A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 8
Abstract
Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring. Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites, leading to a very low gas adsorption ability. Moreover, the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior. In this work, a gas sensing structure model based on CuS quantum dots/Bi2S3 nanosheets (CuS QDs/Bi2S3 NSs) inspired by artificial neuron network is constructed. Simulation analysis by density functional calculation revealed that CuS QDs and Bi2S3 NSs can be used as the main adsorption sites and charge transport pathways, respectively. Thus, the high-sensitivity sensing of NO2 can be realized by designing the artificial neuron-like sensor. The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable, which can enhance the NO2 sensitivity due to the rich sensitive sites and quantum size effect. The Bi2S3 NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission. The neuron-like sensor that simulates biological smell shows a significantly enhanced response value (3.4), excellent responsiveness (18 s) and recovery rate (338 s), low theoretical detection limit of 78 ppb, and excellent selectivity for NO2. Furthermore, the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.
Highlights:
1 An ultra-sensitive capture of NO2 molecules and fast charge collection and transfer has been realized by constructing the model of artificial neuron-likegas sensing structure based on CuS quantum dots (QDs)/Bi2S3 nanosheets (NSs)realizes.
2 Simulation analysis revealed that CuS QDs and Bi2S3NSs can be used, respectively, as the main adsorption sites and charge transport pathways, thus leading to a greatly enhanced gas capture ability and charge conduction performance of NO2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Figueres, P.J. Christiana, R. Fuller. Landrigan, Tackling air pollution, climate change, and NCDs: time to pull together. Lancet. 392(10157), 1502–1503 (2018). https://doi.org/10.1016/S0140-6736(18)32740-5
- X. Han, H.G.W. Godfrey, L. Briggs, A.J. Davies, Y. Cheng et al., Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 17, 691–696 (2018). https://doi.org/10.1038/s41563-018-0104-7
- Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- Y. Pang, Z. Yang, Y. Yang, T.L. Ren, Wearable electronics based on 2D materials for human physiological information detection. Small 16, 1901124 (2019). https://doi.org/10.1002/smll.201901124
- M.A.A. Mamun, M.R. Yuce, Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 30, 2005703 (2020). https://doi.org/10.1002/adfm.202005703
- N. Tang, C. Zhou, L. Xu, Y. Jiang, H. Qu et al., A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4(3), 726–732 (2019). https://doi.org/10.1021/acssensors.8b01690
- S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1900138 (2019). https://doi.org/10.1002/adfm.201900138
- S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
- J.R. Yu, X.X. Yang, G.Y. Gao, Y. Xiong, Y.F. Wang et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021). https://advances.sciencemag.org/content/7/12/eabd9117
- Q.B. Zhu, B. Li, D.D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.5281/zenodo.4540948
- E. Chong, M. Moroni, C. Wilson, S. Shoham, S. Panzeri et al., Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 368, 1329 (2020). https://science.sciencemag.org/content/368/6497/eaba2357
- X. Yang, S. Tian, R. Li, W. Wang, S. Zhou, Use of single-crystalline Bi2S3 nanowires as room temperature ethanol sensor synthesized by hydrothermal approach. Sens. Actuators B: Chem. 241, 210–216 (2017). https://doi.org/10.1016/j.snb.2016.10.074
