Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview
Corresponding Author: Hong‑Liang Lu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 89
Abstract
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.
Highlights:
1 Recent progress in noble metal-decorated (NM-D) semiconducting metal oxides (SMOs) gas sensors are summarized.
2 Gas sensing mechanisms related to noble metal decoration are carefully discussed.
3 Crucial challenges facing the development of NM-D SMOs gas sensors are analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.L. Song, W.H. Ye, Z. Chen, Z.S. Chen, M.T. Li et al., Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano 15(4), 7659–7667 (2021). https://doi.org/10.1021/acsnano.1c01256
- A.H. Jalal, F. Alam, S. Roychoudhury, Y. Umasankar, N. Pala et al., Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3(7), 1246–1263 (2018). https://doi.org/10.1021/acssensors.8b00400
- Y.Y. Jian, N. Zhang, T.P. Liu, Y.J. Zhu, D. Wang et al., Artificially intelligent olfaction for fast and noninvasive diagnosis of bladder cancer from urine. ACS Sens. 7(6), 1720–1731 (2022). https://doi.org/10.1021/acssensors.2c00467
- W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2018). https://doi.org/10.1002/admt.201800488
- W. Geng, S. Ge, X. He, S. Zhang, J. Gu et al., Volatile organic compound gas-sensing properties of bimodal porous alpha-Fe2O3 with ultrahigh sensitivity and fast response. ACS Appl. Mater. Interfaces 10(16), 13702–13711 (2018). https://doi.org/10.1021/acsami.8b02435
- D.Z. Zhang, J.J. Liu, C.X. Jiang, A.M. Liu, B.K. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuat. B: Chem. 240, 55–65 (2017). https://doi.org/10.1016/j.snb.2016.08.085
- H.Y. Li, S.N. Zhao, S.Q. Zang, J. Li, Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49(17), 6364–6401 (2020). https://doi.org/10.1039/C9CS00778D
- M. Valdez, S.K. Gupta, K. Lozano, Y. Mao, ForceSpun polydiacetylene nanofibers as colorimetric sensor for food spoilage detection. Sens. Actuat. B: Chem. 297, 126734 (2019). https://doi.org/10.1016/j.snb.2019.126734
- Q. Li, D. Chen, J. Miao, S. Lin, Z. Yu et al., Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. Sens. Actuat. B: Chem. 326, 128952 (2021). https://doi.org/10.1016/j.snb.2020.128952
- A.T. Guntner, I.C. Weber, S. Schon, S.E. Pratsinis, P.A. Gerber, Monitoring rapid metabolic changes in health and type-1 diabetes with breath acetone sensors. Sens. Actuat. B: Chem. 367, 132182 (2022). https://doi.org/10.1016/j.snb.2022.132182
- W. Hu, W. Wu, Y. Jian, H. Haick, G. Zhang et al., Volatolomics in healthcare and its advanced detection technology. Nano Res. 15(9), 8185–8213 (2022). https://doi.org/10.1007/s12274-022-4459-3
- C.C. Chen, J.C. Hsieh, C.H. Chao, W.S. Yang, H.T. Cheng et al., Correlation between breath ammonia and blood urea nitrogen levels in chronic kidney disease and dialysis patients. J. Breath Res. 14, 036002 (2020). https://doi.org/10.1088/1752-7163/ab728b
- H. Wan, H. Yin, L. Lin, X. Zeng, A.J. Mason, Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sens. Actuat. B: Chem. 255, 638–646 (2018). https://doi.org/10.1016/j.snb.2017.08.109
- X. Tan, H. Zhang, J. Li, H. Wan, Q. Guo et al., Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 11(1), 5245 (2020). https://doi.org/10.1038/s41467-020-19085-1
- W. Chen, F. Deng, M. Xu, J. Wang, Z. Wei et al., GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuat. B: Chem. 273, 498–504 (2018). https://doi.org/10.1016/j.snb.2018.06.062
- M.P. Pujadó, J.M.S. Gordillo, H. Avireddy, A. Cabot, A. Morata et al., Highly sensitive self-powered H2 sensor based on nanostructured thermoelectric silicon fabrics. Adv. Mater. Technol. 6(1), 2000870 (2020). https://doi.org/10.1002/admt.202000870
- D. Matatagui, O.V. Kolokoltsev, N. Qureshi, E.V. Mejia-Uriarte, J.M. Saniger, A magnonic gas sensor based on magnetic nanops. Nanoscale 7(21), 9607–9613 (2015). https://doi.org/10.1039/C5NR01499A
- H. Yuan, S. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31(11), 1807161 (2019). https://doi.org/10.1002/adma.201807161
- L.Y. Zhu, K. Yuan, Z.-C. Li, X.Y. Miao, J.C. Wang et al., Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. J. Colloid Interf. Sci. 622, 156–168 (2022). https://doi.org/10.1016/j.jcis.2022.04.081
- X. Xiao, X. Zhou, J. Ma, Y. Zhu, X. Cheng et al., Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO composites. ACS Appl. Mater. Interfaces 11(29), 26268–26276 (2019). https://doi.org/10.1021/acsami.9b08128
- T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). https://doi.org/10.1021/ac60191a001
- K.P. Yuan, L.Y. Zhu, J.H. Yang, C.Z. Hang, J.J. Tao et al., Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. J. Colloid Interf. Sci. 568, 81–88 (2020). https://doi.org/10.1016/j.jcis.2020.02.042
- Y.M. Choi, S.Y. Cho, D. Jang, H.J. Koh, J. Choi et al., Ultrasensitive detection of VOCs using a high-resolution CuO/Cu2O/Ag nanopattern sensor. Adv. Funct. Mater. 29(9), 1808319 (2019). https://doi.org/10.1002/adfm.201808319
- X. Zhou, Y. Zou, J. Ma, X. Cheng, Y. Li et al., Cementing mesoporous ZnO with silica for controllable and switchable gas sensing selectivity. Chem. Mater. 31(19), 8112–8120 (2019). https://doi.org/10.1021/acs.chemmater.9b02844
- L.Y. Zhu, K. Yuan, J.G. Yang, H.P. Ma, T. Wang et al., Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actuat. B: Chem. 290, 233–241 (2019). https://doi.org/10.1016/j.snb.2019.03.092
- L.Y. Zhu, K.P. Yuan, J.H. Yang, C.Z. Hang, H.P. Ma et al., Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst. Nanoeng. 6, 1–13 (2020). https://doi.org/10.1038/s41378-020-0142-6
- J. Ma, Y. Li, J. Li, X. Yang, Y. Ren et al., Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 32(4), 2107439 (2021). https://doi.org/10.1002/adfm.202107439
- Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28, 1205–1212 (2016). https://doi.org/10.1021/acs.chemmater.5b04850
- W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou et al., APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 6, 10976–10989 (2018). https://doi.org/10.1039/C8TA02452A
- T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng et al., Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuat. B: Chem. 258, 1099–1106 (2018). https://doi.org/10.1016/j.snb.2017.12.024
- Y.Y. Jian, W.W. Hu, Z.H. Zhao, P.F. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
- J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu et al., Pt nanops sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
- J. Lee, Y. Jung, S.-H. Sung, G. Lee, J. Kim et al., High-performance gas sensor array for indoor air quality monitoring: the role of Au nanops on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 9(2), 1159–1167 (2021). https://doi.org/10.1039/D0TA08743B
- Y. Wang, X.N. Meng, J.L. Cao, Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 381, 120944 (2020). https://doi.org/10.1016/j.jhazmat.2019.120944
- S. Navale, M. Shahbaz, A. Mirzaei, S.S. Kim, H.W. Kim, Effect of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors: an overview. Sensors 21(19), 6454 (2021). https://doi.org/10.3390/s21196454
- V. Shah, J. Bhaliya, G.M. Patel, P. Joshi, Recent advancement in Pd-decorated nanostructures for its catalytic and chemiresistive gas sensing applications: a review. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01564-y
- M. Kamal Hossain, Q. Ahmed Drmosh, Noble metal-decorated nanostructured zinc oxide: strategies to advance chemiresistive hydrogen gas sensing. Chem. Rec. 22(7), e202200090 (2022). https://doi.org/10.1002/tcr.202200090
- J.W. Yoon, J.H. Lee, Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. Lab Chip 17(21), 3537–3557 (2017). https://doi.org/10.1039/C7LC00810D
- A.T. Güntner, V. Koren, K. Chikkadi, M. Righettoni, S.E. Pratsinis, E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 1(5), 528–535 (2016). https://doi.org/10.1021/acssensors.6b00008
- D. Li, Z. Xie, M. Qu, Q. Zhang, Y. Fu et al., Virtual sensor array based on butterworth-van dyke equivalent model of QCM for selective detection of volatile organic compounds. ACS Appl. Mater. Interfaces 13(39), 47043–47051 (2021). https://doi.org/10.1021/acsami.1c13046
- B. Feng, Y. Wu, Y. Ren, Y. Chen, K. Yuan et al., Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sens. Actuat. B: Chem. 356, 131358 (2022). https://doi.org/10.1016/j.snb.2021.131358
- I.S. Hwang, J.K. Choi, H.S. Woo, S.J. Kim, S.Y. Jung et al., Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces 3(8), 3140–3145 (2011). https://doi.org/10.1021/am200647f
- M. Yang, J. Lu, X. Wang, H. Zhang, F. Chen et al., Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres. Sens. Actuat. B: Chem. 313, 127965 (2020). https://doi.org/10.1016/j.snb.2020.127965
- Y.G. Song, J.Y. Park, J.M. Suh, Y.-S. Shim, S.Y. Yi et al., Heterojunction based on Rh-decorated WO3 nanorods for morphological change and gas sensor application using the transition effect. Chem. Mater. 31(1), 207–215 (2018). https://doi.org/10.1021/acs.chemmater.8b04181
- N. Luo, Y. Chen, D. Zhang, M. Guo, Z. Xue et al., High-sensitive MEMS hydrogen sulfide sensor made from PdRh bimetal hollow nanoframe decorated metal oxides and sensitization mechanism study. ACS Appl. Mater. Interfaces 12(50), 56203–56215 (2020). https://doi.org/10.1021/acsami.0c18369
- S.-W. Choi, A. Katoch, G.-J. Sun, S.S. Kim, Bimetallic Pd/Pt nanop-functionalized SnO2 nanowires for fast response and recovery to NO2. Sens. Actuat. B: Chem. 181, 446–453 (2013). https://doi.org/10.1016/j.snb.2013.02.007
- B. Liu, K. Li, Y. Luo, L. Gao, G. Duan, Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chem. Eng. J. 420, 129881 (2021). https://doi.org/10.1016/j.cej.2021.129881
- W.T. Koo, S.J. Choi, S.J. Kim, J.S. Jang, H.L. Tuller et al., Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167
- H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664–22684 (2019). https://doi.org/10.1039/C9NR07699A
- D.Z. Zhang, Z.M. Yang, S.J. Yu, Q. Mi, Q.M. Pan, Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coordin. Chem. Rev. 413, 213272 (2020). https://doi.org/10.1016/j.ccr.2020.213272
- Y. Liu, S. Xiao, K. Du, Chemiresistive gas sensors based on hollow heterojunction: a review. Adv. Mater. Interfaces 8(12), 2002122 (2021). https://doi.org/10.1002/admi.202002122
- D.Z. Zhang, Z.M. Yang, Z.L. Wu, G.K. Dong, Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing. Sens. Actuat. B: Chem. 283, 42–51 (2019). https://doi.org/10.1016/j.snb.2018.11.133
- M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai et al., Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering. ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014). https://doi.org/10.1021/am505127g
- O. Alev, S. Büyükköse, Effect of Pt catalyst on the sensor performance of WO3 nanoflakes towards hazardous gases. J. Alloy. Compd. 32(20), 25376–25384 (2021). https://doi.org/10.1007/s10854-021-06997-x
- P.M. Bulemo, D.-H. Kim, I.D. Kim, Controlled synthesis of electrospun hollow Pt-loaded SnO2 microbelts for acetone sensing. Sens. Actuat. B: Chem. 344, 130208 (2021). https://doi.org/10.1016/j.snb.2021.130208
- C. Dong, X. Liu, X. Xiao, G. Chen, Y. Wang et al., Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. J. Mater. Chem. A 2(47), 20089–20095 (2014). https://doi.org/10.1039/C4TA04251D
- T.T.D. Nguyen, D.V. Dao, N. Thi Thu Ha, T. Van Tran, D.S. Kim et al., Superhigh sensing response and selectivity for hydrogen gas using PdPt@ZnO core-shell nanops: unique effect of alloyed ingredient from experimental and theoretical investigations. Sens. Actuat. B: Chem. 354, 131083 (2022). https://doi.org/10.1016/j.snb.2021.131083
- F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong et al., Hydrogen sensing properties of Pt-Au bimetallic nanops loaded on ZnO nanorods. Sens. Actuat. B: Chem. 241, 895–903 (2017). https://doi.org/10.1016/j.snb.2016.11.025
- X. Chen, Y. Shen, P. Zhou, X. Zhong, G. Li et al., Bimetallic Au/Pd nanops decorated ZnO nanowires for NO2 detection. Sens. Actuat. B: Chem. 289, 160–168 (2019). https://doi.org/10.1016/j.snb.2019.03.095
- G.J. Li, X.H. Wang, L.M. Yan, Y. Wang, Z.Y. Zhang et al., PdPt bimetal-functionalized SnO2 nanosheets: controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. ACS Appl. Mater. Interfaces 11(29), 26116–26126 (2019). https://doi.org/10.1021/acsami.9b08408
- R. Bahariqushchi, S. Cosentino, M. Scuderi, E. Dumons, L.P. Tran-Huu-Hue et al., Free carrier enhanced depletion in ZnO nanorods decorated with bimetallic AuPt nanoclusters. Nanoscale 12(37), 19213–19222 (2020). https://doi.org/10.1039/D0NR04134C
- H.J. Le, D. Van Dao, Y.T. Yu, Superfast and efficient hydrogen gas sensor using PdAu alloy@ZnO core–shell nanops. J. Mater. Chem. A 8(26), 12968–12974 (2020). https://doi.org/10.1039/D0TA03552A
- W. Liu, D. Gu, X. Li, AuPt bimetal-functionalized SnSe2 microflower-based sensors for detecting sub-ppm NO2 at low temperatures. ACS Appl. Mater. Interfaces 13(17), 20336–20348 (2021). https://doi.org/10.1021/acsami.1c02500
- Y.P. Liu, L.Y. Zhu, P. Feng, C.C. Dang, M. Li et al., Bimetallic AuPt alloy nanops decorated on ZnO nanowires towards efficient and selective H2S gas sensing. Sens. Actuat. B: Chem. 367, 132024 (2022). https://doi.org/10.1016/j.snb.2022.132024
- A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.H. Lee et al., An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrogen Energy 44(36), 20552–20571 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.180
- I. Darmadi, F.A.A. Nugroho, C. Langhammer, High-performance nanostructured palladium-based hydrogen sensors-current limitations and strategies for their mitigation. ACS Sens. 5(11), 3306–3327 (2020). https://doi.org/10.1021/acssensors.0c02019
- K. Hu, F. Wang, Z. Shen, H. Liu, J. Xiong, Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO-SnO2 hollow nanofibers with enhanced H2 gas sensing properties. J. Alloy. Compd. 850, 156663 (2021). https://doi.org/10.1016/j.jallcom.2020.156663
- D.V. Dao, T.T.D. Nguyen, D.S. Kim, J.W. Yoon, Y.T. Yu et al., Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO2 core-shell nanoflatforms. J. Ind. Eng. Chem. 95, 325–332 (2021). https://doi.org/10.1016/j.jiec.2021.01.005
- B. Hammer, J.K. Norskov, Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
- J.H. Kim, P. Wu, H.W. Kim, S.S. Kim, Highly selective sensing of CO, C6H6, and C7H8 gases by catalytic functionalization with metal nanops. ACS Appl. Mater. Interfaces 8(11), 7173–7183 (2016). https://doi.org/10.1021/acsami.6b01116
- D. Syomin, J. Kim, B.E. Koel, G.B. Ellison, Identification of adsorbed phenyl (C6H5) groups on metal surfaces: electron-induced dissociation of benzene on Au (111). J. Phys. Chem. B 105(35), 8387–8394 (2001). https://doi.org/10.1021/jp012069e
- J.J. Liu, L.Y. Zhang, J.J. Fan, B.C. Zhu, J.G. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuat. B: Chem. 331, 129425 (2021). https://doi.org/10.1016/j.snb.2020.129425
