2022). https://doi.org/10.1039/d2mh00284a
- Z.X. Wu, L.M. Rong, J.L. Yang, Y.M. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17(52), 2104997 (2021). https://doi.org/10.1002/smll.202104997
- J. Wu, Z.X. Wu, H.J. Ding, Y.M. Wei, W.X. Huang et al., Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces 12(2), 2634–2643 (2020). https://doi.org/10.1021/acsami.9b18098
- V. Schroeder, S. Savagatrup, M. He, S.B. Ling, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019). https://doi.org/10.1021/acs.chemrev.8b00340
- M. Meyyappan, Carbon nanotube-based chemical sensors. Small 12(16), 2118–2129 (2016). https://doi.org/10.1002/smll.201502555
- A. Goldoni, V. Alijani, L. Sangaletti, L. D’Arsie, Advanced promising routes of carbon/metal oxides hybrids in sensors: a review. Electrochim. Acta 266, 139–150 (2018). https://doi.org/10.1016/j.electacta.2018.01.170
- S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuat. B Chem. 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070
- F. Schutt, V. Postica, R. Adelung, O. Lupan, Single and networked ZnO-CNT hybrid tetrapods for selective room-temperature high-performance ammonia sensors. ACS Appl. Mater. Interfaces 9(27), 23107–23118 (2017). https://doi.org/10.1021/acsami.7b03702
- J.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 1(32), 9099–9106 (2013). https://doi.org/10.1039/c3ta11658a
- G. Chimowa, Z.P. Tshabalala, A.A. Akande, G. Bepete, B. Mwakikunga et al., Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sens. Actuat. B Chem. 247, 11–18 (2017). https://doi.org/10.1016/j.snb.2017.02.167
- Y. Seekaew, A. Wisitsoraat, D. Phokharatkul, C. Wongchoosuk, Room temperature toluene gas sensor based on TiO2 nanops decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuat. B Chem. 279, 69–78 (2019). https://doi.org/10.1016/j.snb.2018.09.095
- Q.T.M. Nguyet, N.V. Duy, C.M. Hung, N.D. Hoa, V.N. Hieu, Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires. Appl. Phys. Lett. 112(15), 153110 (2018). https://doi.org/10.1063/1.5023851
- M.S. Choi, J.H. Bang, A. Mirzaei, H.G. Na, Y.J. Kwon et al., Dual sensitization of MWCNTs by co-decoration with p- and n-type metal oxide nanops. Sens. Actuat. B Chem. 264, 150–163 (2018). https://doi.org/10.1016/j.snb.2018.02.179
- X. Liu, S.T. Cheng, H. Liu, S. Hu, D.Q. Zhang et al., A survey on gas sensing technology. Sensors 12(7), 9635–9665 (2012). https://doi.org/10.3390/s120709635
- C.M. Lou, K. Wang, X.H. Liu, X.Y. Li, H. Wang et al., Heterogeneous Co3O4/carbon nanofibers for low temperature triethylamine detection: mechanistic insights by operando drifts and DFT. Adv. Mater. Interfaces 9(1), 2101479 (2022). https://doi.org/10.1002/admi.202101479
- Y.V. Kaneti, J.L. Moriceau, M. Liu, Y. Yuan, Q. Zakaria et al., Hydrothermal synthesis of ternary alpha-Fe2O3-ZnO-Au nanocomposites with high gas-sensing performance. Sens. Actuat. B Chem. 209, 889–897 (2015). https://doi.org/10.1016/j.snb.2014.12.065
- Z.U. Abideen, J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuat. B Chem. 255, 1884–1896 (2018). https://doi.org/10.1016/j.snb.2017.08.210
- Y. Xia, J. Wang, L. Xu, X. Li, S.J. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334
- P. Sinha, A. Datar, C. Jeong, X.P. Deng, Y.G. Chung et al., Surface area determination of porous materials using the Brunauer-Emmett-Teller (BET) method: limitations and improvements. J. Phys. Chem. C 123(33), 20195–20209 (2019). https://doi.org/10.1021/acs.jpcc.9b02116
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
- O.E. Plastiras, E. Deliyanni, V. Samanidou, Applications of graphene-based nanomaterials in environmental analysis. Appl. Sci. 11(7), 3028 (2021). https://doi.org/10.3390/app11073028
- W.J. Yuan, G.Q. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). https://doi.org/10.1039/c3ta11774j
- T. Wang, D. Huang, Z. Yang, S.S. Xu, G.L. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). https://doi.org/10.1007/s40820-015-0073-1
- S. Goutham, N. Jayarambabu, C. Sandeep, K.K. Sadasivuni, D.S. Kumar et al., Resistive room temperature LPG sensor based on a graphene/CdO nanocomposite. Microchim. Acta 186(2), 62 (2019). https://doi.org/10.1007/s00604-018-3170-2
- C. Wang, M.D. Ding, X.Y. Kou, L.L. Guo, C.H. Feng et al., Detection of nitrogen dioxide down to ppb levels using flower-like tungsten oxide nanostructures under different annealing temperatures. J. Colloid Interf. Sci. 483, 314–320 (2016). https://doi.org/10.1016/j.jcis.2016.08.050
- H. Li, Z.Y. Yin, Q.Y. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). https://doi.org/10.1002/smll.201101016
- W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
- F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan et al., Chemical vapor sensing with mono layer MoS2. Nano Lett. 13(2), 668–673 (2013). https://doi.org/10.1021/nl3043079
- J. Wu, Z.X. Wu, H.J. Ding, Y.M. Wei, W.X. Huang et al., Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens. Actuat. B Chem. 305, 127445 (2020). https://doi.org/10.1016/j.snb.2019.127445
- Y.C. Wang, L.M. Vu, T. Lu, C.L. Xu, Y. Liu et al., Piezoelectric responses of mechanically exfoliated two-dimensional SnS2 nanosheets. ACS Appl. Mater. Interfaces 12(46), 51662–51668 (2020). https://doi.org/10.1021/acsami.0c16039
- D. Tyagi, H.D. Wang, W.C. Huang, L.P. Hu, Y.F. Tang et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/c9nr10178k
- J.H. Kim, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Synergistic effects of SnO2 and Au nanops decorated on WS2 nanosheets for flexible, room-temperature CO gas sensing. Sens. Actuat. B Chem. 332, 129493 (2021). https://doi.org/10.1016/j.snb.2021.129493
- Y. Kang, S. Pyo, D.H. Baek, J. Kim, in Flexible and transparent NO2 sensor using functionalized MoS2 with light-enhanced response. 2017 19th Int. Conf. Solid-State Sens. Actuat. Microsyst. 1429–1432 (2017). https://doi.org/10.1109/TRANSDUCERS.2017.7994327
- R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
- J.B. Cui, L.Q. Shi, T.F. Xie, D.J. Wang, Y.H. Lin, UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuat. B Chem. 227, 220–226 (2016). https://doi.org/10.1016/j.snb.2015.12.010
- J. Wang, S.Y. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020). https://doi.org/10.1016/j.jhazmat.2019.120919
- T. Pham, G.H. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
- Q.P. Zhang, C.X. Chen, Y.T. Liu, M. Xu, G.Z. Xie et al., Room-temperature light-activated chemical sensors for gas monitoring and applications: a review. J. Phys. D Appl. Phys. 55(21), 213001 (2022). https://doi.org/10.1088/1361-6463/ac4c55
- Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang et al., ZnO nanowire growth and devices. Mat. Sci. Eng. R Rep. 47(1–2), 1–47 (2004). https://doi.org/10.1016/j.mser.2004.09.001
- K. Kalantar-Zadeh, K.J. Berean, N. Ha, A.F. Chrimes, K. Xu et al., A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018). https://doi.org/10.1038/s41928-017-0004-x
- K.J. Berean, N. Ha, J.Z. Ou, A.F. Chrimes, D. Grando et al., The safety and sensitivity of a telemetric capsule to monitor gastrointestinal hydrogen production in vivo in healthy subjects: a pilot trial comparison to concurrent breath analysis. Aliment. Pharmacol. Ther. 48(6), 646–654 (2018). https://doi.org/10.1111/apt.14923
- F.Z. Zhang, Q.J. Lin, F. Han, Z.W. Wang, B. Tian et al., A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsyst. Nanoeng. 8(1), 40 (2022). https://doi.org/10.1038/s41378-022-00369-z
- W.W. Hu, L.T. Wan, Y.Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2019). https://doi.org/10.1002/admt.201800488
- J.H. Guo, W.W. Li, X.L. Zhao, H.W. Hu, M. Wang et al., Highly sensitive, selective, flexible and scalable room-temperature NO2 gas sensor based on hollow SnO2/ZnO nanofibers. Molecules 26(21), 6475 (2021). https://doi.org/10.3390/molecules26216475
- S.Q. Li, A. Liu, Z.J. Yang, J.M. He, J. Wang et al., Room temperature gas sensor based on tin dioxide@polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sens. Actuat. B Chem. 299, 126970 (2019). https://doi.org/10.1016/j.snb.2019.126970
References
M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas et al., Health monitoring and management using internet-of-things (IoT) sensing with cloud-based processing: opportunities and challenges. Proc. IEEE Int. Conf. Serv. Comput., New York, NY, USA, 285–292 (2015). https://doi.org/10.1109/Scc.2015.47
A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities. IEEE Int. Things 1(1), 22–32 (2014). https://doi.org/10.1109/Jiot.2014.2306328
H. Li, K. Ota, M.X. Dong, Learning IoT in edge: deep learning for the internet of things with edge computing. IEEE Network 32(1), 96–101 (2018). https://doi.org/10.1109/Mnet.2018.1700202
H.S. Ning, Z.O. Wang, Future Internet of things architecture: like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4), 461–463 (2011). https://doi.org/10.1109/Lcomm.2011.022411.110120
K.P. Yuan, L.Y. Zhu, J.H. Yang, C.Z. Hang, J.J. Tao et al., Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. J. Colloid Interf. Sci. 568, 81–88 (2020). https://doi.org/10.1016/j.jcis.2020.02.042
M. Stoppa, A. Chiolerio, Wearable electronics and smart textiles: a critical review. Sensors 14(7), 11957–11992 (2014). https://doi.org/10.3390/s140711957
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296–301 (2011). https://doi.org/10.1038/Nnano.2011.36
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K.V. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529(7587), 509–514 (2016). https://doi.org/10.1038/nature16521
W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang et al., Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26(31), 5310–5336 (2014). https://doi.org/10.1002/adma.201400633
T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 28(22), 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
X.W. Wang, Y. Gu, Z.P. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim et al., Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9(5), 397–404 (2014). https://doi.org/10.1038/Nnano.2014.38
Y. Khan, A.E. Ostfeld, C.M. Lochner, A. Pierre, A.C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366
S.M. Niu, N. Matsuhisa, L. Beker, J.X. Li, S.H. Wang et al., A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019). https://doi.org/10.1038/s41928-019-0286-2
S. Seyedin, P. Zhang, M. Naebe, S. Qin, J. Chen et al., Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater. Horiz. 6(2), 219–249 (2019). https://doi.org/10.1039/c8mh01062e
S. Xu, Y.H. Zhang, L. Jia, K.E. Mathewson, K.I. Jang et al., Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344(6179), 70–74 (2014). https://doi.org/10.1126/science.1250169
A. Davis, D. Khazanchi, J. Murphy, I. Zigurs, D. Owens, Avatars, people, and virtual worlds: foundations for research in metaverses. J. Assoc. Inf. Syst. 10(2), 90–117 (2009). https://doi.org/10.17705/1jais.00183
J.D.N. Dionisio, W.G. Burns, R. Gilbert, 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput. Surv. 45(3), 1–38 (2013). https://doi.org/10.1145/2480741.2480751
S. Ionut-Cristian, D. Dan-Marius, Using inertial sensors to determine head motion-a review. J. Imaging 7(12), 265 (2021). https://doi.org/10.3390/jimaging7120265
R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34(12–14), 2063–2101 (2000). https://doi.org/10.1016/S1352-2310(99)00460-4
M. Ehn, J.A. Thornton, E. Kleist, M. Sipila, H. Junninen et al., A large source of low-volatility secondary organic aerosol. Nature 506(7489), 476–479 (2014). https://doi.org/10.1038/nature13032
N. Dudareva, A. Klempien, J.K. Muhlemann, I. Kaplan, Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198(1), 16–32 (2013). https://doi.org/10.1111/nph.12145
G. Zeng, C. Wu, Y. Chang, C. Zhou, B.B. Chen et al., Detection and discrimination of volatile organic compounds using a single film bulk acoustic wave resonator with temperature modulation as a multiparameter virtual sensor array. ACS Sens. 4(6), 1524–1533 (2019). https://doi.org/10.1021/acssensors.8b01678
M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs) - a review. Atmos. Environ. 140, 117–134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
J.H. Mo, Y.P. Zhang, Q.J. Xu, J.J. Lamson, R.Y. Zhao, Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos. Environ. 43(14), 2229–2246 (2009). https://doi.org/10.1016/j.atmosenv.2009.01.034
X.Y. Zhang, B. Gao, A.E. Creamer, C.C. Cao, Y.C. Li, Adsorption of VOCs onto engineered carbon materials: a review. J. Hazard. Mater. 338, 102–123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips et al., Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112(11), 5949–5966 (2012). https://doi.org/10.1021/cr300174a
C.T. Chang, C.J. Yang, K.H. Huang, J.C. Huang, T.C. Lin, Changes of precipitation acidity related to sulfur and nitrogen deposition in forests across three continents in north hemisphere over last two decades. Sci. Total Environ. 806, 150552 (2022). https://doi.org/10.1016/j.scitotenv.2021.150552
L.P. Naeher, M. Brauer, M. Lipsett, J.T. Zelikoff, C.D. Simpson et al., Woodsmoke health effects: a review. Inhal. Toxicol. 19(1), 67–106 (2007). https://doi.org/10.1080/08958370600985875
D.N. Granger, P.R. Kvietys, Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551 (2015). https://doi.org/10.1016/j.redox.2015.08.020