- T.X. Fu, Gas sensor based on three dimensional Bi2S3 nanowires network for ammonia detection at room temperature. Mater. Res. Bull. 99, 460–465 (2018). https://doi.org/10.1016/j.materresbull.2017.11.038
- N. Dhar, N. Syed, M. Mohiuddin, A. Jannat, A. Zavabeti et al., Exfoliation behavior of van der waals strings: case study of Bi2S3. ACS Appl. Mater. Interfaces 10(49), 42603–42611 (2018). https://doi.org/10.1021/acsami.8b14702
- W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu et al., Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10, 2404–2412 (2018). https://doi.org/10.1039/C7NR09046C
- Y.T. Han, D. Huang, Y.J. Ma, G.L. He, J. Hu et al., Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10, 22640–22649 (2018). https://doi.org/10.1021/acsami.8b05811
- M. Ikram, L. Liu, Y. Liu, M. Ullah, L. Ma et al., Controllable synthesis of MoS2@MoO2 nanonetworks for enhanced NO2 room temperature sensing in air. Nanoscale 11, 8554–8564 (2019). https://doi.org/10.1039/C9NR00137A
- F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, High performance CuS p-type thin film as a hydrogen gas sensor. Sens. Actuators A: Phys. 249, 68–76 (2016). https://doi.org/10.1016/j.sna.2016.08.026
- T. Ahamad, M. Naushad, S.M. Alshheri, Fabrication of highly porous N/S doped carbon embedded with CuO/CuS nanoparticles for NH3 gas sensing. Mater. Lett. 268, 127515 (2020). https://doi.org/10.1016/j.matlet.2020.127515
- H. Wang, K.Y. Xie, Y. You, Q. Hou, K. Zhang et al., Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO heterostructures for efficient Li–CO2 batteries. Adv. Energy Mater. 9, 1901806 (2019). https://doi.org/10.1002/aenm.201901806
- X. Xin, Y. Zhang, X. Guan, J. Cao, W. Li et al., Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature ACS Appl. Mater. Interfaces 11(9), 9438–9447 (2019). https://doi.org/10.1021/acsami.8b20984
- E.P. Nguyen, B.J. Carey, T. Daeneke, J.Z. Ou, K. Latham et al., Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem. Mater. 27(1), 53–59 (2015). https://doi.org/10.1021/cm502915f
- Y. Yao, L. Tolentino, Z. Yang, X. Song, W. Zhang et al., High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23, 3577–3583 (2013). https://doi.org/10.1002/adfm.201201843
- X.W. Chen, S. Wang, C. Su, Y.T. Han, C. Zou et al., Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens. Actuators B: Chem. 305, 127393 (2020). https://doi.org/10.1016/j.snb.2019.127393
- Y.T. Han, Y. Liu, C. Su, S.T. Wang, H. Li et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B: Chem. 296, 126666 (2019). https://doi.org/10.1016/j.snb.2019.126666
- Z. Pan, F. Cao, X. Hu, X. Ji, A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 7, 8984 (2019). https://doi.org/10.1039/C9TA00085B
- R.M. Clark, J.C. Kotsakidis, B. Weber, K.J. Berean, B.J. Carey et al., Exfoliation of quasi-stratified Bi2S3 crystals into micron-scale ultrathin corrugated nanosheets. Chem. Mater. 28(24), 8942–8950 (2016). https://doi.org/10.1021/acs.chemmater.6b03478
- F. Lu, R. Li, N. Yan Li, J. Yang. Huo et al., Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. ChemPhysChem (2015). https://doi.org/10.1002/cphc.201402594
- J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao et al., Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 4, 1400798 (2014). https://doi.org/10.1002/aenm.201400798
- T. Hurma, S. Kose, XRD Raman analysis and optical properties of CuS nanostructured film. Optik 127, 6000 (2016). https://doi.org/10.1016/j.ijleo.2016.04.019
- S. Bera, A.K. Katiyar, A.K. Sinha, S.P. Mondal, S.K. Ray, Resistive switching characteristics of a single Zn-doped CuS nanoball anchored with multi-walled carbon nanotubes. Mater. Design 101, 197–203 (2016). https://doi.org/10.1016/j.matdes.2016.03.160