- N. Zhang, Y. Fan, Y. Lu, C. Li, J. Zhou et al., Synthesis of Au-decorated SnO2 crystallites with exposed (221) facets and their enhanced acetylene sensing properties. Sens. Actuat. B: Chem. 307, 127629 (2020). https://doi.org/10.1016/j.snb.2019.127629
- Y. Zhang, Y. Wang, L. Zhu, R. Zhang, J. Cao, Enhanced CO sensing performance of WO3 nanorods with PtAg nanops modification: a combined experimental and first-principle study. Vacuum 193, 110526 (2021). https://doi.org/10.1016/j.vacuum.2021.110526
- H. Liu, F. Wang, K. Hu, T. Li, Y. Yan, Pd4 cluster decorated SnO2 nanowire for detecting characteristic gases in oil-immersed transformers: a theoretical and experimental study. Appl. Surf. Sci. 590, 153122 (2022). https://doi.org/10.1016/j.apsusc.2022.153122
- X. Yang, Y. Wang, H. Fu, W. Wang, D. Han et al., Experimental and theoretical study on the excellent amine-sensing performance of Au decorated WO3 needle-like nanocomposites. Mater. Chem. Phys. 234, 122–132 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.070
- M. Liangruksa, P. Sukpoonprom, A. Junkaew, W. Photaram, C. Siriwong, Gas sensing properties of palladium-modified zinc oxide nanofilms: a DFT study. Appl. Surf. Sci. 544, 148868 (2021). https://doi.org/10.1016/j.apsusc.2020.148868
- X. Li, W. Liu, B. Huang, H. Liu, X. Li, Layered SnSe2 microflakes and SnSe2/SnO2 heterojunctions for low-temperature chemiresistive-type gas sensing. J. Mater. Chem. C 8(44), 15804–15815 (2020). https://doi.org/10.1039/D0TC02589E
- L. Chen, Z. Xiong, Y. Cui, H. Luo, Y. Gao, Adsorption of C6H6 and C7H8 onto pristine and metal (Pd, Pt)-mediated ZnO monolayers: electronic and gas sensing properties. Appl. Surf. Sci. 542, 148767 (2021). https://doi.org/10.1016/j.apsusc.2020.148767
- X. Wang, F. Yao, P. Xu, M. Li, H. Yu et al., Quantitative structure-activity relationship of nanowire adsorption to SO2 revealed by in situ TEM technique. Nano Lett. 21(4), 1679–1687 (2021). https://doi.org/10.1021/acs.nanolett.0c04481
- S. Steinhauer, J. Vernieres, J. Krainer, A. Kock, P. Grammatikopoulos et al., In situ chemoresistive sensing in the environmental TEM: probing functional devices and their nanoscale morphology. Nanoscale 9(22), 7380–7384 (2017). https://doi.org/10.1039/C6NR09322A
- X. Wang, M. Li, P. Xu, Y. Chen, H. Yu et al., In situ TEM technique revealing the deactivation mechanism of bimetallic Pd-Ag nanops in hydrogen sensors. Nano Lett. 22(7), 3157–3164 (2022). https://doi.org/10.1021/acs.nanolett.1c05018
- F. Hui, C. Li, Y. Chen, C. Wang, J. Huang et al., Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res. 13(11), 3019–3024 (2020). https://doi.org/10.1007/s12274-020-2966-7
- N. Morales-Flores, U. Pal, E. Sánchez Mora, Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanops in phenol degradation. Appl. Catal. A 394(1), 269–275 (2011). https://doi.org/10.1016/j.apcata.2011.01.011
- S.J. Young, Y.L. Chu, Platinum nanop-decorated ZnO nanorods improved the performance of methanol gas sensor. J. Electrochem. Soc. 167(14), 147508 (2020). https://doi.org/10.1149/1945-7111/abc4be
- X. Ke, G. Zhu, Y. Dai, Y. Shen, J. Yang et al., Fabrication of Pt-ZnO composite nanotube modified electrodes for the detection of H2O2. J. Electroanal. Chem. 817, 176–183 (2018). https://doi.org/10.1016/j.jelechem.2018.04.001
- C. Gu, H. Huang, J. Huang, Z. Jin, H. Zheng et al., Chlorobenzene sensor based on Pt-decorated porous single-crystalline ZnO nanosheets. Sens. Actuat. A: Phys. 252, 96–103 (2016). https://doi.org/10.1016/j.sna.2016.11.004
- J. Yuan, E.S.G. Choo, X. Tang, Y. Sheng, J. Ding et al., Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications. Nanotechnology 21(18), 185606 (2010). https://doi.org/10.1088/0957-4484/21/18/185606
- A. Yu, Z. Li, J. Yi, Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods. Sens. Actuat. B: Chem. 333, 129545 (2021). https://doi.org/10.1016/j.snb.2021.129545
- Z. Li, J. Yi, Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films. Sens. Actuat. B: Chem. 317, 128217 (2020). https://doi.org/10.1016/j.snb.2020.128217
- C. Qin, B. Wang, P. Li, L. Sun, C. Han et al., Metal-organic framework-derived highly dispersed Pt nanops-functionalized ZnO polyhedrons for ppb-level CO detection. Sens. Actuat. B: Chem. 331, 129433 (2021). https://doi.org/10.1016/j.snb.2021.129433
- Q. Zhou, L. Xu, Z. Kan, L. Yang, Z. Chang et al., A multi-platform sensor for selective and sensitive H2S monitoring: three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanops. J. Hazard. Mater. 426, 128075 (2022). https://doi.org/10.1016/j.jhazmat.2021.128075
- I.-D. Kim, E.-K. Jeon, S.-H. Choi, D.-K. Choi, H.L. Tuller, Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J. Electroceram. 25(2), 159–167 (2010). https://doi.org/10.1007/s10832-010-9607-6
- Y. Dai, W. Liu, E. Formo, Y. Sun, Y. Xia, Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 22(3), 326–338 (2011). https://doi.org/10.1002/pat.1839
- J. Shin, S.J. Choi, I. Lee, D.Y. Youn, C.O. Park et al., Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanops and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23(19), 2357–2367 (2013). https://doi.org/10.1002/adfm.201202729
- J.S. Jang, S.J. Choi, S.J. Kim, M. Hakim, I.D. Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26(26), 4740–4748 (2016). https://doi.org/10.1002/adfm.201600797
- S. Cao, W. Zeng, Z. Zhu, X. Peng, Synthesis of SnO2 nanostructures from 1D to 3D via a facile hydrothermal method and their gas sensing properties. J. Mater. Sci. Mater. El. 26(3), 1820–1826 (2015). https://doi.org/10.1007/s10854-014-2616-5
- Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Pt nanops decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sens. Actuat. B: Chem. 256, 656–664 (2018). https://doi.org/10.1016/j.snb.2017.09.206
- Z. Chen, K. Hu, P. Yang, X. Fu, Z. Wang et al., Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance. J. Alloy. Compd. 811, 152086 (2019). https://doi.org/10.1016/j.jallcom.2019.152086
- Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6(3), 470–506 (2019). https://doi.org/10.1039/C8MH01365A
- Y.P. Sun, Y.F. Zhao, H. Sun, F.C. Jia, P. Kumar et al., Synthesis and room-temperature H2S sensing of Pt nanop-functionalized SnO2 mesoporous nanoflowers. J. Alloy. Compd. 842, 155813 (2020). https://doi.org/10.1016/j.jallcom.2020.155813
- M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011). https://doi.org/10.1038/nmat3011
- Y. Zhang, H.L. Lu, T. Wang, Q.H. Ren, Y.Z. Gu et al., Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires. Nanoscale 7(37), 15462–15468 (2015). https://doi.org/10.1039/C5NR03656A
- Y. Xu, W. Zheng, X. Liu, L. Zhang, L. Zheng et al., Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 7(6), 1519–1527 (2020). https://doi.org/10.1039/D0MH00495B
- J. van den Broek, I.C. Weber, A.T. Guntner, S.E. Pratsinis, Highly selective gas sensing enabled by filters. Mater. Horiz. 8(3), 661–684 (2021). https://doi.org/10.1039/D0MH01453B
- J. van den Broek, A.T. Guntner, S.E. Pratsinis, Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sens. 3(3), 677–683 (2018). https://doi.org/10.1021/acssensors.7b00976
- S.N. Oliaee, A. Khodadadi, Y. Mortazavi, S. Alipour, Highly selective Pt/SnO2 sensor to propane or methane in presence of CO and ethanol, using gold nanops on Fe2O3 catalytic filter. Sens. Actuat. B: Chem. 147(2), 400–405 (2010). https://doi.org/10.1016/j.snb.2010.03.061
- F.S. Fateminia, Y. Mortazavi, A.A. Khodadadi, Au-promoted Ce-Zr catalytic filter for Pt/SnO2 sensor to selectively detect methane and ethanol in the presence of interfering indoor gases. Mat. Sci. Semicon. Proc. 90, 182–189 (2019). https://doi.org/10.1016/j.mssp.2018.10.014
- S. Dabbous, T. Ben Nasrallah, J. Ouerfelli, K. Boubaker, M. Amlouk et al., Study of structural and optical properties of sprayed WO3 thin films using enhanced characterization techniques along with the Boubaker Polynomials Expansion Scheme (BPES). J. Alloy. Compd. 487(1), 286–292 (2009). https://doi.org/10.1016/j.jallcom.2009.07.103
- L. Fan, N. Xu, H. Chen, J. Zhou, S. Deng, A millisecond response and microwatt power-consumption gas sensor: realization based on cross-stacked individual Pt-coated WO3 nanorods. Sens. Actuat. B: Chem. 346, 130545 (2021). https://doi.org/10.1016/j.snb.2021.130545
- Y. Nishijima, K. Enomonoto, S. Okazaki, T. Arakawa, A. Balčytis et al., Pulsed laser deposition of Pt-WO3 of hydrogen sensors under atmospheric conditions. Appl. Surf. Sci. 534, 147568 (2020). https://doi.org/10.1016/j.apsusc.2020.147568
- X. Yao, J. Zhao, J. Liu, F. Wang, L. Wu et al., H2S sensing material Pt-WO3 nanorods with excellent comprehensive performance. J. Alloy. Compd. 900, 163398 (2022). https://doi.org/10.1016/j.jallcom.2021.163398
- M.H. Kim, J.S. Jang, W.T. Koo, S.J. Choi, S.J. Kim et al., Bimodally porous WO3 microbelts functionalized with Pt catalysts for selective H2S sensors. ACS Appl. Mater. Interfaces 10(24), 20643–20651 (2018). https://doi.org/10.1021/acsami.8b00588
- S.J. Choi, K.H. Ku, B.J. Kim, I.-D. Kim, Novel templating route using Pt infiltrated block copolymer microps for catalytic Pt functionalized macroporous WO3 nanofibers and its application in breath pattern recognition. ACS Sens. 1(9), 1124–1131 (2016). https://doi.org/10.1021/acssensors.6b00422
- H. Liu, Y. Xu, X. Zhang, W. Zhao, A. Ming et al., Enhanced NO2 sensing properties of Pt/WO3 films grown by glancing angle deposition. Ceram. Int. 46(13), 21388–21394 (2020). https://doi.org/10.1016/j.ceramint.2020.05.236
- J. Chao, Z. Liu, S. Xing, Q. Gao, J. Zhao, Enhanced ammonia detection of gas sensors based on square-like tungsten oxide loaded by Pt nanops. Sens. Actuat. B: Chem. 347, 130621 (2021). https://doi.org/10.1016/j.snb.2021.130621
- C. Li, D. Zhang, S. Han, X. Liu, T. Tang et al., Synthesis, electronic properties, and applications of indium oxide nanowires. Ann. N. Y. Acad. Sci. 1006(1), 104–121 (2003). https://doi.org/10.1196/annals.1292.007
- Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang et al., Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuat. B: Chem. 260, 927–936 (2018). https://doi.org/10.1016/j.snb.2018.01.114
- S.-B. Choi, J.K. Lee, W.S. Lee, T.G. Ko, C. Lee, Optimization of the Pt nanop size and calcination temperature for enhanced sensing performance of Pt-decorated In2O3 nanorods. J. Korean Phys. Soc. 73(10), 1444–1451 (2018). https://doi.org/10.3938/jkps.73.1444
- W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman et al., Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuat. B: Chem. 298, 126871 (2019). https://doi.org/10.1016/j.snb.2019.126871
- W. Liu, L. Xu, K. Sheng, X. Zhou, B. Dong et al., A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. Npg. Asia. Mater. 10(4), 293–308 (2018). https://doi.org/10.1038/s41427-018-0029-2
- J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces 5(15), 7410–7416 (2013). https://doi.org/10.1021/am4017347
- C.H. Wu, Z. Zhu, H.M. Chang, Z.-X. Jiang, C.Y. Hsieh et al., Pt@NiO core–shell nanostructure for a hydrogen gas sensor. J. Alloy. Compd. 814, 151815 (2020). https://doi.org/10.1016/j.jallcom.2019.151815
- H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, T.C. Chou et al., Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens. Actuat. B: Chem. 256, 962–967 (2018). https://doi.org/10.1016/j.snb.2017.10.032
- Y. Liang, Y. Yang, H. Zhou, C. Zou, K. Xu et al., Active {1 1 1}-faceted ultra-thin NiO single-crystalline porous nanosheets supported highly dispersed Pt nanops for synergetic enhancement of gas sensing and photocatalytic performance. Appl. Surf. Sci. 471, 124–133 (2019). https://doi.org/10.1016/j.apsusc.2018.12.012
- S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang et al., An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuat. B: Chem. 290, 59–67 (2019). https://doi.org/10.1016/j.snb.2019.03.082
- L. Guo, N. Xie, C. Wang, X. Kou, M. Ding et al., Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning. Sens. Actuat. B: Chem. 255, 1015–1023 (2018). https://doi.org/10.1016/j.snb.2017.07.055
- J.E. Lee, D.Y. Kim, H.-K. Lee, H.J. Park, A. Ma et al., Sonochemical synthesis of HKUST-1-based CuO decorated with Pt nanops for formaldehyde gas-sensor applications. Sens. Actuat. B: Chem. 292, 289–296 (2019). https://doi.org/10.1016/j.snb.2019.04.062
- W. Li, S. Ma, Y. Li, G. Yang, Y. Mao et al., Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers. Sens. Actuat. B: Chem. 211, 392–402 (2015). https://doi.org/10.1016/j.snb.2015.01.090
- J.-H. Kim, S.S. Kim, Realization of ppb-scale toluene-sensing abilities with Pt-functionalized SnO2–ZnO core–shell nanowires. ACS Appl. Mater. Interfaces 7(31), 17199–17208 (2015). https://doi.org/10.1021/acsami.5b04066
- X.Y. Wu, L.Y. Zhu, J. Sun, K.Y. Zhu, X.Y. Miao et al., Pt nanop-modified SnO2-ZnO core–shell nanosheets on microelectromechanical systems for enhanced H2S detection. ACS Appl. Nano Mater. 5(5), 6627–6636 (2022). https://doi.org/10.1021/acsanm.2c00671
- B. Liu, Y. Li, L. Gao, F. Zhou, G. Duan, Ultrafine Pt NPs-decorated SnO2/α-Fe2O3 hollow nanospheres with highly enhanced sensing performances for styrene. J. Hazard. Mater. 358, 355–365 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.021
- B.-Y. Chang, C.-Y. Wang, H.-F. Lai, R.-J. Wu, M. Chavali, Evaluation of Pt/In2O3-WO3 nano powder ultra-trace level NO gas sensor. J. Taiwan Inst. Chem. Eng. 45(3), 1056–1064 (2014). https://doi.org/10.1016/j.jtice.2013.09.002
- L. Guo, F. Chen, N. Xie, X. Kou, C. Wang et al., Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuat. B: Chem. 272, 185–194 (2018). https://doi.org/10.1016/j.snb.2018.05.161
- J. Gao, B.S. Wu, C.L. Cao, Z.L. Zhan, W. Ma et al., Unraveling the dynamic evolution of Pd species on Pd-loaded ZnO nanorods for different hydrogen sensing behaviors. ACS Sustain. Chem. Eng. 9(18), 6370–6379 (2021). https://doi.org/10.1021/acssuschemeng.1c00652
- P. Cao, Z. Yang, S.T. Navale, S. Han, X. Liu et al., Ethanol sensing behavior of Pd-nanops decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuat. B: Chem. 298, 126850 (2019). https://doi.org/10.1016/j.snb.2019.126850
- D. Meng, D.Y. Liu, G.S. Wang, Y.B. Shen, X.G. San et al., In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Appl. Surf. Sci. 463, 348–356 (2019). https://doi.org/10.1016/j.apsusc.2018.08.228
- R.S. Chen, J. Wang, S.R. Luo, L. Xiang, W.W. Li et al., Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl. Catal. B 264, 118554 (2020). https://doi.org/10.1016/j.apcatb.2019.118554
- S.R. Luo, R.S. Chen, J. Wang, D. Xie, L. Xiang, Designed synthesis of ZnO/Pd@ZIF-8 hybrid structure for highly sensitive and selective detection of methane in the presence of NO2. Sens. Actuat. B: Chem. 344, 130220 (2021). https://doi.org/10.1016/j.snb.2021.130220
- X.X. Chen, Y.B. Shen, P.F. Zhou, S.K. Zhao, X.X. Zhong et al., NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sens. Actuat. B: Chem. 280, 151–161 (2019). https://doi.org/10.1016/j.snb.2018.10.063