M.A. Sidell, Z.H. Chen, B.Z. Huang, T. Chow, S.P. Eckel et al., Ambient air pollution and COVID-19 incidence during four 2020–2021 case surges. Environ. Res. 208, 112758 (2022). https://doi.org/10.1016/j.envres.2022.112758
Z. Zhang, T. Xue, X. Jin, Effects of meteorological conditions and air pollution on COVID-19 transmission: evidence from 219 Chinese cities. Sci. Total Environ. 741, 140244 (2020). https://doi.org/10.1016/j.scitotenv.2020.140244
Y.J. Zhu, J.G. Xie, F.M. Huang, L.Q. Cao, Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ. 727, 1604215 (2020). https://doi.org/10.1016/j.scitotenv.2020.138704
E. Conticini, B. Frediani, D. Caro, Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in northern Italy? Environ. Pollut. 261, 114465 (2020). https://doi.org/10.1016/j.envpol.2020.114465
W.W. Hu, W.W. Wu, Y.Y. Jian, H. Haick, G.J. Zhang et al., Volatolomics in healthcare and its advanced detection technology. Nano Res. 15, 8185–8213 (2022). https://doi.org/10.1007/s12274-022-4459-3
W. Miekisch, J.K. Schubert, G.F.E. Noeldge-Schomburg, Diagnostic potential of breath analysis-focus on volatile organic compounds. Clin. Chim. Acta 347(1–2), 25–39 (2004). https://doi.org/10.1016/j.cccn.2004.04.023
S.M. Aghaei, A. Aasi, S. Farhangdoust, B. Panchapakesan, Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: a DFT study. Appl. Surf. Sci. 536, 147756 (2021). https://doi.org/10.1016/j.apsusc.2020.147756
A. Amann, B. Costello, W. Miekisch, J. Schubert, B. Buszewski et al., The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res. 8(3), 034001 (2014). https://doi.org/10.1088/1752-7155/8/3/034001
D.S. Li, Z.H. Xie, M.J. Qu, Q. Zhang, Y.Q. Fu et al., Virtual sensor array based on Butterworth-van Dyke equivalent model of QCM for selective detection of volatile organic compounds. ACS Appl. Mater. Interfaces 13(39), 47043–47051 (2021). https://doi.org/10.1021/acsami.1c13046
G. Konvalina, H. Haick, Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 47(1), 66–76 (2014). https://doi.org/10.1021/ar400070m
R. Vishinkin, H. Haick, Nanoscale sensor technologies for disease detection via volatolomics. Small 11(46), 6142–6164 (2015). https://doi.org/10.1002/smll.201501904
S. Das, M. Pal, Review-non-invasive monitoring of human health by exhaled breath analysis: a comprehensive review. J. Electrochem. Soc. 167(3), 037562 (2020). https://doi.org/10.1149/1945-7111/ab67a6
X.H. Sun, K. Shao, T. Wang, Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 408(11), 2759–2780 (2016). https://doi.org/10.1007/s00216-015-9200-6
G.T. Fan, C.L. Yang, C.H. Lin, C.C. Chen, C.H. Shih, Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta 120, 386–390 (2014). https://doi.org/10.1016/j.talanta.2013.12.025
X.T. Xue, L.Y. Zhu, K.P. Yuan, C. Zeng, X.X. Li et al., ZnO branched p-CuxO @n-ZnO heterojunction nanowires for improving acetone gas sensing performance. Sens. Actuat. B Chem. 324, 128729 (2020). https://doi.org/10.1016/j.snb.2020.128729
K.P. Yuan, C.Y. Wang, L.Y. Zhu, Q. Cao, J.H. Yang et al., Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 12(12), 14095–14104 (2020). https://doi.org/10.1021/acsami.9b18863
M.Y. Liu, C.Z. Hang, X.F. Zhao, L.Y. Zhu, R.G. Ma et al., Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy 87, 106181 (2021). https://doi.org/10.1016/j.nanoen.2021.106181
S.C. Mukhopadhyay, Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015). https://doi.org/10.1109/Jsen.2014.2370945
E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 9(40), 34544–34586 (2017). https://doi.org/10.1021/acsami.7b07063
M.C. McAlpine, H. Ahmad, D.W. Wang, J.R. Heath, Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 6(5), 379–384 (2007). https://doi.org/10.1038/nmat1891
Y. Pang, J.M. Jian, T. Tu, Z. Yang, J. Ling et al., Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038
E. Comini, Metal oxide nanowire chemical sensors: innovation and quality of life. Mater. Today 19(10), 559–567 (2016). https://doi.org/10.1016/j.mattod.2016.05.016
S.H. Wu, P.H. Liu, Y. Zhang, H.N. Zhang, X.H. Qin, Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sens. Actuat. B Chem. 252, 697–705 (2017). https://doi.org/10.1016/j.snb.2017.06.062
W. Li, R. Chen, W. Qi, L. Cai, Y. Sun et al., Reduced graphene oxide/mesoporous ZnO nss hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sens. 4(10), 2809–2818 (2019). https://doi.org/10.1021/acssensors.9b01509
R. Singh, E. Singh, H.S. Nalwa, Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv. 7(77), 48597–48630 (2017). https://doi.org/10.1039/c7ra07191d
E. Abad, S. Zampolli, S. Marco, A. Scorzoni, B. Mazzolai et al., Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens. Actuat. B Chem. 127(1), 2–7 (2007). https://doi.org/10.1016/j.snb.2007.07.007
S. Shrestha, M. Balachandran, M. Agarwal, V.V. Phoha, K. Varahramyan, A chipless RFID sensor system for cyber centric monitoring applications. IEEE Trans. Microw. Theory Tech. 57(5), 1303–1309 (2009). https://doi.org/10.1109/Tmtt.2009.2017298
R. Vyas, V. Lakafosis, H. Lee, G. Shaker, L. Yang et al., Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens. J. 11(12), 3139–3152 (2011). https://doi.org/10.1109/Jsen.2011.2166996
J.S. Lee, J. Oh, J. Jun, J. Jang, Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9(8), 7783–7790 (2015). https://doi.org/10.1021/acsnano.5b02024
S. Patel, H. Park, P. Bonato, L. Chan, M. Rodgers, A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9, 21 (2012). https://doi.org/10.1186/1743-0003-9-21
T. Wang, Y.L. Guo, P.B. Wan, H. Zhang, X.D. Chen et al., Flexible transparent electronic gas sensors. Small 12(28), 3748–3756 (2016). https://doi.org/10.1002/smll.201601049
H.Y. Li, C.S. Lee, D.H. Kim, J.H. Lee, Flexible room-temperature NH3 sensor for ultrasensitive, selective, and humidity-independent gas detection. ACS Appl. Mater. Interfaces 10(33), 27858–27867 (2018). https://doi.org/10.1021/acsami.8b09169
Y.S. Xu, L.L. Zheng, C. Yang, W. Zheng, X.H. Liu et al., Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl. Mater. Interfaces 12(18), 20704–20713 (2020). https://doi.org/10.1021/acsami.0c04398
K. Rui, X. Wang, M. Du, Y. Zhang, Q. Wang et al., Dual-function metal-organic framework-based wearable fibers for gas probing and energy storage. ACS Appl. Mater. Interfaces 10(3), 2837–2842 (2018). https://doi.org/10.1021/acsami.7b16761
R. You, D.D. Han, F. Liu, Y.L. Zhang, G. Lu, Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites. Sens. Actuat. B Chem. 277, 114–120 (2018). https://doi.org/10.1016/j.snb.2018.07.179