- C. Hong, Y.I. Kim, J.H. Seo, J.H. Kim, A. Ma et al., Comprehensive study of the growth mechanism and photoelectrochemical activity of a BiVO4/Bi2S3 nanowire composite. ACS Appl. Mater. Interfaces 12(35), 39713–39719 (2020). https://doi.org/10.1021/acsami.0c07577
- L. Liu, M. Ikram, L. Ma, X. Zhang, H. Lv et al., Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 393, 122325 (2020). https://doi.org/10.1016/j.jhazmat.2020.122325
- L. Meng, J. He, W. Tian, M. Wang, R. Long et al., Ni/Fe codoped In2S3 nanosheet arrays boost photo-electrochemical performance of planar Si photocathodes. Adv. Energy Mater. 9, 1902135 (2019). https://doi.org/10.1002/aenm.201902135
- Y. Guo, J. Yang, D. Wu, H. Bai, Z. Yang et al., Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation. J. Mater. Chem. A 8, 16218 (2020). https://doi.org/10.1039/D0TA03793A
- W. Zheng, Y. Xu, L. Zheng, C. Yang, N. Pinna et al., MoS2 van der waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 30, 2000435 (2020). https://doi.org/10.1002/adfm.202000435
- S.Y. Cho, H.J. Koh, H.W. Yoo, J.S. Kim, H.T. Jung, Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2. ACS Sens. 2(1), 183–189 (2017). https://doi.org/10.1021/acssensors.6b00801
- H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu et al., Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26, 2718–2724 (2014). https://doi.org/10.1002/adma.201304366
- Q. Sun, J. Wang, J. Hao, S. Zheng, P. Wan et al., SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 11, 13741–13749 (2019). https://doi.org/10.1039/C9NR02780G
- S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
- Z. Qin, C. Ouyang, J. Zhang, L. Wan, S. Wang et al., 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens. Actuators B: Chem. 253, 1034–1042 (2017). https://doi.org/10.1016/j.snb.2017.07.052
- W.Y. Chen, X. Jiang, S.-N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
- K.M.B. Urs, N.K. Katiyar, R. Kumar, K. Biswas, A.K. Singh et al., Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale 12, 11830–11841 (2020). https://doi.org/10.1039/D0NR02177F
- D. Fu, C. Zhu, X. Zhang, C. Li, Y. Chen, Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J. Mater. Chem. A 4, 1390–1398 (2016). https://doi.org/10.1039/C5TA09190J
- J. Hao, D. Zhang, Q. Sun, S. Zheng, J. Sun, Y. Wang, Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 10, 7210–7217 (2018). https://doi.org/10.1039/C8NR01379A
- J.V. Vaghasiya, C.C.M. Martinez, J. Vyskočil, Z. Sofer, M. Pumera, Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti3C2 MXene and 1T-Phase WS2 Nanosheets. Adv. Funct. Mater. 30, 2003673 (2020). https://doi.org/10.1002/adfm.202003673
References
C. Figueres, P.J. Christiana, R. Fuller. Landrigan, Tackling air pollution, climate change, and NCDs: time to pull together. Lancet. 392(10157), 1502–1503 (2018). https://doi.org/10.1016/S0140-6736(18)32740-5
X. Han, H.G.W. Godfrey, L. Briggs, A.J. Davies, Y. Cheng et al., Reversible adsorption of nitrogen dioxide within a robust porous metal–organic framework. Nat. Mater. 17, 691–696 (2018). https://doi.org/10.1038/s41563-018-0104-7
Z. Meng, R.M. Stolz, L. Mendecki, K.A. Mirica, Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119(1), 478–598 (2019). https://doi.org/10.1021/acs.chemrev.8b00311
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
Y. Pang, Z. Yang, Y. Yang, T.L. Ren, Wearable electronics based on 2D materials for human physiological information detection. Small 16, 1901124 (2019). https://doi.org/10.1002/smll.201901124
M.A.A. Mamun, M.R. Yuce, Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications. Adv. Funct. Mater. 30, 2005703 (2020). https://doi.org/10.1002/adfm.202005703
N. Tang, C. Zhou, L. Xu, Y. Jiang, H. Qu et al., A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4(3), 726–732 (2019). https://doi.org/10.1021/acssensors.8b01690