- O. Lupan, V. Postica, F. Labat, I. Ciofini, T. Pauporte et al., Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuat. B: Chem. 254, 1259–1270 (2018). https://doi.org/10.1016/j.snb.2017.07.200
- N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuat. B: Chem. 5(1–4), 7–19 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
- M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanops in chemiresistors: does the nanoscale matter? Small 2(1), 36–50 (2006). https://doi.org/10.1002/smll.200500261
- A.S.M.I. Uddin, U. Yaqoob, G.S. Chung, Dissolved hydrogen gas analysis in transformer oil using Pd catalyst decorated on ZnO nanorod array. Sens. Actuat. B: Chem. 226, 90–95 (2016). https://doi.org/10.1016/j.snb.2015.11.110
- T.R. Rashid, D.T. Phan, G.S. Chung, A flexible hydrogen sensor based on Pd nanops decorated ZnO nanorods grown on polyimide tape. Sens. Actuat. B: Chem. 185, 777–784 (2013). https://doi.org/10.1016/j.snb.2013.01.015
- J.H. Kim, A. Mirzaei, M. Osada, H.W. Kim, S.S. Kim, Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets. Sens. Actuat. B: Chem. 329, 129222 (2021). https://doi.org/10.1016/j.snb.2020.129222
- Y.H. Xiao, L.Z. Lu, A.Q. Zhang, Y.H. Zhang, L. Sun et al., Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanops. ACS Appl. Mater. Interfaces 4(8), 3797–3804 (2012). https://doi.org/10.1021/am3010303
- K. Yuan, C.Y. Wang, L.Y. Zhu, Q. Cao, J.H. Yang et al., Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 12(12), 14095–14104 (2020). https://doi.org/10.1021/acsami.9b18863
- C.M. Hung, L.V. Duy, D.T.T. Le, H. Nguyen, N.V. Duy et al., ZnO coral-like nanoplates decorated with Pd nanops for enhanced VOC gas sensing. J. Sci.-Adv. Mater. Dev. 6(3), 453–461 (2021). https://doi.org/10.1016/j.jsamd.2021.05.005
- T.T.D. Nguyen, D.V. Dao, D.S. Kim, H.J. Lee, S.Y. Oh et al., Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanops. J. Colloid Interf. Sci. 587, 252–259 (2021). https://doi.org/10.1016/j.jcis.2020.12.017
- L. Teng, Y. Liu, M. Ikram, Z. Liu, M. Ullah et al., One-step synthesis of palladium oxide-functionalized tin dioxide nanotubes: characterization and high nitrogen dioxide gas sensing performance at room temperature. J. Colloid Interf. Sci. 537, 79–90 (2019). https://doi.org/10.1016/j.jcis.2018.11.001
- N. Xie, L.L. Guo, F. Chen, X.Y. Kou, C. Wang et al., Enhanced sensing properties of SnO2 nanofibers with a novel structure by carbonization. Sens. Actuat. B: Chem. 271, 44–53 (2018). https://doi.org/10.1016/j.snb.2018.05.039
- D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 20(24), 4258–4264 (2010). https://doi.org/10.1002/adfm.201001251
- J.H. Lee, M.S. Park, H. Jung, Y.S. Choe, W. Kim et al., Selective C2H2 detection with high sensitivity using SnO2 nanorod based gas sensors integrated with a gas chromatography. Sens. Actuat. B: Chem. 307, 127598 (2020). https://doi.org/10.1016/j.snb.2019.127598
- S.H. Lu, Y.Z. Zhang, J.Y. Liu, H.Y. Li, Z.X. Hu et al., Sensitive H2 gas sensors based on SnO2 nanowires. Sens. Actuat. B: Chem. 345, 130334 (2021). https://doi.org/10.1016/j.snb.2021.130334
- Z. Cai, S. Park, Synthesis of Pd nanop-decorated SnO2 nanowires and determination of the optimum quantity of Pd nanops for highly sensitive and selective hydrogen gas sensor. Sens. Actuat. B: Chem. 322, 128651 (2020). https://doi.org/10.1016/j.snb.2020.128651
- M.S. Choi, A. Mirzaei, H.G. Na, S. Kim, D.E. Kim et al., Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2−x nanops for selective NO2 gas sensing. Sens. Actuat. B: Chem. 340, 129984 (2021). https://doi.org/10.1016/j.snb.2021.129984
- N.J. Pineau, S.D. Keller, A.T. Guntner, S.E. Pratsinis, Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors. Microchim. Acta 187(1), 1–9 (2020). https://doi.org/10.1007/s00604-019-4080-7
- P.Y. Duan, H.H. Xiao, Z.Y. Wang, Q.K. Peng, K.Q. Jin et al., Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement. Sens. Actuat. B: Chem. 346, 130557 (2021). https://doi.org/10.1016/j.snb.2021.130557
- Z.C. Cai, E. Goo, S. Park, Hydrogen sensing performance and its enhanced sensing mechanisms of hollow structured-SnO2 nanospheres activated by noble metal nanops. J. Mater. Res. Technol. 15, 1716–1731 (2021). https://doi.org/10.1016/j.jmrt.2021.09.022
- K. Suematsu, Y. Shin, Z.Q. Hua, K. Yoshida, M. Yuasa et al., Nanop cluster gas sensor: controlled clustering of SnO2 nanops for highly sensitive toluene detection. ACS Appl. Mater. Interfaces 6(7), 5319–5326 (2014). https://doi.org/10.1021/am500944a
- N. Ma, K. Suematsu, M. Yuasa, T. Kida, K. Shimanoe, Effect of water vapor on Pd-loaded SnO2 nanops gas sensor. ACS Appl. Mater. Interfaces 7(10), 5863–5869 (2015). https://doi.org/10.1021/am509082w
- I.C. Weber, P. Ruedi, P. Sot, A.T. Guntner, S.E. Pratsinis, Handheld device for selective benzene sensing over toluene and xylene. Adv. Sci. 9(4), 2103853 (2022). https://doi.org/10.1002/advs.202103853
- J. van den Broek, S. Abegg, S.E. Pratsinis, A.T. Guntner, Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 10, 4220 (2019). https://doi.org/10.1038/s41467-019-12223-4
- S. Abegg, L. Magro, J. van den Broek, S.E. Pratsinis, A.T. Guntner, A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. Nat. Food 1(6), 351–354 (2020). https://doi.org/10.1038/s43016-020-0095-9
- J. van den Broek, D. Bischof, N. Derron, S. Abegg, P.A. Gerber et al., Screening methanol poisoning with a portable breath detector. Anal. Chem. 93(2), 1170–1178 (2021). https://doi.org/10.1021/acs.analchem.0c04230
- J. van den Broek, D.K. Cerrejon, S.E. Pratsinis, A.T. Guntner, Selective formaldehyde detection at ppb in indoor air with a portable sensor. J. Hazard. Mater. 399, 123052 (2020). https://doi.org/10.1016/j.jhazmat.2020.123052
- Z.J. Han, J. Ren, J.J. Zhou, S.Y. Zhang, Z.L. Zhang et al., Multilayer porous Pd-WO3 composite thin films prepared by sol-gel process for hydrogen sensing. Int. J. Hydrogen Energy 45(11), 7223–7233 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.149
- A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, M.R. Gholami, Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int. J. Hydrogen Energy 39(15), 8169–8179 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.117
- R. Zhou, X.P. Lin, D.Y. Xue, F.Y. Zong, J.M. Zhang et al., Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures. Sens. Actuat. B: Chem. 260, 900–907 (2018). https://doi.org/10.1016/j.snb.2018.01.104
- A. Marikutsa, L.L. Yang, M. Rumyantseva, M. Batuk, J. Hadermann et al., Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts. Sens. Actuat. B: Chem. 277, 336–346 (2018). https://doi.org/10.1016/j.snb.2018.09.004
- S.H. Xiao, B. Liu, R. Zhou, Z.W. Liu, Q.H. Li et al., Room-temperature H2 sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanops. Sens. Actuat. B: Chem. 254, 966–972 (2018). https://doi.org/10.1016/j.snb.2017.07.169
- C. Wang, Y.Q. Zhang, X.Y. Sun, Y.F. Sun, F.M. Liu et al., Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sens. Actuat. B: Chem. 321, 128629 (2020). https://doi.org/10.1016/j.snb.2020.128629
- Y.Z. Dai, S.Y. Liang, C. Lv, G. Wang, H. Xia et al., Controllably fabricated single microwires from Pd-WO3•x H2O nanops by femtosecond laser for faster response ammonia sensors at room temperature. Sens. Actuat. B: Chem. 316, 128122 (2020). https://doi.org/10.1016/j.snb.2020.128122
- N.H. Kim, S.J. Choi, D.J. Yang, J. Bae, J. Park et al., Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuat. B: Chem. 193, 574–581 (2014). https://doi.org/10.1016/j.snb.2013.12.011
- S.J. Kim, S.J. Choi, J.S. Jang, N.H. Kim, M. Hakim et al., Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016). https://doi.org/10.1021/acsnano.6b01196
- X.J. Liu, K.R. Zhao, X.L. Sun, X.P. Duan, C. Zhang et al., Electrochemical sensor to environmental pollutant of acetone based on Pd-loaded on mesoporous In2O3 architecture. Sens. Actuat. B: Chem. 290, 217–225 (2019). https://doi.org/10.1016/j.snb.2019.03.139
- P.F. Cheng, Y.L. Wang, C. Wang, J. Ma, L.P. Xu et al., Investigation of doping effects of different noble metals for ethanol gas sensors based on mesoporous In2O3. Nanotechnology 32(30), 305503 (2021). https://doi.org/10.1088/1361-6528/abf453
- B. Liu, Y.M. Xu, K. Li, H. Wang, L. Gao et al., Pd-catalyzed reaction-producing intermediate S on a Pd/In2O3 Surface: a key to achieve the enhanced CS2-sensing performances. ACS Appl. Mater. Interfaces 11(18), 16838–16846 (2019). https://doi.org/10.1021/acsami.9b01638
- Z.H. Wang, G.L. Men, R.X. Zhang, F.B. Gu, D.M. Han, Loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature. Sens. Actuat. B: Chem. 263, 218–228 (2018). https://doi.org/10.1016/j.snb.2018.02.105
- K. Inyawilert, A. Wisitsoraat, C. Liewhiran, A. Tuantranont, S. Phanichphant, H2 gas sensor based on PdOx-doped In2O3 nanops synthesized by flame spray pyrolysis. Appl. Surf. Sci. 475, 191–203 (2019). https://doi.org/10.1016/j.apsusc.2018.12.274
- X.J. Liu, K.R. Zhao, X.L. Sun, C. Zhang, X.P. Duan et al., Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanops-functionalized In2O3 composites. Sens. Actuat. B: Chem. 285, 1–10 (2019). https://doi.org/10.1016/j.snb.2019.01.029
- F.J. Pan, H. Lin, H.Z. Zhai, Z. Miao, Y. Zhang et al., Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuat. B: Chem. 261, 451–459 (2018). https://doi.org/10.1016/j.snb.2018.01.173
- J. Moon, J.A. Park, S.J. Lee, T. Zyung, I.D. Kim, Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuat. B: Chem. 149(1), 301–305 (2010). https://doi.org/10.1016/j.snb.2010.06.033
- D. Wang, J.L. Yang, L.P. Bao, Y. Cheng, L. Tian et al., Pd nanocrystal sensitization two-dimension porous TiO2 for instantaneous and high efficient H2 detection. J. Colloid Interf. Sci. 597, 29–38 (2021). https://doi.org/10.1016/j.jcis.2021.03.107
- S. Mao, H. Zhou, S.H. Wu, J.J. Yang, Z.Y. Li et al., High performance hydrogen sensor based on Pd/TiO2 composite film. Int. J. Hydrogen Energy 43(50), 22727–22732 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.094
- H.Y. Yang, Q. Lei, Z.T. Zhao, Y.J. Sun, P.W. Li et al., Electrospinning encapsulation of Pd nanops into alpha-Fe2O3 nanofibers windows enhanced acetone sensing. IEEE Sens. J. 21(14), 15944–15951 (2021). https://doi.org/10.1109/JSEN.2021.3076216
- B. Sharma, J.S. Sung, A.A. Kadam, J.H. Myung, Adjustable n-p-n gas sensor response of Fe3O4-HNTs doped Pd nanocomposites for hydrogen sensors. Appl. Surf. Sci. 530, 147272 (2020). https://doi.org/10.1016/j.apsusc.2020.147272
- Q. Hu, B.Y. Huang, Y. Li, S.M. Zhang, Y.X. Zhang et al., Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/Ce4+ mole ratio via Pd doping. Sens. Actuat. B: Chem. 307, 127638 (2020). https://doi.org/10.1016/j.snb.2019.127638
- K. Mikami, Y. Kido, Y. Akaishi, A. Quitain, T. Kida, Synthesis of Cu2O/CuO nanocrystals and their application to H2S sensing. Sensors-Basel 19(1), 211 (2019). https://doi.org/10.3390/s19010211
- H. Nha, P.V. Tong, N.V. Duy, C.M. Hung, N.D. Hoa, Facile synthesis of Pd-CuO nanoplates with enhanced SO2 and H2 gas-sensing characteristics. J. Electron. Mater. 50(5), 2767–2778 (2021). https://doi.org/10.1007/s11664-021-08799-7
- G.T. Yuan, Y.H. Zhong, Y.F. Chen, Q.Q. Zhuo, X.H. Sun, Highly sensitive and fast-response ethanol sensing of porous Co3O4 hollow polyhedra via palladium reined spillover effect. RSC Adv. 12(11), 6725–6731 (2022). https://doi.org/10.1039/D1RA09352E
- K. Koga, Electronic and catalytic effects of single-atom Pd additives on the hydrogen sensing properties of Co3O4 nanop films. ACS Appl. Mater. Interfaces 12(18), 20806–20823 (2020). https://doi.org/10.1021/acsami.9b23290
- W.T. Koo, S. Yu, S.J. Choi, J.S. Jang, J.Y. Cheong et al., Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS Appl. Mater. Interfaces 9(9), 8201–8210 (2017). https://doi.org/10.1021/acsami.7b01284
- C.J. Dong, M. Jiang, Y. Tao, Y.Y. Shen, Y.X. Lu et al., Nonaqueous synthesis of Pd-functionalized SnO2/In2O3 nanocomposites for excellent butane sensing properties. Sens. Actuat. B: Chem. 257, 419–426 (2018). https://doi.org/10.1016/j.snb.2017.10.175
- S. Kundu, A. Kumar, Low concentration ammonia sensing performance of Pd incorporated indium tin oxide. J. Alloy Compd. 780, 245–255 (2019). https://doi.org/10.1016/j.jallcom.2018.11.201
- Y.M. Jo, K. Lim, H.J. Choi, J.W. Yoon, S.Y. Kim et al., 2D metal-organic framework derived co-loading of Co3O4 and PdO nanocatalysts on In2O3 hollow spheres for tailored design of high-performance breath acetone sensors. Sens. Actuat. B: Chem. 325, 128821 (2020). https://doi.org/10.1016/j.snb.2020.128821
- S.M. Kim, H.J. Kim, H.J. Jung, J.Y. Park, T.J. Seok et al., High-performance, transparent thin film hydrogen gas sensor using 2D electron gas at interface of oxide thin film heterostructure grown by atomic layer deposition. Adv. Funct. Mater. 29(7), 1807760 (2019). https://doi.org/10.1002/adfm.201807760
- Y.H. Zhang, C.N. Wang, F.L. Gong, P.Y. Wang, U. Guharoy et al., Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation. J. Hazard. Mater. 388, 122069 (2020). https://doi.org/10.1016/j.jhazmat.2020.122069
- P. Li, Z.W. Zhang, Z.H. Zhuang, J.H. Guo, Z.Y. Fang et al., Pd-doping-induced oxygen vacancies in one-dimensional tungsten oxide nanowires for enhanced acetone gas sensing. Anal. Chem. 93(20), 7465–7472 (2021). https://doi.org/10.1021/acs.analchem.1c00568
- A.J. Yang, W.J. Li, J.F. Chu, D.W. Wang, H. Yuan et al., Enhanced sensing of sulfur hexafluoride decomposition components based on noble-metal-functionalized cerium oxide. Mater. Design 187, 108391 (2020). https://doi.org/10.1016/j.matdes.2019.108391
- T.T.D. Nguyen, D. Van Dao, I.H. Lee, Y.T. Yu, S.Y. Oh, High response and selectivity toward hydrogen gas detection by In2O3 doped Pd@ZnO core-shell nanops. J. Alloy Compd. 854, 157280 (2021). https://doi.org/10.1016/j.jallcom.2020.157280
- G. Bae, M. Kim, A. Lee, S. Ji, M. Jang et al., Nanometric lamination of zinc oxide nanofilms with gold nanops for self-perceived periodontal disease sensors. Compos. B: Eng. 230, 109490 (2022). https://doi.org/10.1016/j.compositesb.2021.109490
- Q.A. Drmosh, Z.H. Yamani, A.K. Mohamedkhair, A.H.Y. Hendi, M.K. Hossain et al., Gold nanops incorporated SnO2 thin film: highly responsive and selective detection of NO2 at room temperature. Mater. Lett. 214, 283–286 (2018). https://doi.org/10.1016/j.matlet.2017.12.013
- E. Dai, S. Wu, Y. Ye, Y. Cai, J. Liu et al., Highly dispersed Au nanops decorated WO3 nanoplatelets: laser-assisted synthesis and superior performance for detecting ethanol vapor. J. Colloid Interface Sci. 514, 165–171 (2018). https://doi.org/10.1016/j.jcis.2017.11.081
- D. Xue, Z. Zhang, Au-sensitized WO3 nanops synthesized and their enhanced acetone sensing properties. Funct. Mater. Lett. 11(04), 1850071 (2018). https://doi.org/10.1142/S1793604718500716
- S.-J. Young, Y.-L. Chu, Hydrothermal synthesis and improved ch3oh-sensing performance of ZnO nanorods with adsorbed Au NPs. IEEE. T. Electron. Dev. 68(4), 1886–1891 (2021). https://doi.org/10.1109/TED.2021.3060354