C. Han, X. Li, Y. Liu, Y. Tang, M. Liu et al., Flexible all-inorganic room-temperature chemiresistors based on fibrous ceramic substrate and visible-light-powered semiconductor sensing layer. Adv. Sci. 8(23), 2102471 (2021). https://doi.org/10.1002/advs.202102471
B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang et al., Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 11, 2405 (2020). https://doi.org/10.1038/s41467-020-16268-8
C. Hua, Y. Shang, Y. Wang, J. Xu, Y. Zhang, A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Appl. Surf. Sci. 405, 405–411 (2017). https://doi.org/10.1016/j.apsusc.2017.01.301
M. Alvarado, E. Navarrete, A. Romero, J.L. Ramirez, E. Llobet, Flexible gas sensors employing octahedral indium oxide films. Sensors 18(4), 999 (2018). https://doi.org/10.3390/s18040999
X. Geng, C. Zhang, Y. Luo, M. Debliquy, Flexible NO2 gas sensors based on sheet-like hierarchical ZnO1-X coatings deposited on polypropylene papers by suspension flame spraying. J. Taiwan Inst. Chem. Eng. 75, 280–286 (2017). https://doi.org/10.1016/j.jtice.2017.03.021
K.K. Sadasivuni, D. Ponnamma, H.U. Ko, H.C. Kim, L. Zhai et al., Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sens. Actuat. B Chem. 233, 633–638 (2016). https://doi.org/10.1016/j.snb.2016.04.134
U. Yaqoob, A.S.M.I. Uddin, G.S. Chung, A high-performance flexible NO2 sensor based on WO3 NPs decorated on MWCNTs and RGO hybrids on PI/PET substrates. Sens. Actuat. B Chem. 224, 738–746 (2016). https://doi.org/10.1016/j.snb.2015.10.088
U. Yacioob, P. Duy-Thach, A.S.M.I. Uddin, G.S. Chung, Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanops hybrid on a PET substrate. Sens. Actuat. B Chem. 221, 760–768 (2015). https://doi.org/10.1016/j.snb.2015.06.137
S.J. Choi, H.J. Choi, W.T. Koo, D. Huh, H. Lee et al., Metal-organic framework-templated PdO-Co3O4 nanocubes functionalized by SWCNTs: improved NO2 reaction kinetics on flexible heating film. ACS Appl. Mater. Interfaces 9(46), 40593–40603 (2017). https://doi.org/10.1021/acsami.7b11317
S. Knobelspies, B. Bierer, A. Daus, A. Takabayashi, G.A. Salvatore et al., Photo-induced room-temperature gas sensing with a-IGZO based thin-film transistors fabricated on flexible plastic foil. Sensors 18(2), 358 (2018). https://doi.org/10.3390/s18020358
V. Annapureddy, Y. Kim, G.T. Hwang, H.W. Jang, S.D. Kim et al., Room-temperature solid-state grown WO3-delta film on plastic substrate for extremely sensitive flexible NO2 gas sensors. Adv. Mater. Interfaces 5(1), 1700811 (2018). https://doi.org/10.1002/admi.201700811
G.Y. Lu, J. Xu, J.B. Sun, Y.S. Yu, Y.Q. Zhang et al., UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanops. Sens. Actuat. B Chem. 162(1), 82–88 (2012). https://doi.org/10.1016/j.snb.2011.12.039
X.X. Wang, H.Y. Li, X. Guo, Flexible and transparent sensors for ultra-low NO2 detection at room temperature under visible light illumination. J. Mater. Chem. A 8(29), 14482–14490 (2020). https://doi.org/10.1039/d0ta02934c
S. Li, Y. Diao, Z. Yang, J. He, J. Wang et al., Enhanced room temperature gas sensor based on Au-loaded mesoporous In2O3 nanospheres@polyaniline core-shell nanohybrid assembled on flexible PET substrate for NH3 detection. Sens. Actuat. B Chem. 276, 526–533 (2018). https://doi.org/10.1016/j.snb.2018.08.120
T. Huang, Z. Lou, S. Chen, R. Li, K. Jiang et al., Fabrication of rigid and flexible SrGe4O9 nanotube-based sensors for room-temperature ammonia detection. Nano Res. 11(1), 431–439 (2018). https://doi.org/10.1007/s12274-017-1650-z
D.K. Bandgar, S.T. Navale, Y.H. Navale, S.M. Ingole, F.J. Stadler et al., Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Mater. Chem. Phys. 189, 191–197 (2017). https://doi.org/10.1016/j.matchemphys.2016.12.050
B. Sakthivel, L. Manjakkal, G. Nammalvar, High performance CuO nanorectangles-based room temperature flexible NH3 sensor. IEEE Sens. J. 17(20), 6529–6536 (2017). https://doi.org/10.1109/jsen.2017.2749334
C. Liu, H. Tai, P. Zhang, Z. Yuan, X. Du et al., A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sens. Actuat. B Chem. 261, 587–597 (2018). https://doi.org/10.1016/j.snb.2017.12.022
R.D. Alharthy, A. Saleh, A novel trace-level ammonia gas sensing based on flexible PAni-CoFe2O4 nanocomposite film at room temperature. Polymers 13(18), 3077 (2021). https://doi.org/10.3390/polym13183077
C. Zhu, U. Cakmak, O. Sheikhnejad, X. Cheng, X. Zhang et al., One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30(25), 255502 (2019). https://doi.org/10.1088/1361-6528/ab076e
S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian et al., Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens. Actuat. B Chem. 226, 540–547 (2016). https://doi.org/10.1016/j.snb.2015.12.007
S. Li, P. Lin, L. Zhao, C. Wang, D. Liu et al., The room temperature gas sensor based on polyaniline@flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sens. Actuat. B Chem. 259, 505–513 (2018). https://doi.org/10.1016/j.snb.2017.11.081
R. Li, K. Jiang, S. Chen, Z. Lou, T. Huang et al., SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors. RSC Adv. 7(83), 52503–52509 (2017). https://doi.org/10.1039/c7ra10537a
D.K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler et al., Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5(84), 68964–68971 (2015). https://doi.org/10.1039/c5ra11512d
W.L. Ong, C. Zhang, G.W. Ho, Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates. Nanoscale 3(10), 4206–4214 (2011). https://doi.org/10.1039/c1nr10527b
T.R. Brauns, D.T. Phan, G.S. Chung, Effect of Ga-modified layer on flexible hydrogen sensor using ZnO nanorods decorated by Pd catalysts. Sens. Actuat. B Chem. 193, 869–876 (2014). https://doi.org/10.1016/j.snb.2013.08.049
S.M. Mohammad, Z. Hassan, R.A. Talib, N.M. Ahmed, M.A. Al-Azawi et al., Fabrication of a highly flexible low-cost H2 gas sensor using ZnO nanorods grown on an ultra-thin nylon substrate. J. Mater. Sci. Mater. Electron. 27(9), 9461–9469 (2016). https://doi.org/10.1007/s10854-016-4993-4
T.R. Rashid, D.T. Phan, G.S. Chung, A flexible hydrogen sensor based on Pd nanops decorated ZnO nanorods grown on polyimide tape. Sens. Actuat. B Chem. 185, 777–784 (2013). https://doi.org/10.1016/j.snb.2013.01.015
D. Punetha, M. Kar, S.K. Pandey, A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 10(1), 2151 (2020). https://doi.org/10.1038/s41598-020-58965-w
W. Hittini, A.F. Abu-Hani, N. Reddy, S.T. Mahmoud, Cellulose-copper oxide hybrid nanocomposites membranes for H2S gas detection at low temperatures. Sci. Rep. 10(1), 2940 (2020). https://doi.org/10.1038/s41598-020-60069-4