- Z.Q. Zheng, B. Wang, J.D. Yao, G.W. Yang, Light-controlled C2H2 gas sensing based on Au-ZnO nanowires with plasmon-enhanced sensitivity at room temperature. J. Mater. Chem. C. 3(27), 7067–7074 (2015). https://doi.org/10.1039/C5TC01024A
- J. Guo, S. Wang, Z. Lin, L. Liu, Y. Hui, Ultrasensitive acetone sensor based on holey zinc oxide nanosheets doped by gold nanops. Mater. Lett. 302, 130443 (2021). https://doi.org/10.1016/j.matlet.2021.130443
- Y. Cui, M. Zhang, X. Li, B. Wang, R. Wang, Investigation on synthesis and excellent gas-sensing properties of hierarchical Au-loaded SnO2 nanoflowers. J. Mater. Res. 34(17), 2944–2954 (2019). https://doi.org/10.1557/jmr.2019.249
- C. Chen, Q. Zhang, G. Xie, M. Yao, H. Pan et al., Enhancing visible light-activated NO2 sensing properties of Au NPs decorated ZnO nanorods by localized surface plasmon resonance and oxygen vacancies. Mater. Res. Express 7(1), 015924 (2020). https://doi.org/10.1088/2053-1591/ab6b64
- A. Kaiser, E. Torres Ceja, Y. Liu, F. Huber, R. Muller et al., H2S sensing for breath analysis with Au functionalized ZnO nanowires. Nanotechnology 32(20), 205505 (2021). https://doi.org/10.1088/1361-6528/abe004
- G. Korotcenkov, Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials 10(7), 1392 (2020). https://doi.org/10.3390/nano10071392
- J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanops. Sens. Actuat. B: Chem. 199, 339–345 (2014). https://doi.org/10.1016/j.snb.2014.04.010
- J. Li, Y. Yang, Q. Wang, X. Cheng, Y. Luo et al., Design of size-controlled Au nanops loaded on the surface of ZnO for ethanol detection. CrystEngComm 23(4), 783–792 (2021). https://doi.org/10.1039/D0CE01318H
- J. Miao, J.Y.S. Lin, Nanometer-thick films of aligned ZnO nanowires sensitized with Au nanops for few-ppb-level acetylene detection. ACS Appl. Nano Mater. 3(9), 9174–9184 (2020). https://doi.org/10.1021/acsanm.0c01807
- N.M. Vuong, L.H. Than, T.H. Phan, H.N. Hieu, N. Van Nghia et al., Ultra responsive and highly selective ethanol gas sensor based on Au nanops embedded ZnO hierarchical structures. J. Electrochem. Soc. 168(2), 027503 (2021). https://doi.org/10.1149/1945-7111/abdde3
- H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi et al., Metal-oxide nanowire molecular sensors and their promises. Chemosensors 9(2), 41 (2021). https://doi.org/10.3390/chemosensors9020041
- Y. Nagarjuna, Y.J. Hsiao, Au doping ZnO nanosheets sensing properties of ethanol gas prepared on MEMS device. Coatings 10(10), 945 (2020). https://doi.org/10.3390/coatings10100945
- A.M. Eyvaraghi, E. Mohammadi, N. Manavizadeh, E. Nadimi, L. Ma’mani et al., Experimental and density functional theory computational studies on highly sensitive ethanol gas sensor based on Au-decorated ZnO nanops. Thin Solid Films 741, 139014 (2022). https://doi.org/10.1016/j.tsf.2021.139014
- X.J. Wang, W. Wang, Y.L. Liu, Enhanced acetone sensing performance of Au nanops functionalized flower-like ZnO. Sens. Actuat. B: Chem. 168, 39–45 (2012). https://doi.org/10.1016/j.snb.2012.01.006
- E.P. Nascimento, H.C.T. Firmino, G.A. Neves, R.R. Menezes, A review of recent developments in tin dioxide nanostructured materials for gas sensors. Ceram. Int. 48(6), 7405–7440 (2022). https://doi.org/10.1016/j.ceramint.2021.12.123
- Z. Cai, E. Goo, S. Park, Synthesis of tin dioxide (SnO2) hollow nanospheres and its ethanol-sensing performance augmented by gold nanop decoration. J. Alloy. Compd. 883, 160868 (2021). https://doi.org/10.1016/j.jallcom.2021.160868
- Y. Bing, Y. Zeng, S. Feng, L. Qiao, Y. Wang et al., Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection. Sens. Actuat. B: Chem. 227, 362–372 (2016). https://doi.org/10.1016/j.snb.2015.12.065
- J. Guo, J. Zhang, H. Gong, D. Ju, B. Cao, Au nanop-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuat. B: Chem. 226, 266–272 (2016). https://doi.org/10.1016/j.snb.2015.11.140
- D. Xue, Z. Zhang, Y. Wang, Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanops. Mater. Chem. Phys. 237, 121864 (2019). https://doi.org/10.1016/j.matchemphys.2019.121864
- H.J. Han, S.H. Cho, S. Han, J.S. Jang, G.R. Lee et al., Synergistic integration of chemo-resistive and SERS sensing for label-free multiplex gas detection. Adv. Mater. 33(44), e2105199 (2021). https://doi.org/10.1002/adma.202105199
- C. Feng, F. Teng, Y. Xu, Y. Zhang, T. Fan et al., Au-nanop-decorated SnO2 nanorod sensor with enhanced xylene-sensing performance. Int. J. Appl. Ceram. Technol. 15(3), 742–750 (2017). https://doi.org/10.1111/ijac.12823
- Z. Yang, Y. Zhang, L. Zhao, T. Fei, S. Liu et al., The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO2 for ppb-level DMMP sensing. J. Colloid Interf. Sci. 608(Pt 3), 2703–2717 (2022). https://doi.org/10.1016/j.jcis.2021.10.192
- X. Lian, Y. Li, J. Zhu, Y. Zou, D. An et al., Fabrication of Au-decorated SnO2 nanops with enhanced n-buthanol gas sensing properties. Mater. Sci. Semicond. Process. 101, 198–205 (2019). https://doi.org/10.1016/j.mssp.2019.06.008
- K. Lim, Y.M. Jo, J.W. Yoon, J.S. Kim, D.J. Lee et al., A transparent nanopatterned chemiresistor: visible-light plasmonic sensor for trace-level NO2 detection at room temperature. Small 17(20), e2100438 (2021). https://doi.org/10.1002/smll.202100438
- L. Yin, D. Chen, H. Zhang, G. Shao, B. Fan et al., In situ formation of Au/SnO2 nanocrystals on WO3 nanoplates as excellent gas-sensing materials for H2S detection. Mater. Chem. Phys. 148(3), 1099–1107 (2014). https://doi.org/10.1016/j.matchemphys.2014.09.025
- T.H. Kim, A. Hasani, L.V. Quyet, Y. Kim, S.Y. Park et al., NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process. Sens. Actuat. B: Chem. 286, 512–520 (2019). https://doi.org/10.1016/j.snb.2019.02.009
- S. Zeb, G. Sun, Y. Nie, Y. Cui, X. Jiang, Synthesis of highly oriented WO3 nanowire bundles decorated with Au for gas sensing application. Sens. Actuat. B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.128439
- L. Yin, D. Chen, B. Fan, H. Lu, H. Wang et al., Enhanced selective response to nitric oxide (NO) of Au-modified tungsten trioxide nanoplates. Mater. Chem. Phys. 143(1), 461–469 (2013). https://doi.org/10.1016/j.matchemphys.2013.09.028
- J. Dummer, M. Storer, M. Swanney, M. McEwan, A. Scott-Thomas et al., Analysis of biogenic volatile organic compounds in human health and disease. TrAC-Trend. Anal. Chem. 30(7), 960–967 (2011). https://doi.org/10.1016/j.trac.2011.03.011
- X. Yang, V. Salles, Y.V. Kaneti, M. Liu, M. Maillard et al., Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens. Actuat. B: Chem. 220, 1112–1119 (2015). https://doi.org/10.1016/j.snb.2015.05.121
- J.-S. Niu, I.P. Liu, C. Lee, K.-W. Lin, J.-H. Tsai et al., Study of a highly sensitive formaldehyde sensor prepared with a tungsten trioxide thin film and gold nanops. IEEE T. Electron Dev. 68(12), 6422–6429 (2021). https://doi.org/10.1109/TED.2021.3120696
- H. Zhang, Y. Wang, X. Zhu, Y. Li, W. Cai, Bilayer Au nanop-decorated WO3 porous thin films: on-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sens. Actuat. B: Chem. 280, 192–200 (2019). https://doi.org/10.1016/j.snb.2018.10.065
- Y. Wang, S. Zhang, C. Huang, F. Qu, D. Yao et al., Mesoporous WO3 modified by Au nanops for enhanced trimethylamine gas sensing properties. Dalton Trans. 50(3), 970–978 (2021). https://doi.org/10.1039/D0DT03131C
- S.W. Park, S.Y. Jeong, Y.K. Moon, K. Kim, J.W. Yoon et al., Highly selective and sensitive detection of breath isoprene by tailored gas reforming: a synergistic combination of macroporous WO3 spheres and Au catalysts. ACS Appl. Mater. Interfaces 14(9), 11587–11596 (2022). https://doi.org/10.1021/acsami.1c19766
- Y.-K. Lv, B.-H. Yao, Z.-Q. Liu, S. Liang, Q.-C. Liu et al., Hierarchical Au-loaded WO3 hollow microspheres with high sensitive and selective properties to toluene and xylene. IEEE Sens. J. 19(14), 5413–5420 (2019). https://doi.org/10.1109/JSEN.2019.2906765
- X. Zhang, B. Dong, W. Liu, X. Zhou, M. Liu et al., Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuat. B: Chem. 320, 128405 (2020). https://doi.org/10.1016/j.snb.2020.128405
- M. Punginsang, D. Zappa, E. Comini, A. Wisitsoraat, G. Sberveglieri et al., Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Appl. Surf. Sci. 571, 151262 (2022). https://doi.org/10.1016/j.apsusc.2021.151262
- Q. Lei, H. Li, H. Zhang, J. Wang, W. Fan et al., Three-dimensional hierarchical CuO gas sensor modified by Au nanops. J. Semicond. 40(2), 022101 (2019). https://doi.org/10.1088/1674-4926/40/2/022101
- H. Yang, R. Zhou, Y. Sun, P. Li, W. Zhang et al., Optimization and gas sensing properties of Au nanop modified α-Fe2O3 nanodisk structures for highly sensitive acetone detection. New J. Chem. 44(37), 16174–16184 (2020). https://doi.org/10.1039/D0NJ03111A
- L. Wang, S. Wang, H. Fu, Y. Wang, K. Yu, Synthesis of Au nanops functionalized 1D α-MoO3 nanobelts and their gas sensing properties. NANO 13(10), 1850115 (2018). https://doi.org/10.1142/S1793292018501151
- H. Fu, Z. Wu, X. Yang, P. He, X. An et al., Ultra-high sensitivity and selectivity of Au nanops modified MoO3 nanobelts towards 1-butylamine. Appl. Surf. Sci. 542, 148721 (2021). https://doi.org/10.1016/j.apsusc.2020.148721
- X. Yang, W. Wang, C. Wang, H. Xie, H. Fu et al., Synthesis of Au decorated V2O5 microflowers with enhanced sensing properties towards amines. Powder Technol. 339, 408–418 (2018). https://doi.org/10.1016/j.powtec.2018.08.024
- M.I. Nemufulwi, H.C. Swart, G.H. Mhlongo, Evaluation of the effects of Au addition into ZnFe2O4 nanostructures on acetone detection capabilities. Mater. Res. Bull. 142, 111395 (2021). https://doi.org/10.1016/j.materresbull.2021.111395
- X. Song, Q. Xu, T. Zhang, B. Song, C. Li et al., Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous α-Fe2O3 nanorods directly grown on flat substrate. Sens. Actuat. B: Chem. 268, 170–181 (2018). https://doi.org/10.1016/j.snb.2018.04.096
- Y. Zhang, D. Li, L. Qin, D. Liu, Y. Liu et al., Preparation of Au-loaded TiO2 pecan-kernel-like and its enhanced toluene sensing performance. Sens. Actuat. B: Chem. 255, 2240–2247 (2018). https://doi.org/10.1016/j.snb.2017.09.023
- N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S. Gurbatov et al., Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanops. Appl. Surf. Sci. 507, 145169 (2020). https://doi.org/10.1016/j.apsusc.2019.145169
- J. Tao, H.L. Lu, Y. Gu, H.P. Ma, X. Li et al., Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl. Surf. Sci. 476, 733–740 (2019). https://doi.org/10.1016/j.apsusc.2019.01.177
- H.-K. Lee, H.-J. Yun, K.-H. Shim, H.-G. Park, T.-H. Jang et al., Improvement of dry etch-induced surface roughness of single crystalline β-Ga2O3 using post-wet chemical treatments. Appl. Surf. Sci. 506, 144673 (2020). https://doi.org/10.1016/j.apsusc.2019.144673
- T.-F. Weng, M.-S. Ho, C. Sivakumar, B. Balraj, P.-F. Chung, VLS growth of pure and Au decorated β-Ga2O3 nanowires for room temperature CO gas sensor and resistive memory applications. Appl. Surf. Sci. 533, 147476 (2020). https://doi.org/10.1016/j.apsusc.2020.147476
- J. Wang, P. Yang, X. Wei, High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interfaces 7(6), 3816–3824 (2015). https://doi.org/10.1021/am508807a
- A. Šutka, M. Kodu, R. Pärna, R. Saar, I. Juhnevica et al., Orthorhombic CaFe2O4: a promising p-type gas sensor. Sens. Actuat. B: Chem. 224, 260–265 (2016). https://doi.org/10.1016/j.snb.2015.10.041
- S.W. Choi, A. Katoch, J.H. Kim, S.S. Kim, Remarkable improvement of gas-sensing abilities in p-type oxide nanowires by local modification of the hole-accumulation layer. ACS Appl. Mater. Interfaces 7(1), 647–652 (2015). https://doi.org/10.1021/am5068222
- B. Zhang, M. Cheng, G. Liu, Y. Gao, L. Zhao et al., Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sens. Actuat. B: Chem. 263, 387–399 (2018). https://doi.org/10.1016/j.snb.2018.02.117
- T.J. Hsueh, S.S. Wu, Highly sensitive Co3O4 nanops/MEMS NO2 gas sensor with the adsorption of the Au nanops. Sens. Actuat. B: Chem. 329, 129201 (2021). https://doi.org/10.1016/j.snb.2020.129201
- J.-S. Lee, A. Katoch, J.-H. Kim, S.S. Kim, Effect of Au nanop size on the gas-sensing performance of p-CuO nanowires. Sens. Actuat. B: Chem. 222, 307–314 (2016). https://doi.org/10.1016/j.snb.2015.08.037
- T.Y. Lai, T.H. Fang, Y.-J. Hsiao, C.A. Chan, Characteristics of Au-doped SnO2–ZnO heteronanostructures for gas sensing applications. Vacuum 166, 155–161 (2019). https://doi.org/10.1016/j.vacuum.2019.04.061
- K.C. Hsu, T.H. Fang, I.T. Tang, Y.J. Hsiao, C.Y. Chen, Mechanism and characteristics of Au-functionalized SnO2/In2O3 nanofibers for highly sensitive CO detection. J. Alloy. Compd. 822, 153475 (2020). https://doi.org/10.1016/j.jallcom.2019.153475
- X. Wu, H. Wang, J. Wang, D. Wang, L. Shi et al., VOCs gas sensor based on MOFs derived porous Au@Cr2O3-In2O3 nanorods for breath analysis. Colloids Surf. Physicochem. Eng. Aspects 632, 127752 (2022). https://doi.org/10.1016/j.colsurfa.2021.127752
- Y. Wang, C. Liu, Z. Wang, Z. Song, X. Zhou et al., Sputtered SnO2:NiO thin films on self-assembled Au nanop arrays for MEMS compatible NO2 gas sensors. Sens. Actuat. B: Chem. 278, 28–38 (2019). https://doi.org/10.1016/j.snb.2018.09.074
- B. Wang, H.T. Jin, Z.Q. Zheng, Y.H. Zhou, C. Gao, Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuat. B: Chem. 244, 344–356 (2017). https://doi.org/10.1016/j.snb.2016.12.044
- J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Extremely sensitive and selective sub-ppm CO detection by the synergistic effect of Au nanops and core–shell nanowires. Sens. Actuat. B: Chem. 249, 177–188 (2017). https://doi.org/10.1016/j.snb.2017.04.090
- T. Zhai, H. Xu, W. Li, H. Yu, Z. Chen et al., Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure. J. Alloy. Compd. 737, 603–612 (2018). https://doi.org/10.1016/j.jallcom.2017.12.016
- H. Xu, W. Li, R. Han, T. Zhai, H. Yu et al., Enhanced triethylamine sensing properties by fabricating Au@SnO2/α-Fe2O3 core-shell nanoneedles directly on alumina tubes. Sens. Actuat. B: Chem. 262, 70–78 (2018). https://doi.org/10.1016/j.snb.2018.01.209
- S.H. Kwon, T.H. Kim, S.M. Kim, S. Oh, K.K. Kim, Ultraviolet light-emitting diode-assisted highly sensitive room temp
References
Z.L. Song, W.H. Ye, Z. Chen, Z.S. Chen, M.T. Li et al., Wireless self-powered high-performance integrated nanostructured-gas-sensor network for future smart homes. ACS Nano 15(4), 7659–7667 (2021). https://doi.org/10.1021/acsnano.1c01256
A.H. Jalal, F. Alam, S. Roychoudhury, Y. Umasankar, N. Pala et al., Prospects and challenges of volatile organic compound sensors in human healthcare. ACS Sens. 3(7), 1246–1263 (2018). https://doi.org/10.1021/acssensors.8b00400
Y.Y. Jian, N. Zhang, T.P. Liu, Y.J. Zhu, D. Wang et al., Artificially intelligent olfaction for fast and noninvasive diagnosis of bladder cancer from urine. ACS Sens. 7(6), 1720–1731 (2022). https://doi.org/10.1021/acssensors.2c00467
W. Hu, L. Wan, Y. Jian, C. Ren, K. Jin et al., Electronic noses: from advanced materials to sensors aided with data processing. Adv. Mater. Technol. 4(2), 1800488 (2018). https://doi.org/10.1002/admt.201800488
W. Geng, S. Ge, X. He, S. Zhang, J. Gu et al., Volatile organic compound gas-sensing properties of bimodal porous alpha-Fe2O3 with ultrahigh sensitivity and fast response. ACS Appl. Mater. Interfaces 10(16), 13702–13711 (2018). https://doi.org/10.1021/acsami.8b02435
D.Z. Zhang, J.J. Liu, C.X. Jiang, A.M. Liu, B.K. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuat. B: Chem. 240, 55–65 (2017). https://doi.org/10.1016/j.snb.2016.08.085
H.Y. Li, S.N. Zhao, S.Q. Zang, J. Li, Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 49(17), 6364–6401 (2020). https://doi.org/10.1039/C9CS00778D
M. Valdez, S.K. Gupta, K. Lozano, Y. Mao, ForceSpun polydiacetylene nanofibers as colorimetric sensor for food spoilage detection. Sens. Actuat. B: Chem. 297, 126734 (2019). https://doi.org/10.1016/j.snb.2019.126734
Q. Li, D. Chen, J. Miao, S. Lin, Z. Yu et al., Highly sensitive sensor based on ordered porous ZnO nanosheets for ethanol detecting application. Sens. Actuat. B: Chem. 326, 128952 (2021). https://doi.org/10.1016/j.snb.2020.128952
A.T. Guntner, I.C. Weber, S. Schon, S.E. Pratsinis, P.A. Gerber, Monitoring rapid metabolic changes in health and type-1 diabetes with breath acetone sensors. Sens. Actuat. B: Chem. 367, 132182 (2022). https://doi.org/10.1016/j.snb.2022.132182
W. Hu, W. Wu, Y. Jian, H. Haick, G. Zhang et al., Volatolomics in healthcare and its advanced detection technology. Nano Res. 15(9), 8185–8213 (2022). https://doi.org/10.1007/s12274-022-4459-3
C.C. Chen, J.C. Hsieh, C.H. Chao, W.S. Yang, H.T. Cheng et al., Correlation between breath ammonia and blood urea nitrogen levels in chronic kidney disease and dialysis patients. J. Breath Res. 14, 036002 (2020). https://doi.org/10.1088/1752-7163/ab728b
H. Wan, H. Yin, L. Lin, X. Zeng, A.J. Mason, Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sens. Actuat. B: Chem. 255, 638–646 (2018). https://doi.org/10.1016/j.snb.2017.08.109
X. Tan, H. Zhang, J. Li, H. Wan, Q. Guo et al., Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 11(1), 5245 (2020). https://doi.org/10.1038/s41467-020-19085-1
W. Chen, F. Deng, M. Xu, J. Wang, Z. Wei et al., GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations. Sens. Actuat. B: Chem. 273, 498–504 (2018). https://doi.org/10.1016/j.snb.2018.06.062
M.P. Pujadó, J.M.S. Gordillo, H. Avireddy, A. Cabot, A. Morata et al., Highly sensitive self-powered H2 sensor based on nanostructured thermoelectric silicon fabrics. Adv. Mater. Technol. 6(1), 2000870 (2020). https://doi.org/10.1002/admt.202000870
D. Matatagui, O.V. Kolokoltsev, N. Qureshi, E.V. Mejia-Uriarte, J.M. Saniger, A magnonic gas sensor based on magnetic nanops. Nanoscale 7(21), 9607–9613 (2015). https://doi.org/10.1039/C5NR01499A
H. Yuan, S. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31(11), 1807161 (2019). https://doi.org/10.1002/adma.201807161
L.Y. Zhu, K. Yuan, Z.-C. Li, X.Y. Miao, J.C. Wang et al., Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. J. Colloid Interf. Sci. 622, 156–168 (2022). https://doi.org/10.1016/j.jcis.2022.04.081
X. Xiao, X. Zhou, J. Ma, Y. Zhu, X. Cheng et al., Rational synthesis and gas sensing performance of ordered mesoporous semiconducting WO3/NiO composites. ACS Appl. Mater. Interfaces 11(29), 26268–26276 (2019). https://doi.org/10.1021/acsami.9b08128
T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502–1503 (1962). https://doi.org/10.1021/ac60191a001
K.P. Yuan, L.Y. Zhu, J.H. Yang, C.Z. Hang, J.J. Tao et al., Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. J. Colloid Interf. Sci. 568, 81–88 (2020). https://doi.org/10.1016/j.jcis.2020.02.042
Y.M. Choi, S.Y. Cho, D. Jang, H.J. Koh, J. Choi et al., Ultrasensitive detection of VOCs using a high-resolution CuO/Cu2O/Ag nanopattern sensor. Adv. Funct. Mater. 29(9), 1808319 (2019). https://doi.org/10.1002/adfm.201808319
X. Zhou, Y. Zou, J. Ma, X. Cheng, Y. Li et al., Cementing mesoporous ZnO with silica for controllable and switchable gas sensing selectivity. Chem. Mater. 31(19), 8112–8120 (2019). https://doi.org/10.1021/acs.chemmater.9b02844
L.Y. Zhu, K. Yuan, J.G. Yang, H.P. Ma, T. Wang et al., Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actuat. B: Chem. 290, 233–241 (2019). https://doi.org/10.1016/j.snb.2019.03.092
L.Y. Zhu, K.P. Yuan, J.H. Yang, C.Z. Hang, H.P. Ma et al., Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst. Nanoeng. 6, 1–13 (2020). https://doi.org/10.1038/s41378-020-0142-6
J. Ma, Y. Li, J. Li, X. Yang, Y. Ren et al., Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker. Adv. Funct. Mater. 32(4), 2107439 (2021). https://doi.org/10.1002/adfm.202107439
Z. Song, Z. Wei, B. Wang, Z. Luo, S. Xu et al., Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem. Mater. 28, 1205–1212 (2016). https://doi.org/10.1021/acs.chemmater.5b04850
W. Liu, L. Xu, K. Sheng, C. Chen, X. Zhou et al., APTES-functionalized thin-walled porous WO3 nanotubes for highly selective sensing of NO2 in a polluted environment. J. Mater. Chem. A 6, 10976–10989 (2018). https://doi.org/10.1039/C8TA02452A
T. Zhou, Y. Sang, X. Wang, C. Wu, D. Zeng et al., Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuat. B: Chem. 258, 1099–1106 (2018). https://doi.org/10.1016/j.snb.2017.12.024
Y.Y. Jian, W.W. Hu, Z.H. Zhao, P.F. Cheng, H. Haick et al., Gas sensors based on chemi-resistive hybrid functional nanomaterials. Nano-Micro Lett. 12, 71 (2020). https://doi.org/10.1007/s40820-020-0407-5
J. Ma, Y. Ren, X. Zhou, L. Liu, Y. Zhu et al., Pt nanops sensitized ordered mesoporous WO3 semiconductor: gas sensing performance and mechanism study. Adv. Funct. Mater. 28(6), 1705268 (2018). https://doi.org/10.1002/adfm.201705268
J. Lee, Y. Jung, S.-H. Sung, G. Lee, J. Kim et al., High-performance gas sensor array for indoor air quality monitoring: the role of Au nanops on WO3, SnO2, and NiO-based gas sensors. J. Mater. Chem. A 9(2), 1159–1167 (2021). https://doi.org/10.1039/D0TA08743B
Y. Wang, X.N. Meng, J.L. Cao, Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 381, 120944 (2020). https://doi.org/10.1016/j.jhazmat.2019.120944
S. Navale, M. Shahbaz, A. Mirzaei, S.S. Kim, H.W. Kim, Effect of Ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors: an overview. Sensors 21(19), 6454 (2021). https://doi.org/10.3390/s21196454
V. Shah, J. Bhaliya, G.M. Patel, P. Joshi, Recent advancement in Pd-decorated nanostructures for its catalytic and chemiresistive gas sensing applications: a review. Top. Catal. (2022). https://doi.org/10.1007/s11244-022-01564-y
M. Kamal Hossain, Q. Ahmed Drmosh, Noble metal-decorated nanostructured zinc oxide: strategies to advance chemiresistive hydrogen gas sensing. Chem. Rec. 22(7), e202200090 (2022). https://doi.org/10.1002/tcr.202200090
J.W. Yoon, J.H. Lee, Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors: recent progress and future perspectives. Lab Chip 17(21), 3537–3557 (2017). https://doi.org/10.1039/C7LC00810D
A.T. Güntner, V. Koren, K. Chikkadi, M. Righettoni, S.E. Pratsinis, E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 1(5), 528–535 (2016). https://doi.org/10.1021/acssensors.6b00008
D. Li, Z. Xie, M. Qu, Q. Zhang, Y. Fu et al., Virtual sensor array based on butterworth-van dyke equivalent model of QCM for selective detection of volatile organic compounds. ACS Appl. Mater. Interfaces 13(39), 47043–47051 (2021). https://doi.org/10.1021/acsami.1c13046
B. Feng, Y. Wu, Y. Ren, Y. Chen, K. Yuan et al., Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sens. Actuat. B: Chem. 356, 131358 (2022). https://doi.org/10.1016/j.snb.2021.131358
I.S. Hwang, J.K. Choi, H.S. Woo, S.J. Kim, S.Y. Jung et al., Facile control of C2H5OH sensing characteristics by decorating discrete Ag nanoclusters on SnO2 nanowire networks. ACS Appl. Mater. Interfaces 3(8), 3140–3145 (2011). https://doi.org/10.1021/am200647f
M. Yang, J. Lu, X. Wang, H. Zhang, F. Chen et al., Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres. Sens. Actuat. B: Chem. 313, 127965 (2020). https://doi.org/10.1016/j.snb.2020.127965
Y.G. Song, J.Y. Park, J.M. Suh, Y.-S. Shim, S.Y. Yi et al., Heterojunction based on Rh-decorated WO3 nanorods for morphological change and gas sensor application using the transition effect. Chem. Mater. 31(1), 207–215 (2018). https://doi.org/10.1021/acs.chemmater.8b04181
N. Luo, Y. Chen, D. Zhang, M. Guo, Z. Xue et al., High-sensitive MEMS hydrogen sulfide sensor made from PdRh bimetal hollow nanoframe decorated metal oxides and sensitization mechanism study. ACS Appl. Mater. Interfaces 12(50), 56203–56215 (2020). https://doi.org/10.1021/acsami.0c18369
S.-W. Choi, A. Katoch, G.-J. Sun, S.S. Kim, Bimetallic Pd/Pt nanop-functionalized SnO2 nanowires for fast response and recovery to NO2. Sens. Actuat. B: Chem. 181, 446–453 (2013). https://doi.org/10.1016/j.snb.2013.02.007
B. Liu, K. Li, Y. Luo, L. Gao, G. Duan, Sulfur spillover driven by charge transfer between AuPd alloys and SnO2 allows high selectivity for dimethyl disulfide gas sensing. Chem. Eng. J. 420, 129881 (2021). https://doi.org/10.1016/j.cej.2021.129881
W.T. Koo, S.J. Choi, S.J. Kim, J.S. Jang, H.L. Tuller et al., Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors. J. Am. Chem. Soc. 138(40), 13431–13437 (2016). https://doi.org/10.1021/jacs.6b09167
H. Ji, W. Zeng, Y. Li, Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale 11(47), 22664–22684 (2019). https://doi.org/10.1039/C9NR07699A
D.Z. Zhang, Z.M. Yang, S.J. Yu, Q. Mi, Q.M. Pan, Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coordin. Chem. Rev. 413, 213272 (2020). https://doi.org/10.1016/j.ccr.2020.213272
Y. Liu, S. Xiao, K. Du, Chemiresistive gas sensors based on hollow heterojunction: a review. Adv. Mater. Interfaces 8(12), 2002122 (2021). https://doi.org/10.1002/admi.202002122
D.Z. Zhang, Z.M. Yang, Z.L. Wu, G.K. Dong, Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing. Sens. Actuat. B: Chem. 283, 42–51 (2019). https://doi.org/10.1016/j.snb.2018.11.133
M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, A. Wisitsoraat, P. Eiamchai et al., Ultrasensitive hydrogen sensor based on Pt-decorated WO3 nanorods prepared by glancing-angle dc magnetron sputtering. ACS Appl. Mater. Interfaces 6(24), 22051–22060 (2014). https://doi.org/10.1021/am505127g
O. Alev, S. Büyükköse, Effect of Pt catalyst on the sensor performance of WO3 nanoflakes towards hazardous gases. J. Alloy. Compd. 32(20), 25376–25384 (2021). https://doi.org/10.1007/s10854-021-06997-x
P.M. Bulemo, D.-H. Kim, I.D. Kim, Controlled synthesis of electrospun hollow Pt-loaded SnO2 microbelts for acetone sensing. Sens. Actuat. B: Chem. 344, 130208 (2021). https://doi.org/10.1016/j.snb.2021.130208
C. Dong, X. Liu, X. Xiao, G. Chen, Y. Wang et al., Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. J. Mater. Chem. A 2(47), 20089–20095 (2014). https://doi.org/10.1039/C4TA04251D
T.T.D. Nguyen, D.V. Dao, N. Thi Thu Ha, T. Van Tran, D.S. Kim et al., Superhigh sensing response and selectivity for hydrogen gas using PdPt@ZnO core-shell nanops: unique effect of alloyed ingredient from experimental and theoretical investigations. Sens. Actuat. B: Chem. 354, 131083 (2022). https://doi.org/10.1016/j.snb.2021.131083
F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong et al., Hydrogen sensing properties of Pt-Au bimetallic nanops loaded on ZnO nanorods. Sens. Actuat. B: Chem. 241, 895–903 (2017). https://doi.org/10.1016/j.snb.2016.11.025
X. Chen, Y. Shen, P. Zhou, X. Zhong, G. Li et al., Bimetallic Au/Pd nanops decorated ZnO nanowires for NO2 detection. Sens. Actuat. B: Chem. 289, 160–168 (2019). https://doi.org/10.1016/j.snb.2019.03.095
G.J. Li, X.H. Wang, L.M. Yan, Y. Wang, Z.Y. Zhang et al., PdPt bimetal-functionalized SnO2 nanosheets: controllable synthesis and its dual selectivity for detection of carbon monoxide and methane. ACS Appl. Mater. Interfaces 11(29), 26116–26126 (2019). https://doi.org/10.1021/acsami.9b08408
R. Bahariqushchi, S. Cosentino, M. Scuderi, E. Dumons, L.P. Tran-Huu-Hue et al., Free carrier enhanced depletion in ZnO nanorods decorated with bimetallic AuPt nanoclusters. Nanoscale 12(37), 19213–19222 (2020). https://doi.org/10.1039/D0NR04134C
H.J. Le, D. Van Dao, Y.T. Yu, Superfast and efficient hydrogen gas sensor using PdAu alloy@ZnO core–shell nanops. J. Mater. Chem. A 8(26), 12968–12974 (2020). https://doi.org/10.1039/D0TA03552A
W. Liu, D. Gu, X. Li, AuPt bimetal-functionalized SnSe2 microflower-based sensors for detecting sub-ppm NO2 at low temperatures. ACS Appl. Mater. Interfaces 13(17), 20336–20348 (2021). https://doi.org/10.1021/acsami.1c02500
Y.P. Liu, L.Y. Zhu, P. Feng, C.C. Dang, M. Li et al., Bimetallic AuPt alloy nanops decorated on ZnO nanowires towards efficient and selective H2S gas sensing. Sens. Actuat. B: Chem. 367, 132024 (2022). https://doi.org/10.1016/j.snb.2022.132024
A. Mirzaei, H.R. Yousefi, F. Falsafi, M. Bonyani, J.H. Lee et al., An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. Int. J. Hydrogen Energy 44(36), 20552–20571 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.180
I. Darmadi, F.A.A. Nugroho, C. Langhammer, High-performance nanostructured palladium-based hydrogen sensors-current limitations and strategies for their mitigation. ACS Sens. 5(11), 3306–3327 (2020). https://doi.org/10.1021/acssensors.0c02019
K. Hu, F. Wang, Z. Shen, H. Liu, J. Xiong, Ternary heterojunctions synthesis and sensing mechanism of Pd/ZnO-SnO2 hollow nanofibers with enhanced H2 gas sensing properties. J. Alloy. Compd. 850, 156663 (2021). https://doi.org/10.1016/j.jallcom.2020.156663
D.V. Dao, T.T.D. Nguyen, D.S. Kim, J.W. Yoon, Y.T. Yu et al., Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO2 core-shell nanoflatforms. J. Ind. Eng. Chem. 95, 325–332 (2021). https://doi.org/10.1016/j.jiec.2021.01.005
B. Hammer, J.K. Norskov, Theoretical surface science and catalysis—Calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
J.H. Kim, P. Wu, H.W. Kim, S.S. Kim, Highly selective sensing of CO, C6H6, and C7H8 gases by catalytic functionalization with metal nanops. ACS Appl. Mater. Interfaces 8(11), 7173–7183 (2016). https://doi.org/10.1021/acsami.6b01116
D. Syomin, J. Kim, B.E. Koel, G.B. Ellison, Identification of adsorbed phenyl (C6H5) groups on metal surfaces: electron-induced dissociation of benzene on Au (111). J. Phys. Chem. B 105(35), 8387–8394 (2001). https://doi.org/10.1021/jp012069e
J.J. Liu, L.Y. Zhang, J.J. Fan, B.C. Zhu, J.G. Yu, Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres. Sens. Actuat. B: Chem. 331, 129425 (2021). https://doi.org/10.1016/j.snb.2020.129425
N. Zhang, Y. Fan, Y. Lu, C. Li, J. Zhou et al., Synthesis of Au-decorated SnO2 crystallites with exposed (221) facets and their enhanced acetylene sensing properties. Sens. Actuat. B: Chem. 307, 127629 (2020). https://doi.org/10.1016/j.snb.2019.127629
Y. Zhang, Y. Wang, L. Zhu, R. Zhang, J. Cao, Enhanced CO sensing performance of WO3 nanorods with PtAg nanops modification: a combined experimental and first-principle study. Vacuum 193, 110526 (2021). https://doi.org/10.1016/j.vacuum.2021.110526