A.F.S. Abu-Hani, F. Awwad, Y.E. Greish, A.I. Ayesh, S.T. Mahmoud, Design, fabrication, and characterization of low-power gas sensors based on organic-inorganic nano-composite. Org. Electron. 42, 284–292 (2017). https://doi.org/10.1016/j.orgel.2016.12.050
F.I.M. Ali, F. Awwad, Y.E. Greish, A.F.S. Abu-Hani, S.T. Mahmoud, Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane. Org. Electron. 76, 105486 (2020). https://doi.org/10.1016/j.orgel.2019.105486
D.Z. Zhang, Z.L. Wu, X.Q. Zong, Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuat. B Chem. 289, 32–41 (2019). https://doi.org/10.1016/j.snb.2019.03.055
A.S.M.I. Uddin, G.S. Chung, Effects of Ag nanops decorated on ZnO nanorods under visible light illumination on flexible acetylene gas sensing properties. J. Electroceram. 40(1), 42–49 (2018). https://doi.org/10.1007/s10832-017-0096-8
Z. Gao, Z. Lou, S. Chen, L. Li, K. Jiang et al., Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Res. 11(1), 511–519 (2018). https://doi.org/10.1007/s12274-017-1661-9
P. Krcmar, I. Kuritka, J. Maslik, P. Urbanek, P. Bazant et al., Fully inkjet-printed CuO sensor on flexible polymer substrate for alcohol vapours and humidity sensing at room temperature. Sensors 19(14), 3068 (2019). https://doi.org/10.3390/s19143068
Z.Q. Zheng, J.D. Yao, B. Wang, G.W. Yang, Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanops for wearable devices. Sci. Rep. 5, 11070 (2015). https://doi.org/10.1038/srep11070
M. Seetha, P. Meena, D. Mangalaraj, Y. Masuda, K. Senthil, Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors. Mater. Chem. Phys. 133(1), 47–54 (2012). https://doi.org/10.1016/j.matchemphys.2011.12.034
D.K. Subbiah, G.K. Mani, K.J. Babu, A. Das, J.B.B. Rayappan, Nanostructured ZnO on cotton fabrics-a novel flexible gas sensor & UV filter. J. Clean Prod. 194, 372–382 (2018). https://doi.org/10.1016/j.jclepro.2018.05.110
Y.K. Jo, S.Y. Jeong, Y.K. Moon, Y.M. Jo, J.W. Yoon et al., Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 12, 4955 (2021). https://doi.org/10.1038/s41467-021-25290-3
D.Z. Zhang, Z.L. Wu, X.Q. Zong, Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. Sens. Actuat. B Chem. 288, 232–242 (2019). https://doi.org/10.1016/j.snb.2019.02.093
G. Kiriakidis, K. Moschovis, I. Kortidis, R. Skarvelakis, Highly sensitive InOx ozone sensing films on flexible substrates. J. Sens. 2009, 727893 (2009). https://doi.org/10.1155/2009/727893
T.M. Perfecto, C.A. Zito, T. Mazon, D.P. Volanti, Flexible room-temperature volatile organic compound sensors based on reduced graphene oxide-WO3 center dot 0.33H2O nano-needles. J. Mater. Chem. C 6(11), 2822–2829 (2018). https://doi.org/10.1039/c8tc00324f
P.M. Perillo, D.F. Rodriguez, Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloy. Compd. 657, 765–769 (2016). https://doi.org/10.1016/j.jallcom.2015.10.167
L. Quan, J.H. Sun, S.L. Bai, R.X. Luo, D.Q. Li et al., A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature. Appl. Surf. Sci. 399, 583–591 (2017). https://doi.org/10.1016/j.apsusc.2016.12.133
S.L. Bai, Y.H. Zhao, J.H. Sun, Z.F. Tong, R.X. Luo et al., Preparation of conducting films based on alpha-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature. Sens. Actuat. B Chem. 239, 131–138 (2017). https://doi.org/10.1016/j.snb.2016.07.174
M. Asad, M.H. Sheikhi, Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens. Actuat. B Chem. 231, 474–483 (2016). https://doi.org/10.1016/j.snb.2016.03.021
J. Kroutil, A. Laposa, J. Voves, M. Davydova, J. Nahlik et al., Performance evaluation of low-cost flexible gas sensor array with nanocomposite polyaniline films. IEEE Sens. J. 18(9), 3759–3766 (2018). https://doi.org/10.1109/Jsen.2018.2811461
Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019). https://doi.org/10.1039/c7cs00730b
H.J. Choi, J.H. Chung, J.W. Yoon, J.H. Lee, Highly selective, sensitive, and rapidly responding acetone sensor using ferroelectric ε-WO3 spheres doped with Nb for monitoring ketogenic diet efficiency. Sens. Actuat. B Chem. 338, 129823 (2021). https://doi.org/10.1016/j.snb.2021.129823
V. Ruzsanyi, M.P. Kalapos, Breath acetone as a potential marker in clinical practice. J. Breath Res. 11(2), 024002 (2017). https://doi.org/10.1088/1752-7163/aa66d3
M.V. Nikolic, V. Milovanovic, Z.Z. Vasiljevic, Z. Stamenkovic, Semiconductor gas sensors: materials, technology, design, and application. Sensors 20(22), 6694 (2020). https://doi.org/10.3390/s20226694
N. Joshi, T. Hayasaka, Y.M. Liu, H.L. Liu, O.N. Oliveira et al., A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185(4), 213 (2018). https://doi.org/10.1007/s00604-018-2750-5
I. Fratoddi, I. Venditti, C. Cametti, M.V. Russo, Chemiresistive polyaniline-based gas sensors: a mini review. Sens. Actuat. B Chem. 220, 534–548 (2015). https://doi.org/10.1016/j.snb.2015.05.107
J. Zhang, X.H. Liu, G. Neri, N. Pinna, Nanostructured materials for room-temperature gas sensors. Adv. Mater. 28(5), 795–831 (2016). https://doi.org/10.1002/adma.201503825
R.S. Andre, R.C. Sanfelice, A. Pavinatto, L.H.C. Mattoso, D.S. Correa, Hybrid nanomaterials designed for volatile organic compounds sensors: a review. Mater. Des. 156, 154–166 (2018). https://doi.org/10.1016/j.matdes.2018.06.041
L.Y. Zhu, K.P. Yuan, J.G. Yang, H.P. Ma, T. Wang et al., Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actuat. B Chem. 290, 233–241 (2019). https://doi.org/10.1016/j.snb.2019.03.092
A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B Adv. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036
H.J. Kim, J.H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuat. B Chem. 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005
D.R. Miller, S.A. Akbar, P.A. Morris, Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuat. B Chem. 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074
K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong et al., Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuat. B Chem. 160(1), 580–591 (2011). https://doi.org/10.1016/j.snb.2011.08.032
L.Y. Zhu, K.P. Yuan, J.H. Yang, C.Z. Hang, H.P. Ma et al., Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst. Nanoeng. 6(1), 30 (2020). https://doi.org/10.1038/s41378-020-0142-6
J.H. Yang, K.P. Yuan, L.Y. Zhu, C.Z. Hang, X.X. Li et al., Facile synthesis of alpha-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing. Sens. Actuat. B Chem. 307, 127617 (2020). https://doi.org/10.1016/j.snb.2019.127617
X.R. Zhou, X.W. Cheng, Y.H. Zhu, A.A. Elzatahry, A. Alghamdi et al., Ordered porous metal oxide semiconductors for gas sensing. Chin. Chem. Lett. 29(3), 405–416 (2018). https://doi.org/10.1016/j.cclet.2017.06.021
R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 22(16), 3326–3370 (2012). https://doi.org/10.1002/adfm.201201008