H. Liu, F. Wang, K. Hu, T. Li, Y. Yan, Pd4 cluster decorated SnO2 nanowire for detecting characteristic gases in oil-immersed transformers: a theoretical and experimental study. Appl. Surf. Sci. 590, 153122 (2022). https://doi.org/10.1016/j.apsusc.2022.153122
X. Yang, Y. Wang, H. Fu, W. Wang, D. Han et al., Experimental and theoretical study on the excellent amine-sensing performance of Au decorated WO3 needle-like nanocomposites. Mater. Chem. Phys. 234, 122–132 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.070
M. Liangruksa, P. Sukpoonprom, A. Junkaew, W. Photaram, C. Siriwong, Gas sensing properties of palladium-modified zinc oxide nanofilms: a DFT study. Appl. Surf. Sci. 544, 148868 (2021). https://doi.org/10.1016/j.apsusc.2020.148868
X. Li, W. Liu, B. Huang, H. Liu, X. Li, Layered SnSe2 microflakes and SnSe2/SnO2 heterojunctions for low-temperature chemiresistive-type gas sensing. J. Mater. Chem. C 8(44), 15804–15815 (2020). https://doi.org/10.1039/D0TC02589E
L. Chen, Z. Xiong, Y. Cui, H. Luo, Y. Gao, Adsorption of C6H6 and C7H8 onto pristine and metal (Pd, Pt)-mediated ZnO monolayers: electronic and gas sensing properties. Appl. Surf. Sci. 542, 148767 (2021). https://doi.org/10.1016/j.apsusc.2020.148767
X. Wang, F. Yao, P. Xu, M. Li, H. Yu et al., Quantitative structure-activity relationship of nanowire adsorption to SO2 revealed by in situ TEM technique. Nano Lett. 21(4), 1679–1687 (2021). https://doi.org/10.1021/acs.nanolett.0c04481
S. Steinhauer, J. Vernieres, J. Krainer, A. Kock, P. Grammatikopoulos et al., In situ chemoresistive sensing in the environmental TEM: probing functional devices and their nanoscale morphology. Nanoscale 9(22), 7380–7384 (2017). https://doi.org/10.1039/C6NR09322A
X. Wang, M. Li, P. Xu, Y. Chen, H. Yu et al., In situ TEM technique revealing the deactivation mechanism of bimetallic Pd-Ag nanops in hydrogen sensors. Nano Lett. 22(7), 3157–3164 (2022). https://doi.org/10.1021/acs.nanolett.1c05018
F. Hui, C. Li, Y. Chen, C. Wang, J. Huang et al., Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Res. 13(11), 3019–3024 (2020). https://doi.org/10.1007/s12274-020-2966-7
N. Morales-Flores, U. Pal, E. Sánchez Mora, Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanops in phenol degradation. Appl. Catal. A 394(1), 269–275 (2011). https://doi.org/10.1016/j.apcata.2011.01.011
S.J. Young, Y.L. Chu, Platinum nanop-decorated ZnO nanorods improved the performance of methanol gas sensor. J. Electrochem. Soc. 167(14), 147508 (2020). https://doi.org/10.1149/1945-7111/abc4be
X. Ke, G. Zhu, Y. Dai, Y. Shen, J. Yang et al., Fabrication of Pt-ZnO composite nanotube modified electrodes for the detection of H2O2. J. Electroanal. Chem. 817, 176–183 (2018). https://doi.org/10.1016/j.jelechem.2018.04.001
C. Gu, H. Huang, J. Huang, Z. Jin, H. Zheng et al., Chlorobenzene sensor based on Pt-decorated porous single-crystalline ZnO nanosheets. Sens. Actuat. A: Phys. 252, 96–103 (2016). https://doi.org/10.1016/j.sna.2016.11.004
J. Yuan, E.S.G. Choo, X. Tang, Y. Sheng, J. Ding et al., Synthesis of ZnO-Pt nanoflowers and their photocatalytic applications. Nanotechnology 21(18), 185606 (2010). https://doi.org/10.1088/0957-4484/21/18/185606
A. Yu, Z. Li, J. Yi, Selective detection of parts-per-billion H2S with Pt-decorated ZnO nanorods. Sens. Actuat. B: Chem. 333, 129545 (2021). https://doi.org/10.1016/j.snb.2021.129545
Z. Li, J. Yi, Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films. Sens. Actuat. B: Chem. 317, 128217 (2020). https://doi.org/10.1016/j.snb.2020.128217
C. Qin, B. Wang, P. Li, L. Sun, C. Han et al., Metal-organic framework-derived highly dispersed Pt nanops-functionalized ZnO polyhedrons for ppb-level CO detection. Sens. Actuat. B: Chem. 331, 129433 (2021). https://doi.org/10.1016/j.snb.2021.129433
Q. Zhou, L. Xu, Z. Kan, L. Yang, Z. Chang et al., A multi-platform sensor for selective and sensitive H2S monitoring: three-dimensional macroporous ZnO encapsulated by MOFs with small Pt nanops. J. Hazard. Mater. 426, 128075 (2022). https://doi.org/10.1016/j.jhazmat.2021.128075
I.-D. Kim, E.-K. Jeon, S.-H. Choi, D.-K. Choi, H.L. Tuller, Electrospun SnO2 nanofiber mats with thermo-compression step for gas sensing applications. J. Electroceram. 25(2), 159–167 (2010). https://doi.org/10.1007/s10832-010-9607-6
Y. Dai, W. Liu, E. Formo, Y. Sun, Y. Xia, Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 22(3), 326–338 (2011). https://doi.org/10.1002/pat.1839
J. Shin, S.J. Choi, I. Lee, D.Y. Youn, C.O. Park et al., Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanops and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv. Funct. Mater. 23(19), 2357–2367 (2013). https://doi.org/10.1002/adfm.201202729
J.S. Jang, S.J. Choi, S.J. Kim, M. Hakim, I.D. Kim, Rational design of highly porous SnO2 nanotubes functionalized with biomimetic nanocatalysts for direct observation of simulated diabetes. Adv. Funct. Mater. 26(26), 4740–4748 (2016). https://doi.org/10.1002/adfm.201600797
S. Cao, W. Zeng, Z. Zhu, X. Peng, Synthesis of SnO2 nanostructures from 1D to 3D via a facile hydrothermal method and their gas sensing properties. J. Mater. Sci. Mater. El. 26(3), 1820–1826 (2015). https://doi.org/10.1007/s10854-014-2616-5
Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Pt nanops decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sens. Actuat. B: Chem. 256, 656–664 (2018). https://doi.org/10.1016/j.snb.2017.09.206
Z. Chen, K. Hu, P. Yang, X. Fu, Z. Wang et al., Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance. J. Alloy. Compd. 811, 152086 (2019). https://doi.org/10.1016/j.jallcom.2019.152086
Z. Li, H. Li, Z. Wu, M. Wang, J. Luo et al., Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 6(3), 470–506 (2019). https://doi.org/10.1039/C8MH01365A
Y.P. Sun, Y.F. Zhao, H. Sun, F.C. Jia, P. Kumar et al., Synthesis and room-temperature H2S sensing of Pt nanop-functionalized SnO2 mesoporous nanoflowers. J. Alloy. Compd. 842, 155813 (2020). https://doi.org/10.1016/j.jallcom.2020.155813
M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10(5), 382–388 (2011). https://doi.org/10.1038/nmat3011
Y. Zhang, H.L. Lu, T. Wang, Q.H. Ren, Y.Z. Gu et al., Facile synthesis and enhanced luminescent properties of ZnO/HfO2 core-shell nanowires. Nanoscale 7(37), 15462–15468 (2015). https://doi.org/10.1039/C5NR03656A
Y. Xu, W. Zheng, X. Liu, L. Zhang, L. Zheng et al., Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 7(6), 1519–1527 (2020). https://doi.org/10.1039/D0MH00495B
J. van den Broek, I.C. Weber, A.T. Guntner, S.E. Pratsinis, Highly selective gas sensing enabled by filters. Mater. Horiz. 8(3), 661–684 (2021). https://doi.org/10.1039/D0MH01453B
J. van den Broek, A.T. Guntner, S.E. Pratsinis, Highly selective and rapid breath isoprene sensing enabled by activated alumina filter. ACS Sens. 3(3), 677–683 (2018). https://doi.org/10.1021/acssensors.7b00976
S.N. Oliaee, A. Khodadadi, Y. Mortazavi, S. Alipour, Highly selective Pt/SnO2 sensor to propane or methane in presence of CO and ethanol, using gold nanops on Fe2O3 catalytic filter. Sens. Actuat. B: Chem. 147(2), 400–405 (2010). https://doi.org/10.1016/j.snb.2010.03.061
F.S. Fateminia, Y. Mortazavi, A.A. Khodadadi, Au-promoted Ce-Zr catalytic filter for Pt/SnO2 sensor to selectively detect methane and ethanol in the presence of interfering indoor gases. Mat. Sci. Semicon. Proc. 90, 182–189 (2019). https://doi.org/10.1016/j.mssp.2018.10.014
S. Dabbous, T. Ben Nasrallah, J. Ouerfelli, K. Boubaker, M. Amlouk et al., Study of structural and optical properties of sprayed WO3 thin films using enhanced characterization techniques along with the Boubaker Polynomials Expansion Scheme (BPES). J. Alloy. Compd. 487(1), 286–292 (2009). https://doi.org/10.1016/j.jallcom.2009.07.103
L. Fan, N. Xu, H. Chen, J. Zhou, S. Deng, A millisecond response and microwatt power-consumption gas sensor: realization based on cross-stacked individual Pt-coated WO3 nanorods. Sens. Actuat. B: Chem. 346, 130545 (2021). https://doi.org/10.1016/j.snb.2021.130545
Y. Nishijima, K. Enomonoto, S. Okazaki, T. Arakawa, A. Balčytis et al., Pulsed laser deposition of Pt-WO3 of hydrogen sensors under atmospheric conditions. Appl. Surf. Sci. 534, 147568 (2020). https://doi.org/10.1016/j.apsusc.2020.147568
X. Yao, J. Zhao, J. Liu, F. Wang, L. Wu et al., H2S sensing material Pt-WO3 nanorods with excellent comprehensive performance. J. Alloy. Compd. 900, 163398 (2022). https://doi.org/10.1016/j.jallcom.2021.163398
M.H. Kim, J.S. Jang, W.T. Koo, S.J. Choi, S.J. Kim et al., Bimodally porous WO3 microbelts functionalized with Pt catalysts for selective H2S sensors. ACS Appl. Mater. Interfaces 10(24), 20643–20651 (2018). https://doi.org/10.1021/acsami.8b00588
S.J. Choi, K.H. Ku, B.J. Kim, I.-D. Kim, Novel templating route using Pt infiltrated block copolymer microps for catalytic Pt functionalized macroporous WO3 nanofibers and its application in breath pattern recognition. ACS Sens. 1(9), 1124–1131 (2016). https://doi.org/10.1021/acssensors.6b00422
H. Liu, Y. Xu, X. Zhang, W. Zhao, A. Ming et al., Enhanced NO2 sensing properties of Pt/WO3 films grown by glancing angle deposition. Ceram. Int. 46(13), 21388–21394 (2020). https://doi.org/10.1016/j.ceramint.2020.05.236
J. Chao, Z. Liu, S. Xing, Q. Gao, J. Zhao, Enhanced ammonia detection of gas sensors based on square-like tungsten oxide loaded by Pt nanops. Sens. Actuat. B: Chem. 347, 130621 (2021). https://doi.org/10.1016/j.snb.2021.130621
C. Li, D. Zhang, S. Han, X. Liu, T. Tang et al., Synthesis, electronic properties, and applications of indium oxide nanowires. Ann. N. Y. Acad. Sci. 1006(1), 104–121 (2003). https://doi.org/10.1196/annals.1292.007
Y. Liu, X. Gao, F. Li, G. Lu, T. Zhang et al., Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sens. Actuat. B: Chem. 260, 927–936 (2018). https://doi.org/10.1016/j.snb.2018.01.114
S.-B. Choi, J.K. Lee, W.S. Lee, T.G. Ko, C. Lee, Optimization of the Pt nanop size and calcination temperature for enhanced sensing performance of Pt-decorated In2O3 nanorods. J. Korean Phys. Soc. 73(10), 1444–1451 (2018). https://doi.org/10.3938/jkps.73.1444
W. Liu, Y. Xie, T. Chen, Q. Lu, S. Ur Rehman et al., Rationally designed mesoporous In2O3 nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens. Actuat. B: Chem. 298, 126871 (2019). https://doi.org/10.1016/j.snb.2019.126871
W. Liu, L. Xu, K. Sheng, X. Zhou, B. Dong et al., A highly sensitive and moisture-resistant gas sensor for diabetes diagnosis with Pt@In2O3 nanowires and a molecular sieve for protection. Npg. Asia. Mater. 10(4), 293–308 (2018). https://doi.org/10.1038/s41427-018-0029-2
J. Fu, C. Zhao, J. Zhang, Y. Peng, E. Xie, Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization. ACS Appl. Mater. Interfaces 5(15), 7410–7416 (2013). https://doi.org/10.1021/am4017347
C.H. Wu, Z. Zhu, H.M. Chang, Z.-X. Jiang, C.Y. Hsieh et al., Pt@NiO core–shell nanostructure for a hydrogen gas sensor. J. Alloy. Compd. 814, 151815 (2020). https://doi.org/10.1016/j.jallcom.2019.151815
H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, T.C. Chou et al., Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens. Actuat. B: Chem. 256, 962–967 (2018). https://doi.org/10.1016/j.snb.2017.10.032
Y. Liang, Y. Yang, H. Zhou, C. Zou, K. Xu et al., Active {1 1 1}-faceted ultra-thin NiO single-crystalline porous nanosheets supported highly dispersed Pt nanops for synergetic enhancement of gas sensing and photocatalytic performance. Appl. Surf. Sci. 471, 124–133 (2019). https://doi.org/10.1016/j.apsusc.2018.12.012
S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang et al., An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuat. B: Chem. 290, 59–67 (2019). https://doi.org/10.1016/j.snb.2019.03.082
L. Guo, N. Xie, C. Wang, X. Kou, M. Ding et al., Enhanced hydrogen sulfide sensing properties of Pt-functionalized α-Fe2O3 nanowires prepared by one-step electrospinning. Sens. Actuat. B: Chem. 255, 1015–1023 (2018). https://doi.org/10.1016/j.snb.2017.07.055
J.E. Lee, D.Y. Kim, H.-K. Lee, H.J. Park, A. Ma et al., Sonochemical synthesis of HKUST-1-based CuO decorated with Pt nanops for formaldehyde gas-sensor applications. Sens. Actuat. B: Chem. 292, 289–296 (2019). https://doi.org/10.1016/j.snb.2019.04.062
W. Li, S. Ma, Y. Li, G. Yang, Y. Mao et al., Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers. Sens. Actuat. B: Chem. 211, 392–402 (2015). https://doi.org/10.1016/j.snb.2015.01.090
J.-H. Kim, S.S. Kim, Realization of ppb-scale toluene-sensing abilities with Pt-functionalized SnO2–ZnO core–shell nanowires. ACS Appl. Mater. Interfaces 7(31), 17199–17208 (2015). https://doi.org/10.1021/acsami.5b04066
X.Y. Wu, L.Y. Zhu, J. Sun, K.Y. Zhu, X.Y. Miao et al., Pt nanop-modified SnO2-ZnO core–shell nanosheets on microelectromechanical systems for enhanced H2S detection. ACS Appl. Nano Mater. 5(5), 6627–6636 (2022). https://doi.org/10.1021/acsanm.2c00671
B. Liu, Y. Li, L. Gao, F. Zhou, G. Duan, Ultrafine Pt NPs-decorated SnO2/α-Fe2O3 hollow nanospheres with highly enhanced sensing performances for styrene. J. Hazard. Mater. 358, 355–365 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.021
B.-Y. Chang, C.-Y. Wang, H.-F. Lai, R.-J. Wu, M. Chavali, Evaluation of Pt/In2O3-WO3 nano powder ultra-trace level NO gas sensor. J. Taiwan Inst. Chem. Eng. 45(3), 1056–1064 (2014). https://doi.org/10.1016/j.jtice.2013.09.002
L. Guo, F. Chen, N. Xie, X. Kou, C. Wang et al., Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuat. B: Chem. 272, 185–194 (2018). https://doi.org/10.1016/j.snb.2018.05.161
J. Gao, B.S. Wu, C.L. Cao, Z.L. Zhan, W. Ma et al., Unraveling the dynamic evolution of Pd species on Pd-loaded ZnO nanorods for different hydrogen sensing behaviors. ACS Sustain. Chem. Eng. 9(18), 6370–6379 (2021). https://doi.org/10.1021/acssuschemeng.1c00652
P. Cao, Z. Yang, S.T. Navale, S. Han, X. Liu et al., Ethanol sensing behavior of Pd-nanops decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuat. B: Chem. 298, 126850 (2019). https://doi.org/10.1016/j.snb.2019.126850
D. Meng, D.Y. Liu, G.S. Wang, Y.B. Shen, X.G. San et al., In-situ growth of ordered Pd-doped ZnO nanorod arrays on ceramic tube with enhanced trimethylamine sensing performance. Appl. Surf. Sci. 463, 348–356 (2019). https://doi.org/10.1016/j.apsusc.2018.08.228
R.S. Chen, J. Wang, S.R. Luo, L. Xiang, W.W. Li et al., Unraveling photoexcited electron transfer pathway of oxygen vacancy-enriched ZnO/Pd hybrid toward visible light-enhanced methane detection at a relatively low temperature. Appl. Catal. B 264, 118554 (2020). https://doi.org/10.1016/j.apcatb.2019.118554
S.R. Luo, R.S. Chen, J. Wang, D. Xie, L. Xiang, Designed synthesis of ZnO/Pd@ZIF-8 hybrid structure for highly sensitive and selective detection of methane in the presence of NO2. Sens. Actuat. B: Chem. 344, 130220 (2021). https://doi.org/10.1016/j.snb.2021.130220
X.X. Chen, Y.B. Shen, P.F. Zhou, S.K. Zhao, X.X. Zhong et al., NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sens. Actuat. B: Chem. 280, 151–161 (2019). https://doi.org/10.1016/j.snb.2018.10.063
O. Lupan, V. Postica, F. Labat, I. Ciofini, T. Pauporte et al., Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuat. B: Chem. 254, 1259–1270 (2018). https://doi.org/10.1016/j.snb.2017.07.200
N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuat. B: Chem. 5(1–4), 7–19 (1991). https://doi.org/10.1016/0925-4005(91)80213-4
M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanops in chemiresistors: does the nanoscale matter? Small 2(1), 36–50 (2006). https://doi.org/10.1002/smll.200500261
A.S.M.I. Uddin, U. Yaqoob, G.S. Chung, Dissolved hydrogen gas analysis in transformer oil using Pd catalyst decorated on ZnO nanorod array. Sens. Actuat. B: Chem. 226, 90–95 (2016). https://doi.org/10.1016/j.snb.2015.11.110
T.R. Rashid, D.T. Phan, G.S. Chung, A flexible hydrogen sensor based on Pd nanops decorated ZnO nanorods grown on polyimide tape. Sens. Actuat. B: Chem. 185, 777–784 (2013). https://doi.org/10.1016/j.snb.2013.01.015
J.H. Kim, A. Mirzaei, M. Osada, H.W. Kim, S.S. Kim, Hydrogen sensing characteristics of Pd-decorated ultrathin ZnO nanosheets. Sens. Actuat. B: Chem. 329, 129222 (2021). https://doi.org/10.1016/j.snb.2020.129222
Y.H. Xiao, L.Z. Lu, A.Q. Zhang, Y.H. Zhang, L. Sun et al., Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanops. ACS Appl. Mater. Interfaces 4(8), 3797–3804 (2012). https://doi.org/10.1021/am3010303
K. Yuan, C.Y. Wang, L.Y. Zhu, Q. Cao, J.H. Yang et al., Fabrication of a micro-electromechanical system-based acetone gas sensor using CeO2 nanodot-decorated WO3 nanowires. ACS Appl. Mater. Interfaces 12(12), 14095–14104 (2020). https://doi.org/10.1021/acsami.9b18863
C.M. Hung, L.V. Duy, D.T.T. Le, H. Nguyen, N.V. Duy et al., ZnO coral-like nanoplates decorated with Pd nanops for enhanced VOC gas sensing. J. Sci.-Adv. Mater. Dev. 6(3), 453–461 (2021). https://doi.org/10.1016/j.jsamd.2021.05.005
T.T.D. Nguyen, D.V. Dao, D.S. Kim, H.J. Lee, S.Y. Oh et al., Effect of core and surface area toward hydrogen gas sensing performance using Pd@ZnO core-shell nanops. J. Colloid Interf. Sci. 587, 252–259 (2021). https://doi.org/10.1016/j.jcis.2020.12.017
L. Teng, Y. Liu, M. Ikram, Z. Liu, M. Ullah et al., One-step synthesis of palladium oxide-functionalized tin dioxide nanotubes: characterization and high nitrogen dioxide gas sensing performance at room temperature. J. Colloid Interf. Sci. 537, 79–90 (2019). https://doi.org/10.1016/j.jcis.2018.11.001
N. Xie, L.L. Guo, F. Chen, X.Y. Kou, C. Wang et al., Enhanced sensing properties of SnO2 nanofibers with a novel structure by carbonization. Sens. Actuat. B: Chem. 271, 44–53 (2018). https://doi.org/10.1016/j.snb.2018.05.039
D.J. Yang, I. Kamienchick, D.Y. Youn, A. Rothschild, I.D. Kim, Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv. Funct. Mater. 20(24), 4258–4264 (2010). https://doi.org/10.1002/adfm.201001251
J.H. Lee, M.S. Park, H. Jung, Y.S. Choe, W. Kim et al., Selective C2H2 detection with high sensitivity using SnO2 nanorod based gas sensors integrated with a gas chromatography. Sens. Actuat. B: Chem. 307, 127598 (2020). https://doi.org/10.1016/j.snb.2019.127598
S.H. Lu, Y.Z. Zhang, J.Y. Liu, H.Y. Li, Z.X. Hu et al., Sensitive H2 gas sensors based on SnO2 nanowires. Sens. Actuat. B: Chem. 345, 130334 (2021). https://doi.org/10.1016/j.snb.2021.130334
Z. Cai, S. Park, Synthesis of Pd nanop-decorated SnO2 nanowires and determination of the optimum quantity of Pd nanops for highly sensitive and selective hydrogen gas sensor. Sens. Actuat. B: Chem. 322, 128651 (2020). https://doi.org/10.1016/j.snb.2020.128651
M.S. Choi, A. Mirzaei, H.G. Na, S. Kim, D.E. Kim et al., Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2−x nanops for selective NO2 gas sensing. Sens. Actuat. B: Chem. 340, 129984 (2021). https://doi.org/10.1016/j.snb.2021.129984
N.J. Pineau, S.D. Keller, A.T. Guntner, S.E. Pratsinis, Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors. Microchim. Acta 187(1), 1–9 (2020). https://doi.org/10.1007/s00604-019-4080-7
P.Y. Duan, H.H. Xiao, Z.Y. Wang, Q.K. Peng, K.Q. Jin et al., Hydrogen sensing properties of Pd/SnO2 nano-spherical composites under UV enhancement. Sens. Actuat. B: Chem. 346, 130557 (2021). https://doi.org/10.1016/j.snb.2021.130557
Z.C. Cai, E. Goo, S. Park, Hydrogen sensing performance and its enhanced sensing mechanisms of hollow structured-SnO2 nanospheres activated by noble metal nanops. J. Mater. Res. Technol. 15, 1716–1731 (2021). https://doi.org/10.1016/j.jmrt.2021.09.022
K. Suematsu, Y. Shin, Z.Q. Hua, K. Yoshida, M. Yuasa et al., Nanop cluster gas sensor: controlled clustering of SnO2 nanops for highly sensitive toluene detection. ACS Appl. Mater. Interfaces 6(7), 5319–5326 (2014). https://doi.org/10.1021/am500944a
N. Ma, K. Suematsu, M. Yuasa, T. Kida, K. Shimanoe, Effect of water vapor on Pd-loaded SnO2 nanops gas sensor. ACS Appl. Mater. Interfaces 7(10), 5863–5869 (2015). https://doi.org/10.1021/am509082w
I.C. Weber, P. Ruedi, P. Sot, A.T. Guntner, S.E. Pratsinis, Handheld device for selective benzene sensing over toluene and xylene. Adv. Sci. 9(4), 2103853 (2022). https://doi.org/10.1002/advs.202103853
J. van den Broek, S. Abegg, S.E. Pratsinis, A.T. Guntner, Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 10, 4220 (2019). https://doi.org/10.1038/s41467-019-12223-4
S. Abegg, L. Magro, J. van den Broek, S.E. Pratsinis, A.T. Guntner, A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. Nat. Food 1(6), 351–354 (2020). https://doi.org/10.1038/s43016-020-0095-9
J. van den Broek, D. Bischof, N. Derron, S. Abegg, P.A. Gerber et al., Screening methanol poisoning with a portable breath detector. Anal. Chem. 93(2), 1170–1178 (2021). https://doi.org/10.1021/acs.analchem.0c04230
J. van den Broek, D.K. Cerrejon, S.E. Pratsinis, A.T. Guntner, Selective formaldehyde detection at ppb in indoor air with a portable sensor. J. Hazard. Mater. 399, 123052 (2020). https://doi.org/10.1016/j.jhazmat.2020.123052
Z.J. Han, J. Ren, J.J. Zhou, S.Y. Zhang, Z.L. Zhang et al., Multilayer porous Pd-WO3 composite thin films prepared by sol-gel process for hydrogen sensing. Int. J. Hydrogen Energy 45(11), 7223–7233 (2020). https://doi.org/10.1016/j.ijhydene.2019.12.149
A. Esfandiar, A. Irajizad, O. Akhavan, S. Ghasemi, M.R. Gholami, Pd-WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. Int. J. Hydrogen Energy 39(15), 8169–8179 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.117
R. Zhou, X.P. Lin, D.Y. Xue, F.Y. Zong, J.M. Zhang et al., Enhanced H2 gas sensing properties by Pd-loaded urchin-like W18O49 hierarchical nanostructures. Sens. Actuat. B: Chem. 260, 900–907 (2018). https://doi.org/10.1016/j.snb.2018.01.104
A. Marikutsa, L.L. Yang, M. Rumyantseva, M. Batuk, J. Hadermann et al., Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts. Sens. Actuat. B: Chem. 277, 336–346 (2018). https://doi.org/10.1016/j.snb.2018.09.004
S.H. Xiao, B. Liu, R. Zhou, Z.W. Liu, Q.H. Li et al., Room-temperature H2 sensing interfered by CO based on interfacial effects in palladium-tungsten oxide nanops. Sens. Actuat. B: Chem. 254, 966–972 (2018). https://doi.org/10.1016/j.snb.2017.07.169
C. Wang, Y.Q. Zhang, X.Y. Sun, Y.F. Sun, F.M. Liu et al., Preparation of Pd/PdO loaded WO3 microspheres for H2S detection. Sens. Actuat. B: Chem. 321, 128629 (2020). https://doi.org/10.1016/j.snb.2020.128629
Y.Z. Dai, S.Y. Liang, C. Lv, G. Wang, H. Xia et al., Controllably fabricated single microwires from Pd-WO3•x H2O nanops by femtosecond laser for faster response ammonia sensors at room temperature. Sens. Actuat. B: Chem. 316, 128122 (2020). https://doi.org/10.1016/j.snb.2020.128122
N.H. Kim, S.J. Choi, D.J. Yang, J. Bae, J. Park et al., Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuat. B: Chem. 193, 574–581 (2014). https://doi.org/10.1016/j.snb.2013.12.011
S.J. Kim, S.J. Choi, J.S. Jang, N.H. Kim, M. Hakim et al., Mesoporous WO3 nanofibers with protein-templated nanoscale catalysts for detection of trace biomarkers in exhaled breath. ACS Nano 10(6), 5891–5899 (2016). https://doi.org/10.1021/acsnano.6b01196
X.J. Liu, K.R. Zhao, X.L. Sun, X.P. Duan, C. Zhang et al., Electrochemical sensor to environmental pollutant of acetone based on Pd-loaded on mesoporous In2O3 architecture. Sens. Actuat. B: Chem. 290, 217–225 (2019). https://doi.org/10.1016/j.snb.2019.03.139
P.F. Cheng, Y.L. Wang, C. Wang, J. Ma, L.P. Xu et al., Investigation of doping effects of different noble metals for ethanol gas sensors based on mesoporous In2O3. Nanotechnology 32(30), 305503 (2021). https://doi.org/10.1088/1361-6528/abf453
B. Liu, Y.M. Xu, K. Li, H. Wang, L. Gao et al., Pd-catalyzed reaction-producing intermediate S on a Pd/In2O3 Surface: a key to achieve the enhanced CS2-sensing performances. ACS Appl. Mater. Interfaces 11(18), 16838–16846 (2019). https://doi.org/10.1021/acsami.9b01638
Z.H. Wang, G.L. Men, R.X. Zhang, F.B. Gu, D.M. Han, Loading induced excellent NO2 gas sensing of 3DOM In2O3 at room temperature. Sens. Actuat. B: Chem. 263, 218–228 (2018). https://doi.org/10.1016/j.snb.2018.02.105
K. Inyawilert, A. Wisitsoraat, C. Liewhiran, A. Tuantranont, S. Phanichphant, H2 gas sensor based on PdOx-doped In2O3 nanops synthesized by flame spray pyrolysis. Appl. Surf. Sci. 475, 191–203 (2019). https://doi.org/10.1016/j.apsusc.2018.12.274
X.J. Liu, K.R. Zhao, X.L. Sun, C. Zhang, X.P. Duan et al., Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanops-functionalized In2O3 composites. Sens. Actuat. B: Chem. 285, 1–10 (2019). https://doi.org/10.1016/j.snb.2019.01.029
F.J. Pan, H. Lin, H.Z. Zhai, Z. Miao, Y. Zhang et al., Pd-doped TiO2 film sensors prepared by premixed stagnation flames for CO and NH3 gas sensing. Sens. Actuat. B: Chem. 261, 451–459 (2018). https://doi.org/10.1016/j.snb.2018.01.173
J. Moon, J.A. Park, S.J. Lee, T. Zyung, I.D. Kim, Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens. Actuat. B: Chem. 149(1), 301–305 (2010). https://doi.org/10.1016/j.snb.2010.06.033
D. Wang, J.L. Yang, L.P. Bao, Y. Cheng, L. Tian et al., Pd nanocrystal sensitization two-dimension porous TiO2 for instantaneous and high efficient H2 detection. J. Colloid Interf. Sci. 597, 29–38 (2021). https://doi.org/10.1016/j.jcis.2021.03.107
S. Mao, H. Zhou, S.H. Wu, J.J. Yang, Z.Y. Li et al., High performance hydrogen sensor based on Pd/TiO2 composite film. Int. J. Hydrogen Energy 43(50), 22727–22732 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.094
H.Y. Yang, Q. Lei, Z.T. Zhao, Y.J. Sun, P.W. Li et al., Electrospinning encapsulation of Pd nanops into alpha-Fe2O3 nanofibers windows enhanced acetone sensing. IEEE Sens. J. 21(14), 15944–15951 (2021). https://doi.org/10.1109/JSEN.2021.3076216
B. Sharma, J.S. Sung, A.A. Kadam, J.H. Myung, Adjustable n-p-n gas sensor response of Fe3O4-HNTs doped Pd nanocomposites for hydrogen sensors. Appl. Surf. Sci. 530, 147272 (2020). https://doi.org/10.1016/j.apsusc.2020.147272
Q. Hu, B.Y. Huang, Y. Li, S.M. Zhang, Y.X. Zhang et al., Methanol gas detection of electrospun CeO2 nanofibers by regulating Ce3+/Ce4+ mole ratio via Pd doping. Sens. Actuat. B: Chem. 307, 127638 (2020). https://doi.org/10.1016/j.snb.2019.127638
K. Mikami, Y. Kido, Y. Akaishi, A. Quitain, T. Kida, Synthesis of Cu2O/CuO nanocrystals and their application to H2S sensing. Sensors-Basel 19(1), 211 (2019). https://doi.org/10.3390/s19010211
H. Nha, P.V. Tong, N.V. Duy, C.M. Hung, N.D. Hoa, Facile synthesis of Pd-CuO nanoplates with enhanced SO2 and H2 gas-sensing characteristics. J. Electron. Mater. 50(5), 2767–2778 (2021). https://doi.org/10.1007/s11664-021-08799-7
G.T. Yuan, Y.H. Zhong, Y.F. Chen, Q.Q. Zhuo, X.H. Sun, Highly sensitive and fast-response ethanol sensing of porous Co3O4 hollow polyhedra via palladium reined spillover effect. RSC Adv. 12(11), 6725–6731 (2022). https://doi.org/10.1039/D1RA09352E
K. Koga, Electronic and catalytic effects of single-atom Pd additives on the hydrogen sensing properties of Co3O4 nanop films. ACS Appl. Mater. Interfaces 12(18), 20806–20823 (2020). https://doi.org/10.1021/acsami.9b23290
W.T. Koo, S. Yu, S.J. Choi, J.S. Jang, J.Y. Cheong et al., Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS Appl. Mater. Interfaces 9(9), 8201–8210 (2017). https://doi.org/10.1021/acsami.7b01284
C.J. Dong, M. Jiang, Y. Tao, Y.Y. Shen, Y.X. Lu et al., Nonaqueous synthesis of Pd-functionalized SnO2/In2O3 nanocomposites for excellent butane sensing properties. Sens. Actuat. B: Chem. 257, 419–426 (2018). https://doi.org/10.1016/j.snb.2017.10.175
S. Kundu, A. Kumar, Low concentration ammonia sensing performance of Pd incorporated indium tin oxide. J. Alloy Compd. 780, 245–255 (2019). https://doi.org/10.1016/j.jallcom.2018.11.201
Y.M. Jo, K. Lim, H.J. Choi, J.W. Yoon, S.Y. Kim et al., 2D metal-organic framework derived co-loading of Co3O4 and PdO nanocatalysts on In2O3 hollow spheres for tailored design of high-performance breath acetone sensors. Sens. Actuat. B: Chem. 325, 128821 (2020). https://doi.org/10.1016/j.snb.2020.128821
S.M. Kim, H.J. Kim, H.J. Jung, J.Y. Park, T.J. Seok et al., High-performance, transparent thin film hydrogen gas sensor using 2D electron gas at interface of oxide thin film heterostructure grown by atomic layer deposition. Adv. Funct. Mater. 29(7), 1807760 (2019). https://doi.org/10.1002/adfm.201807760
Y.H. Zhang, C.N. Wang, F.L. Gong, P.Y. Wang, U. Guharoy et al., Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation. J. Hazard. Mater. 388, 122069 (2020). https://doi.org/10.1016/j.jhazmat.2020.122069
P. Li, Z.W. Zhang, Z.H. Zhuang, J.H. Guo, Z.Y. Fang et al., Pd-doping-induced oxygen vacancies in one-dimensional tungsten oxide nanowires for enhanced acetone gas sensing. Anal. Chem. 93(20), 7465–7472 (2021). https://doi.org/10.1021/acs.analchem.1c00568
A.J. Yang, W.J. Li, J.F. Chu, D.W. Wang, H. Yuan et al., Enhanced sensing of sulfur hexafluoride decomposition components based on noble-metal-functionalized cerium oxide. Mater. Design 187, 108391 (2020). https://doi.org/10.1016/j.matdes.2019.108391
T.T.D. Nguyen, D. Van Dao, I.H. Lee, Y.T. Yu, S.Y. Oh, High response and selectivity toward hydrogen gas detection by In2O3 doped Pd@ZnO core-shell nanops. J. Alloy Compd. 854, 157280 (2021). https://doi.org/10.1016/j.jallcom.2020.157280
G. Bae, M. Kim, A. Lee, S. Ji, M. Jang et al., Nanometric lamination of zinc oxide nanofilms with gold nanops for self-perceived periodontal disease sensors. Compos. B: Eng. 230, 109490 (2022). https://doi.org/10.1016/j.compositesb.2021.109490
Q.A. Drmosh, Z.H. Yamani, A.K. Mohamedkhair, A.H.Y. Hendi, M.K. Hossain et al., Gold nanops incorporated SnO2 thin film: highly responsive and selective detection of NO2 at room temperature. Mater. Lett. 214, 283–286 (2018). https://doi.org/10.1016/j.matlet.2017.12.013