A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42(14), 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
L. Zhu, W. Zeng, Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens. Actuat. A Phys. 267, 242–261 (2017). https://doi.org/10.1016/j.sna.2017.10.021
E. Llobet, Gas sensors using carbon nanomaterials: a review. Sens. Actuat. B Chem. 179, 32–45 (2013). https://doi.org/10.1016/j.snb.2012.11.014
J.H. Xu, Y.Z. Wang, S.S. Hu, Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchim. Acta 184(1), 1–44 (2017). https://doi.org/10.1007/s00604-016-2007-0
S.X. Yang, C.B. Jiang, S.H. Wei, Gas sensing in 2D materials. Appl. Phys. Rev. 4(2), 021304 (2017). https://doi.org/10.1063/1.4983310
H. Zhang, J.C. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanops-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuat. B Chem. 190, 472–478 (2014). https://doi.org/10.1016/j.snb.2013.08.067
D.Z. Zhang, H.Y. Chang, P. Li, R.H. Liu, Q.Z. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuat. B Chem. 225, 233–240 (2016). https://doi.org/10.1016/j.snb.2015.11.024
S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanops hybrids. Sens. Actuat. B Chem. 202, 272–278 (2014). https://doi.org/10.1016/j.snb.2014.05.086
L.L. Wang, H. Huang, S.H. Xiao, D.P. Cai, Y. Liu et al., Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanops@cross-linked PANI with p-n heterojunctions. ACS Appl. Mater. Interfaces 6(16), 14131–14140 (2014). https://doi.org/10.1021/am503286h
S. Mallakpour, E. Khadem, Carbon nanotube-metal oxide nanocomposites: fabrication, properties and applications. Chem. Eng. J. 302, 344–367 (2016). https://doi.org/10.1016/j.cej.2016.05.038
X.H. Liu, W. Zheng, R. Kumar, M. Kumar, J. Zhang, Conducting polymer-based nanostructures for gas sensors. Coord. Chem. Rev. 462, 214517 (2022). https://doi.org/10.1016/j.ccr.2022.214517
Y.Y. Jian, W.W. Hu, Z.H. Zhao, P.F. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
T. Pandhi, A. Chandnani, H. Subbaraman, D. Estrada, A review of inkjet printed graphene and carbon nanotubes based gas sensors. Sensors 20(19), 5642 (2020). https://doi.org/10.3390/s20195642
S. Park, M. Vosguerichian, Z.A. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5), 1727–1752 (2013). https://doi.org/10.1039/c3nr33560g
D.D. Dong, J.W. Zhang, J. Tang, J. Wang, K. Yang et al., Fabrication of conductive materials based on natural polymers and their application in flexible sensors. Acta Polym. Sin. 51(8), 864–879 (2020). https://doi.org/10.11777/j.issn1000-3304.2020.20114
R. Kumar, N. Goel, M. Hojamberdiev, M. Kumar, Transition metal dichalcogenides-based flexible gas sensors. Sens. Actuat. A Phys. 303, 111875 (2020). https://doi.org/10.1016/j.sna.2020.111875
K.J. Choi, H.W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10(4), 4083–4099 (2010). https://doi.org/10.3390/s100404083
Z.J. Li, H. Li, Z.L. Wu, M.K. Wang, J.T. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horizons 6(3), 470–506 (2019). https://doi.org/10.1039/c8mh01365a
B.K.S. Reddy, P.H. Borse, Review-recent material advances and their mechanistic approaches for room temperature chemiresistive gas sensors. J. Electrochem. Soc. 168(5), 057521 (2021). https://doi.org/10.1149/1945-7111/abf4ea
S. Das, S. Mojumder, D. Saha, M. Pal, Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: a review focused on personalized healthcare. Sens. Actuat. B Chem. 352, 131066 (2022). https://doi.org/10.1016/j.snb.2021.131066
H.C. Ji, W. Zeng, Y.Q. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664–22684 (2019). https://doi.org/10.1039/c9nr07699a
L.Y. Gai, R.P. Lai, X.H. Dong, X. Wu, Q.T. Luan et al., Recent advances in ethanol gas sensors based on metal oxide semiconductor heterojunctions. Rare Met. 41(6), 1818–1842 (2022). https://doi.org/10.1007/s12598-021-01937-4
T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens. Actuat. B Chem. 118(1–2), 78–83 (2006). https://doi.org/10.1016/j.snb.2006.04.004
A. Gurlo, Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7(10), 2041–2052 (2006). https://doi.org/10.1002/cphc.200600292
Y.V. Kaneti, J. Yue, X.C. Jiang, A.B. Yu, Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J. Phys. Chem. C 117(25), 13153–13162 (2013). https://doi.org/10.1021/jp404329q
Z.J. Li, Z.J. Lin, N.N. Wang, Y.W. Huang, J.Q. Wang et al., Facile synthesis of alpha-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection. Mater. Des. 110, 532–539 (2016). https://doi.org/10.1016/j.matdes.2016.08.035
J. Zhang, Z.Y. Qin, D.W. Zeng, C.S. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19(9), 6313–6329 (2017). https://doi.org/10.1039/c6cp07799d
P.T. Moseley, Progress in the development of semiconducting metal oxide gas sensors: a review. Meas. Sci. Technol. 28(8), 082001 (2017). https://doi.org/10.1088/1361-6501/aa7443
D. Zappa, V. Galstyan, N. Kaur, H.M.M.M. Arachchige, O. Sisman et al., “Metal oxide-based heterostructures for gas sensors”-a review. Anal. Chim. Acta 1039, 1–23 (2018). https://doi.org/10.1016/j.aca.2018.09.020
C.B. Jacobs, A.B. Maksov, E.S. Muckley, L. Collins, M. Mahjouri-Samani et al., UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 7, 6053 (2017). https://doi.org/10.1038/s41598-017-05265-5
M. Hubner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan et al., Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuat. B Chem. 153(2), 347–353 (2011). https://doi.org/10.1016/j.snb.2010.10.046
Y.F. Luo, C. Zhang, B.B. Zheng, X. Geng, M. Debliquy, Hydrogen sensors based on noble metal doped metal-oxide semiconductor: a review. Int. J. Hydrog. Energy 42(31), 20386–20397 (2017). https://doi.org/10.1016/j.ijhydene.2017.06.066
J.H. Ma, Y. Ren, X.R. Zhou, L.L. Liu, Y.H. Zhu et al., Pt nanops sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
L. Satyanarayana, K.M. Reddy, S.V. Manorama, Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater. Chem. Phys. 82(1), 21–26 (2003). https://doi.org/10.1016/S0254-0584(03)00170-6
M.S. Barbosa, P.H. Suman, J.J. Kim, H.L. Tuller, J.A. Varela et al., Gas sensor properties of Ag- and Pd-decorated SnO micro-disks to NO2, H2 and CO: catalyst enhanced sensor response and selectivity. Sens. Actuat. B Chem. 239, 253–261 (2017). https://doi.org/10.1016/j.snb.2016.07.157
H.S. Gu, Z. Wang, Y.M. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 12(5), 5517–5550 (2012). https://doi.org/10.3390/s120505517
C. Liu, Q. Kuang, Z.X. Xie, L.S. Zheng, The effect of noble metal (Au, Pd and Pt) nanops on the gas sensing performance of SnO2-based sensors: a case study on the 221 high-index faceted SnO2 octahedra. CrystEngComm 17(33), 6308–6313 (2015). https://doi.org/10.1039/c5ce01162k
A. Sutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuat. B Chem. 222, 95–105 (2016). https://doi.org/10.1016/j.snb.2015.08.027
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuat. B Chem. 5(1–4), 7–19 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
P. Jaroenapibal, P. Boonma, N. Saksilaporn, M. Horprathum, V. Amornkitbamrung et al., Improved NO2 sensing performance of electrospun WO3 nanofibers with silver doping. Sens. Actuat. B Chem. 255, 1831–1840 (2018). https://doi.org/10.1016/j.snb.2017.08.199
U.T. Nakate, R.N. Bulakhe, C.D. Lokhande, S.N. Kale, Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl. Surf. Sci. 371, 224–230 (2016). https://doi.org/10.1016/j.apsusc.2016.02.196
A. Liu, S.Y. Lv, L.J. Zhao, F.M. Liu, J. Wang et al., Room temperature flexible NH3 sensor based on polyaniline coated Rh-doped SnO2 hollow nanotubes. Sens. Actuat. B Chem. 330, 129313 (2021). https://doi.org/10.1016/j.snb.2020.129313
E. Song, J.W. Choi, Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3(3), 498–523 (2013). https://doi.org/10.3390/nano3030498
H. Bai, G.Q. Shi, Gas sensors based on conducting polymers. Sensors 7(3), 267–307 (2007). https://doi.org/10.3390/s7030267
D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108(2), 746–769 (2008). https://doi.org/10.1021/cr068112h
X.L. Huang, N.T. Hu, R.G. Gao, Y. Yu, Y.Y. Wang et al., Reduced graphene oxide-polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22(42), 22488–22495 (2012). https://doi.org/10.1039/c2jm34340a
F.L. Meng, Z. Guo, X.J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAc Trend Anal. Chem. 68, 37–47 (2015). https://doi.org/10.1016/j.trac.2015.02.008
J.N. Gavgani, A. Hasani, M. Nouri, M. Mahyari, A. Salehi, Highly sensitive and flexible ammonia sensor based on S and N co-doped graphene quantum dots/polyaniline hybrid at room temperature. Sens. Actuat. B Chem. 229, 239–248 (2016). https://doi.org/10.1016/j.snb.2016.01.086
J.H. Sun, X. Shu, Y.L. Tian, Z.F. Tong, S.L. Bai et al., Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuat. B Chem. 241, 658–664 (2017). https://doi.org/10.1016/j.snb.2016.10.047
Y. Yan, G.Q. Yang, J.L. Xu, M. Zhang, C.C. Kuo et al., Conducting polymer-inorganic nanocomposite-based gas sensors: a review. Sci. Technol. Adv. Mater. 21(1), 768–786 (2020). https://doi.org/10.1080/14686996.2020.1820845
Z.H. Zhao, J. Tian, Y.H. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27(16), 2557–2582 (2015). https://doi.org/10.1002/adma.201405589
C.M. Hangarter, N. Chartuprayoon, S.C. Hernandez, Y. Choa, N.V. Myung, Hybridized conducting polymer chemiresistive nano-sensors. Nano Today 8(1), 39–55 (2013). https://doi.org/10.1016/j.nantod.2012.12.005
Y.C. Wong, B.C. Ang, A.S.M.A. Haseeb, A.A. Baharuddin et al., Review-conducting polymers as chemiresistive gas sensing materials: a review. J. Electrochem. Soc. 167(1), 037503 (2019). https://doi.org/10.1149/2.0032003jes
Z.Q. Wu, X.D. Chen, S.B. Zhu, Z.W. Zhou, Y. Yao et al., Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuat. B Chem. 178, 485–493 (2013). https://doi.org/10.1016/j.snb.2013.01.014
S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuat. B Chem. 221, 1523–1534 (2015). https://doi.org/10.1016/j.snb.2015.08.002
A. Liu, C.L. Wang, X.L. Yang, F.M. Liu, S.Q. Li et al., Polyaniline @ porous nanosphere SnO2/Zn2SnO4 nanohybrid for selective room temperature flexible NH3 sensor. Sens. Actuat. B Chem. 317, 128218 (2020). https://doi.org/10.1016/j.snb.2020.128218
Y.N. Liang, Z.X. Wu, Y.N. Wei, Q.L. Ding, M. Zilberman et al., Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett. 14, 52 (2022). https://doi.org/10.1007/s40820-021-00787-0
Y.Q. Lin, Z.X. Wu, C.W. Li, Q.L. Ding, K. Tao et al., Deformable, transparent, high-performance, room-temperature oxygen sensors based on ion-conductive, environment-tolerant, and green organohydrogels. Ecomat. (2022). https://doi.org/10.1002/eom2.12220
J. Wu, Z.X. Wu, W.X. Huang, X. Yang, Y.N. Liang et al., Stretchable, stable, and room-temperature gas sensors based on self-healing and transparent organohydrogels. ACS Appl. Mater. Interfaces 12(46), 52070–52081 (2020). https://doi.org/10.1021/acsami.0c17669
Y.M. Wei, H. Wang, Q.L. Ding, Z.X. Wu, H. Zhang et al., Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO2 sensors and the mechanism. Mater. Horizons 9(7), 1921–1934 (2022). https://doi.org/10.1039/d2mh00284a
Z.X. Wu, L.M. Rong, J.L. Yang, Y.M. Wei, K. Tao et al., Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small 17(52), 2104997 (2021). https://doi.org/10.1002/smll.202104997
J. Wu, Z.X. Wu, H.J. Ding, Y.M. Wei, W.X. Huang et al., Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Appl. Mater. Interfaces 12(2), 2634–2643 (2020). https://doi.org/10.1021/acsami.9b18098
V. Schroeder, S. Savagatrup, M. He, S.B. Ling, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019). https://doi.org/10.1021/acs.chemrev.8b00340
M. Meyyappan, Carbon nanotube-based chemical sensors. Small 12(16), 2118–2129 (2016). https://doi.org/10.1002/smll.201502555
A. Goldoni, V. Alijani, L. Sangaletti, L. D’Arsie, Advanced promising routes of carbon/metal oxides hybrids in sensors: a review. Electrochim. Acta 266, 139–150 (2018). https://doi.org/10.1016/j.electacta.2018.01.170
S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene-metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuat. B Chem. 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070
F. Schutt, V. Postica, R. Adelung, O. Lupan, Single and networked ZnO-CNT hybrid tetrapods for selective room-temperature high-performance ammonia sensors. ACS Appl. Mater. Interfaces 9(27), 23107–23118 (2017). https://doi.org/10.1021/acsami.7b03702
J.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. A 1(32), 9099–9106 (2013). https://doi.org/10.1039/c3ta11658a
G. Chimowa, Z.P. Tshabalala, A.A. Akande, G. Bepete, B. Mwakikunga et al., Improving methane gas sensing properties of multi-walled carbon nanotubes by vanadium oxide filling. Sens. Actuat. B Chem. 247, 11–18 (2017). https://doi.org/10.1016/j.snb.2017.02.167
Y. Seekaew, A. Wisitsoraat, D. Phokharatkul, C. Wongchoosuk, Room temperature toluene gas sensor based on TiO2 nanops decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuat. B Chem. 279, 69–78 (2019). https://doi.org/10.1016/j.snb.2018.09.095
Q.T.M. Nguyet, N.V. Duy, C.M. Hung, N.D. Hoa, V.N. Hieu, Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires. Appl. Phys. Lett. 112(15), 153110 (2018). https://doi.org/10.1063/1.5023851
M.S. Choi, J.H. Bang, A. Mirzaei, H.G. Na, Y.J. Kwon et al., Dual sensitization of MWCNTs by co-decoration with p- and n-type metal oxide nanops. Sens. Actuat. B Chem. 264, 150–163 (2018). https://doi.org/10.1016/j.snb.2018.02.179
X. Liu, S.T. Cheng, H. Liu, S. Hu, D.Q. Zhang et al., A survey on gas sensing technology. Sensors 12(7), 9635–9665 (2012). https://doi.org/10.3390/s120709635
C.M. Lou, K. Wang, X.H. Liu, X.Y. Li, H. Wang et al., Heterogeneous Co3O4/carbon nanofibers for low temperature triethylamine detection: mechanistic insights by operando drifts and DFT. Adv. Mater. Interfaces 9(1), 2101479 (2022). https://doi.org/10.1002/admi.202101479
Y.V. Kaneti, J.L. Moriceau, M. Liu, Y. Yuan, Q. Zakaria et al., Hydrothermal synthesis of ternary alpha-Fe2O3-ZnO-Au nanocomposites with high gas-sensing performance. Sens. Actuat. B Chem. 209, 889–897 (2015). https://doi.org/10.1016/j.snb.2014.12.065
Z.U. Abideen, J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Sensing behavior to ppm-level gases and synergistic sensing mechanism in metal-functionalized rGO-loaded ZnO nanofibers. Sens. Actuat. B Chem. 255, 1884–1896 (2018). https://doi.org/10.1016/j.snb.2017.08.210
Y. Xia, J. Wang, L. Xu, X. Li, S.J. Huang, A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis. Sens. Actuat. B Chem. 304, 127334 (2020). https://doi.org/10.1016/j.snb.2019.127334
P. Sinha, A. Datar, C. Jeong, X.P. Deng, Y.G. Chung et al., Surface area determination of porous materials using the Brunauer-Emmett-Teller (BET) method: limitations and improvements. J. Phys. Chem. C 123(33), 20195–20209 (2019). https://doi.org/10.1021/acs.jpcc.9b02116
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005). https://doi.org/10.1038/nature04233
O.E. Plastiras, E. Deliyanni, V. Samanidou, Applications of graphene-based nanomaterials in environmental analysis. Appl. Sci. 11(7), 3028 (2021). https://doi.org/10.3390/app11073028
W.J. Yuan, G.Q. Shi, Graphene-based gas sensors. J. Mater. Chem. A 1(35), 10078–10091 (2013). https://doi.org/10.1039/c3ta11774j
T. Wang, D. Huang, Z. Yang, S.S. Xu, G.L. He et al., A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8(2), 95–119 (2016). https://doi.org/10.1007/s40820-015-0073-1
S. Goutham, N. Jayarambabu, C. Sandeep, K.K. Sadasivuni, D.S. Kumar et al., Resistive room temperature LPG sensor based on a graphene/CdO nanocomposite. Microchim. Acta 186(2), 62 (2019). https://doi.org/10.1007/s00604-018-3170-2
C. Wang, M.D. Ding, X.Y. Kou, L.L. Guo, C.H. Feng et al., Detection of nitrogen dioxide down to ppb levels using flower-like tungsten oxide nanostructures under different annealing temperatures. J. Colloid Interf. Sci. 483, 314–320 (2016). https://doi.org/10.1016/j.jcis.2016.08.050
H. Li, Z.Y. Yin, Q.Y. He, H. Li, X. Huang et al., Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1), 63–67 (2012). https://doi.org/10.1002/smll.201101016
W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002
F.K. Perkins, A.L. Friedman, E. Cobas, P.M. Campbell, G.G. Jernigan et al., Chemical vapor sensing with mono layer MoS2. Nano Lett. 13(2), 668–673 (2013). https://doi.org/10.1021/nl3043079
J. Wu, Z.X. Wu, H.J. Ding, Y.M. Wei, W.X. Huang et al., Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sens. Actuat. B Chem. 305, 127445 (2020). https://doi.org/10.1016/j.snb.2019.127445
Y.C. Wang, L.M. Vu, T. Lu, C.L. Xu, Y. Liu et al., Piezoelectric responses of mechanically exfoliated two-dimensional SnS2 nanosheets. ACS Appl. Mater. Interfaces 12(46), 51662–51668 (2020). https://doi.org/10.1021/acsami.0c16039
D. Tyagi, H.D. Wang, W.C. Huang, L.P. Hu, Y.F. Tang et al., Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 12(6), 3535–3559 (2020). https://doi.org/10.1039/c9nr10178k
J.H. Kim, J.Y. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Synergistic effects of SnO2 and Au nanops decorated on WS2 nanosheets for flexible, room-temperature CO gas sensing. Sens. Actuat. B Chem. 332, 129493 (2021). https://doi.org/10.1016/j.snb.2021.129493
Y. Kang, S. Pyo, D.H. Baek, J. Kim, in Flexible and transparent NO2 sensor using functionalized MoS2 with light-enhanced response. 2017 19th Int. Conf. Solid-State Sens. Actuat. Microsyst. 1429–1432 (2017). https://doi.org/10.1109/TRANSDUCERS.2017.7994327
R. Kumar, N. Goel, M. Kumar, UV-activated MoS2 based fast and reversible NO2 sensor at room temperature. ACS Sens. 2(11), 1744–1752 (2017). https://doi.org/10.1021/acssensors.7b00731
J.B. Cui, L.Q. Shi, T.F. Xie, D.J. Wang, Y.H. Lin, UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuat. B Chem. 227, 220–226 (2016). https://doi.org/10.1016/j.snb.2015.12.010
J. Wang, S.Y. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020). https://doi.org/10.1016/j.jhazmat.2019.120919
T. Pham, G.H. Li, E. Bekyarova, M.E. Itkis, A. Mulchandani, MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 13(3), 3196–3205 (2019). https://doi.org/10.1021/acsnano.8b08778
Q.P. Zhang, C.X. Chen, Y.T. Liu, M. Xu, G.Z. Xie et al., Room-temperature light-activated chemical sensors for gas monitoring and applications: a review. J. Phys. D Appl. Phys. 55(21), 213001 (2022). https://doi.org/10.1088/1361-6463/ac4c55
Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang et al., ZnO nanowire growth and devices. Mat. Sci. Eng. R Rep. 47(1–2), 1–47 (2004). https://doi.org/10.1016/j.mser.2004.09.001
K. Kalantar-Zadeh, K.J. Berean, N. Ha, A.F. Chrimes, K. Xu et al., A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nat. Electron. 1, 79–87 (2018). https://doi.org/10.1038/s41928-017-0004-x
K.J. Berean, N. Ha, J.Z. Ou, A.F. Chrimes, D. Grando et al., The safety and sensitivity of a telemetric capsule to monitor gastrointestinal hydrogen production in vivo in healthy subjects: a pilot trial comparison to concurrent breath analysis. Aliment. Pharmacol. Ther. 48(6), 646–654 (2018). https://doi.org/10.1111/apt.14923
F.Z. Zhang, Q.J. Lin, F. Han, Z.W. Wang, B. Tian et al., A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsyst. Nanoeng. 8(1), 40 (2022). https://doi.org/10.1038/s41378-022-00369-z
W.W. Hu, L.T. Wan, Y.Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2019). https://doi.org/10.1002/admt.201800488
J.H. Guo, W.W. Li, X.L. Zhao, H.W. Hu, M. Wang et al., Highly sensitive, selective, flexible and scalable room-temperature NO2 gas sensor based on hollow SnO2/ZnO nanofibers. Molecules 26(21), 6475 (2021). https://doi.org/10.3390/molecules26216475
S.Q. Li, A. Liu, Z.J. Yang, J.M. He, J. Wang et al., Room temperature gas sensor based on tin dioxide@polyaniline nanocomposite assembled on flexible substrate: ppb-level detection of NH3. Sens. Actuat. B Chem. 299, 126970 (2019). https://doi.org/10.1016/j.snb.2019.126970