E. Dai, S. Wu, Y. Ye, Y. Cai, J. Liu et al., Highly dispersed Au nanops decorated WO3 nanoplatelets: laser-assisted synthesis and superior performance for detecting ethanol vapor. J. Colloid Interface Sci. 514, 165–171 (2018). https://doi.org/10.1016/j.jcis.2017.11.081
D. Xue, Z. Zhang, Au-sensitized WO3 nanops synthesized and their enhanced acetone sensing properties. Funct. Mater. Lett. 11(04), 1850071 (2018). https://doi.org/10.1142/S1793604718500716
S.-J. Young, Y.-L. Chu, Hydrothermal synthesis and improved ch3oh-sensing performance of ZnO nanorods with adsorbed Au NPs. IEEE. T. Electron. Dev. 68(4), 1886–1891 (2021). https://doi.org/10.1109/TED.2021.3060354
Z.Q. Zheng, B. Wang, J.D. Yao, G.W. Yang, Light-controlled C2H2 gas sensing based on Au-ZnO nanowires with plasmon-enhanced sensitivity at room temperature. J. Mater. Chem. C. 3(27), 7067–7074 (2015). https://doi.org/10.1039/C5TC01024A
J. Guo, S. Wang, Z. Lin, L. Liu, Y. Hui, Ultrasensitive acetone sensor based on holey zinc oxide nanosheets doped by gold nanops. Mater. Lett. 302, 130443 (2021). https://doi.org/10.1016/j.matlet.2021.130443
Y. Cui, M. Zhang, X. Li, B. Wang, R. Wang, Investigation on synthesis and excellent gas-sensing properties of hierarchical Au-loaded SnO2 nanoflowers. J. Mater. Res. 34(17), 2944–2954 (2019). https://doi.org/10.1557/jmr.2019.249
C. Chen, Q. Zhang, G. Xie, M. Yao, H. Pan et al., Enhancing visible light-activated NO2 sensing properties of Au NPs decorated ZnO nanorods by localized surface plasmon resonance and oxygen vacancies. Mater. Res. Express 7(1), 015924 (2020). https://doi.org/10.1088/2053-1591/ab6b64
A. Kaiser, E. Torres Ceja, Y. Liu, F. Huber, R. Muller et al., H2S sensing for breath analysis with Au functionalized ZnO nanowires. Nanotechnology 32(20), 205505 (2021). https://doi.org/10.1088/1361-6528/abe004
G. Korotcenkov, Current trends in nanomaterials for metal oxide-based conductometric gas sensors: advantages and limitations. Part 1: 1D and 2D nanostructures. Nanomaterials 10(7), 1392 (2020). https://doi.org/10.3390/nano10071392
J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanops. Sens. Actuat. B: Chem. 199, 339–345 (2014). https://doi.org/10.1016/j.snb.2014.04.010
J. Li, Y. Yang, Q. Wang, X. Cheng, Y. Luo et al., Design of size-controlled Au nanops loaded on the surface of ZnO for ethanol detection. CrystEngComm 23(4), 783–792 (2021). https://doi.org/10.1039/D0CE01318H
J. Miao, J.Y.S. Lin, Nanometer-thick films of aligned ZnO nanowires sensitized with Au nanops for few-ppb-level acetylene detection. ACS Appl. Nano Mater. 3(9), 9174–9184 (2020). https://doi.org/10.1021/acsanm.0c01807
N.M. Vuong, L.H. Than, T.H. Phan, H.N. Hieu, N. Van Nghia et al., Ultra responsive and highly selective ethanol gas sensor based on Au nanops embedded ZnO hierarchical structures. J. Electrochem. Soc. 168(2), 027503 (2021). https://doi.org/10.1149/1945-7111/abdde3
H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi et al., Metal-oxide nanowire molecular sensors and their promises. Chemosensors 9(2), 41 (2021). https://doi.org/10.3390/chemosensors9020041
Y. Nagarjuna, Y.J. Hsiao, Au doping ZnO nanosheets sensing properties of ethanol gas prepared on MEMS device. Coatings 10(10), 945 (2020). https://doi.org/10.3390/coatings10100945
A.M. Eyvaraghi, E. Mohammadi, N. Manavizadeh, E. Nadimi, L. Ma’mani et al., Experimental and density functional theory computational studies on highly sensitive ethanol gas sensor based on Au-decorated ZnO nanops. Thin Solid Films 741, 139014 (2022). https://doi.org/10.1016/j.tsf.2021.139014
X.J. Wang, W. Wang, Y.L. Liu, Enhanced acetone sensing performance of Au nanops functionalized flower-like ZnO. Sens. Actuat. B: Chem. 168, 39–45 (2012). https://doi.org/10.1016/j.snb.2012.01.006
E.P. Nascimento, H.C.T. Firmino, G.A. Neves, R.R. Menezes, A review of recent developments in tin dioxide nanostructured materials for gas sensors. Ceram. Int. 48(6), 7405–7440 (2022). https://doi.org/10.1016/j.ceramint.2021.12.123
Z. Cai, E. Goo, S. Park, Synthesis of tin dioxide (SnO2) hollow nanospheres and its ethanol-sensing performance augmented by gold nanop decoration. J. Alloy. Compd. 883, 160868 (2021). https://doi.org/10.1016/j.jallcom.2021.160868
Y. Bing, Y. Zeng, S. Feng, L. Qiao, Y. Wang et al., Multistep assembly of Au-loaded SnO2 hollow multilayered nanosheets for high-performance CO detection. Sens. Actuat. B: Chem. 227, 362–372 (2016). https://doi.org/10.1016/j.snb.2015.12.065
J. Guo, J. Zhang, H. Gong, D. Ju, B. Cao, Au nanop-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuat. B: Chem. 226, 266–272 (2016). https://doi.org/10.1016/j.snb.2015.11.140
D. Xue, Z. Zhang, Y. Wang, Enhanced methane sensing performance of SnO2 nanoflowers based sensors decorated with Au nanops. Mater. Chem. Phys. 237, 121864 (2019). https://doi.org/10.1016/j.matchemphys.2019.121864
H.J. Han, S.H. Cho, S. Han, J.S. Jang, G.R. Lee et al., Synergistic integration of chemo-resistive and SERS sensing for label-free multiplex gas detection. Adv. Mater. 33(44), e2105199 (2021). https://doi.org/10.1002/adma.202105199
C. Feng, F. Teng, Y. Xu, Y. Zhang, T. Fan et al., Au-nanop-decorated SnO2 nanorod sensor with enhanced xylene-sensing performance. Int. J. Appl. Ceram. Technol. 15(3), 742–750 (2017). https://doi.org/10.1111/ijac.12823
Z. Yang, Y. Zhang, L. Zhao, T. Fei, S. Liu et al., The synergistic effects of oxygen vacancy engineering and surface gold decoration on commercial SnO2 for ppb-level DMMP sensing. J. Colloid Interf. Sci. 608(Pt 3), 2703–2717 (2022). https://doi.org/10.1016/j.jcis.2021.10.192
X. Lian, Y. Li, J. Zhu, Y. Zou, D. An et al., Fabrication of Au-decorated SnO2 nanops with enhanced n-buthanol gas sensing properties. Mater. Sci. Semicond. Process. 101, 198–205 (2019). https://doi.org/10.1016/j.mssp.2019.06.008
K. Lim, Y.M. Jo, J.W. Yoon, J.S. Kim, D.J. Lee et al., A transparent nanopatterned chemiresistor: visible-light plasmonic sensor for trace-level NO2 detection at room temperature. Small 17(20), e2100438 (2021). https://doi.org/10.1002/smll.202100438
L. Yin, D. Chen, H. Zhang, G. Shao, B. Fan et al., In situ formation of Au/SnO2 nanocrystals on WO3 nanoplates as excellent gas-sensing materials for H2S detection. Mater. Chem. Phys. 148(3), 1099–1107 (2014). https://doi.org/10.1016/j.matchemphys.2014.09.025
T.H. Kim, A. Hasani, L.V. Quyet, Y. Kim, S.Y. Park et al., NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process. Sens. Actuat. B: Chem. 286, 512–520 (2019). https://doi.org/10.1016/j.snb.2019.02.009
S. Zeb, G. Sun, Y. Nie, Y. Cui, X. Jiang, Synthesis of highly oriented WO3 nanowire bundles decorated with Au for gas sensing application. Sens. Actuat. B: Chem. (2020). https://doi.org/10.1016/j.snb.2020.128439
L. Yin, D. Chen, B. Fan, H. Lu, H. Wang et al., Enhanced selective response to nitric oxide (NO) of Au-modified tungsten trioxide nanoplates. Mater. Chem. Phys. 143(1), 461–469 (2013). https://doi.org/10.1016/j.matchemphys.2013.09.028
J. Dummer, M. Storer, M. Swanney, M. McEwan, A. Scott-Thomas et al., Analysis of biogenic volatile organic compounds in human health and disease. TrAC-Trend. Anal. Chem. 30(7), 960–967 (2011). https://doi.org/10.1016/j.trac.2011.03.011
X. Yang, V. Salles, Y.V. Kaneti, M. Liu, M. Maillard et al., Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens. Actuat. B: Chem. 220, 1112–1119 (2015). https://doi.org/10.1016/j.snb.2015.05.121
J.-S. Niu, I.P. Liu, C. Lee, K.-W. Lin, J.-H. Tsai et al., Study of a highly sensitive formaldehyde sensor prepared with a tungsten trioxide thin film and gold nanops. IEEE T. Electron Dev. 68(12), 6422–6429 (2021). https://doi.org/10.1109/TED.2021.3120696
H. Zhang, Y. Wang, X. Zhu, Y. Li, W. Cai, Bilayer Au nanop-decorated WO3 porous thin films: on-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sens. Actuat. B: Chem. 280, 192–200 (2019). https://doi.org/10.1016/j.snb.2018.10.065
Y. Wang, S. Zhang, C. Huang, F. Qu, D. Yao et al., Mesoporous WO3 modified by Au nanops for enhanced trimethylamine gas sensing properties. Dalton Trans. 50(3), 970–978 (2021). https://doi.org/10.1039/D0DT03131C
S.W. Park, S.Y. Jeong, Y.K. Moon, K. Kim, J.W. Yoon et al., Highly selective and sensitive detection of breath isoprene by tailored gas reforming: a synergistic combination of macroporous WO3 spheres and Au catalysts. ACS Appl. Mater. Interfaces 14(9), 11587–11596 (2022). https://doi.org/10.1021/acsami.1c19766
Y.-K. Lv, B.-H. Yao, Z.-Q. Liu, S. Liang, Q.-C. Liu et al., Hierarchical Au-loaded WO3 hollow microspheres with high sensitive and selective properties to toluene and xylene. IEEE Sens. J. 19(14), 5413–5420 (2019). https://doi.org/10.1109/JSEN.2019.2906765
X. Zhang, B. Dong, W. Liu, X. Zhou, M. Liu et al., Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuat. B: Chem. 320, 128405 (2020). https://doi.org/10.1016/j.snb.2020.128405
M. Punginsang, D. Zappa, E. Comini, A. Wisitsoraat, G. Sberveglieri et al., Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Appl. Surf. Sci. 571, 151262 (2022). https://doi.org/10.1016/j.apsusc.2021.151262
Q. Lei, H. Li, H. Zhang, J. Wang, W. Fan et al., Three-dimensional hierarchical CuO gas sensor modified by Au nanops. J. Semicond. 40(2), 022101 (2019). https://doi.org/10.1088/1674-4926/40/2/022101
H. Yang, R. Zhou, Y. Sun, P. Li, W. Zhang et al., Optimization and gas sensing properties of Au nanop modified α-Fe2O3 nanodisk structures for highly sensitive acetone detection. New J. Chem. 44(37), 16174–16184 (2020). https://doi.org/10.1039/D0NJ03111A
L. Wang, S. Wang, H. Fu, Y. Wang, K. Yu, Synthesis of Au nanops functionalized 1D α-MoO3 nanobelts and their gas sensing properties. NANO 13(10), 1850115 (2018). https://doi.org/10.1142/S1793292018501151
H. Fu, Z. Wu, X. Yang, P. He, X. An et al., Ultra-high sensitivity and selectivity of Au nanops modified MoO3 nanobelts towards 1-butylamine. Appl. Surf. Sci. 542, 148721 (2021). https://doi.org/10.1016/j.apsusc.2020.148721
X. Yang, W. Wang, C. Wang, H. Xie, H. Fu et al., Synthesis of Au decorated V2O5 microflowers with enhanced sensing properties towards amines. Powder Technol. 339, 408–418 (2018). https://doi.org/10.1016/j.powtec.2018.08.024
M.I. Nemufulwi, H.C. Swart, G.H. Mhlongo, Evaluation of the effects of Au addition into ZnFe2O4 nanostructures on acetone detection capabilities. Mater. Res. Bull. 142, 111395 (2021). https://doi.org/10.1016/j.materresbull.2021.111395
X. Song, Q. Xu, T. Zhang, B. Song, C. Li et al., Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous α-Fe2O3 nanorods directly grown on flat substrate. Sens. Actuat. B: Chem. 268, 170–181 (2018). https://doi.org/10.1016/j.snb.2018.04.096
Y. Zhang, D. Li, L. Qin, D. Liu, Y. Liu et al., Preparation of Au-loaded TiO2 pecan-kernel-like and its enhanced toluene sensing performance. Sens. Actuat. B: Chem. 255, 2240–2247 (2018). https://doi.org/10.1016/j.snb.2017.09.023
N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S. Gurbatov et al., Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanops. Appl. Surf. Sci. 507, 145169 (2020). https://doi.org/10.1016/j.apsusc.2019.145169
J. Tao, H.L. Lu, Y. Gu, H.P. Ma, X. Li et al., Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl. Surf. Sci. 476, 733–740 (2019). https://doi.org/10.1016/j.apsusc.2019.01.177
H.-K. Lee, H.-J. Yun, K.-H. Shim, H.-G. Park, T.-H. Jang et al., Improvement of dry etch-induced surface roughness of single crystalline β-Ga2O3 using post-wet chemical treatments. Appl. Surf. Sci. 506, 144673 (2020). https://doi.org/10.1016/j.apsusc.2019.144673
T.-F. Weng, M.-S. Ho, C. Sivakumar, B. Balraj, P.-F. Chung, VLS growth of pure and Au decorated β-Ga2O3 nanowires for room temperature CO gas sensor and resistive memory applications. Appl. Surf. Sci. 533, 147476 (2020). https://doi.org/10.1016/j.apsusc.2020.147476
J. Wang, P. Yang, X. Wei, High-performance, room-temperature, and no-humidity-impact ammonia sensor based on heterogeneous nickel oxide and zinc oxide nanocrystals. ACS Appl. Mater. Interfaces 7(6), 3816–3824 (2015). https://doi.org/10.1021/am508807a
A. Šutka, M. Kodu, R. Pärna, R. Saar, I. Juhnevica et al., Orthorhombic CaFe2O4: a promising p-type gas sensor. Sens. Actuat. B: Chem. 224, 260–265 (2016). https://doi.org/10.1016/j.snb.2015.10.041
S.W. Choi, A. Katoch, J.H. Kim, S.S. Kim, Remarkable improvement of gas-sensing abilities in p-type oxide nanowires by local modification of the hole-accumulation layer. ACS Appl. Mater. Interfaces 7(1), 647–652 (2015). https://doi.org/10.1021/am5068222
B. Zhang, M. Cheng, G. Liu, Y. Gao, L. Zhao et al., Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sens. Actuat. B: Chem. 263, 387–399 (2018). https://doi.org/10.1016/j.snb.2018.02.117
T.J. Hsueh, S.S. Wu, Highly sensitive Co3O4 nanops/MEMS NO2 gas sensor with the adsorption of the Au nanops. Sens. Actuat. B: Chem. 329, 129201 (2021). https://doi.org/10.1016/j.snb.2020.129201
J.-S. Lee, A. Katoch, J.-H. Kim, S.S. Kim, Effect of Au nanop size on the gas-sensing performance of p-CuO nanowires. Sens. Actuat. B: Chem. 222, 307–314 (2016). https://doi.org/10.1016/j.snb.2015.08.037
T.Y. Lai, T.H. Fang, Y.-J. Hsiao, C.A. Chan, Characteristics of Au-doped SnO2–ZnO heteronanostructures for gas sensing applications. Vacuum 166, 155–161 (2019). https://doi.org/10.1016/j.vacuum.2019.04.061
K.C. Hsu, T.H. Fang, I.T. Tang, Y.J. Hsiao, C.Y. Chen, Mechanism and characteristics of Au-functionalized SnO2/In2O3 nanofibers for highly sensitive CO detection. J. Alloy. Compd. 822, 153475 (2020). https://doi.org/10.1016/j.jallcom.2019.153475
X. Wu, H. Wang, J. Wang, D. Wang, L. Shi et al., VOCs gas sensor based on MOFs derived porous Au@Cr2O3-In2O3 nanorods for breath analysis. Colloids Surf. Physicochem. Eng. Aspects 632, 127752 (2022). https://doi.org/10.1016/j.colsurfa.2021.127752
Y. Wang, C. Liu, Z. Wang, Z. Song, X. Zhou et al., Sputtered SnO2:NiO thin films on self-assembled Au nanop arrays for MEMS compatible NO2 gas sensors. Sens. Actuat. B: Chem. 278, 28–38 (2019). https://doi.org/10.1016/j.snb.2018.09.074
B. Wang, H.T. Jin, Z.Q. Zheng, Y.H. Zhou, C. Gao, Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuat. B: Chem. 244, 344–356 (2017). https://doi.org/10.1016/j.snb.2016.12.044
J.H. Kim, A. Mirzaei, H.W. Kim, S.S. Kim, Extremely sensitive and selective sub-ppm CO detection by the synergistic effect of Au nanops and core–shell nanowires. Sens. Actuat. B: Chem. 249, 177–188 (2017). https://doi.org/10.1016/j.snb.2017.04.090
T. Zhai, H. Xu, W. Li, H. Yu, Z. Chen et al., Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure. J. Alloy. Compd. 737, 603–612 (2018). https://doi.org/10.1016/j.jallcom.2017.12.016
H. Xu, W. Li, R. Han, T. Zhai, H. Yu et al., Enhanced triethylamine sensing properties by fabricating Au@SnO2/α-Fe2O3 core-shell nanoneedles directly on alumina tubes. Sens. Actuat. B: Chem. 262, 70–78 (2018). https://doi.org/10.1016/j.snb.2018.01.209
S.H. Kwon, T.H. Kim, S.M. Kim, S. Oh, K.K. Kim, Ultraviolet light-emitting diode-assisted highly sensitive room temp