S. Guo, D. Yang, S. Zhang, Q. Dong, B. Li et al., Development of a cloud-based epidermal MoSe2 device for hazardous gas sensing. Adv. Funct. Mater. 29, 1900138 (2019). https://doi.org/10.1002/adfm.201900138
S.T. Keene, C. Lubrano, S. Kazemzadeh, A. Melianas, Y. Tuchman et al., A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 19, 969–973 (2020). https://doi.org/10.1038/s41563-020-0703-y
J.R. Yu, X.X. Yang, G.Y. Gao, Y. Xiong, Y.F. Wang et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure. Sci. Adv. 7, eabd9117 (2021). https://advances.sciencemag.org/content/7/12/eabd9117
Q.B. Zhu, B. Li, D.D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.5281/zenodo.4540948
E. Chong, M. Moroni, C. Wilson, S. Shoham, S. Panzeri et al., Manipulating synthetic optogenetic odors reveals the coding logic of olfactory perception. Science 368, 1329 (2020). https://science.sciencemag.org/content/368/6497/eaba2357
X. Yang, S. Tian, R. Li, W. Wang, S. Zhou, Use of single-crystalline Bi2S3 nanowires as room temperature ethanol sensor synthesized by hydrothermal approach. Sens. Actuators B: Chem. 241, 210–216 (2017). https://doi.org/10.1016/j.snb.2016.10.074
T.X. Fu, Gas sensor based on three dimensional Bi2S3 nanowires network for ammonia detection at room temperature. Mater. Res. Bull. 99, 460–465 (2018). https://doi.org/10.1016/j.materresbull.2017.11.038
N. Dhar, N. Syed, M. Mohiuddin, A. Jannat, A. Zavabeti et al., Exfoliation behavior of van der waals strings: case study of Bi2S3. ACS Appl. Mater. Interfaces 10(49), 42603–42611 (2018). https://doi.org/10.1021/acsami.8b14702
W. Huang, C. Xing, Y. Wang, Z. Li, L. Wu et al., Facile fabrication and characterization of two-dimensional bismuth(III) sulfide nanosheets for high-performance photodetector applications under ambient conditions. Nanoscale 10, 2404–2412 (2018). https://doi.org/10.1039/C7NR09046C
Y.T. Han, D. Huang, Y.J. Ma, G.L. He, J. Hu et al., Design of hetero-nanostructures on MoS2 nanosheets to boost NO2 room-temperature sensing. ACS Appl. Mater. Interfaces 10, 22640–22649 (2018). https://doi.org/10.1021/acsami.8b05811
M. Ikram, L. Liu, Y. Liu, M. Ullah, L. Ma et al., Controllable synthesis of MoS2@MoO2 nanonetworks for enhanced NO2 room temperature sensing in air. Nanoscale 11, 8554–8564 (2019). https://doi.org/10.1039/C9NR00137A
F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, High performance CuS p-type thin film as a hydrogen gas sensor. Sens. Actuators A: Phys. 249, 68–76 (2016). https://doi.org/10.1016/j.sna.2016.08.026
T. Ahamad, M. Naushad, S.M. Alshheri, Fabrication of highly porous N/S doped carbon embedded with CuO/CuS nanoparticles for NH3 gas sensing. Mater. Lett. 268, 127515 (2020). https://doi.org/10.1016/j.matlet.2020.127515
H. Wang, K.Y. Xie, Y. You, Q. Hou, K. Zhang et al., Realizing interfacial electronic interaction within ZnS quantum dots/N-rGO heterostructures for efficient Li–CO2 batteries. Adv. Energy Mater. 9, 1901806 (2019). https://doi.org/10.1002/aenm.201901806
X. Xin, Y. Zhang, X. Guan, J. Cao, W. Li et al., Enhanced performances of PbS quantum-dots-modified MoS2 composite for NO2 detection at room temperature ACS Appl. Mater. Interfaces 11(9), 9438–9447 (2019). https://doi.org/10.1021/acsami.8b20984
E.P. Nguyen, B.J. Carey, T. Daeneke, J.Z. Ou, K. Latham et al., Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem. Mater. 27(1), 53–59 (2015). https://doi.org/10.1021/cm502915f
Y. Yao, L. Tolentino, Z. Yang, X. Song, W. Zhang et al., High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23, 3577–3583 (2013). https://doi.org/10.1002/adfm.201201843
X.W. Chen, S. Wang, C. Su, Y.T. Han, C. Zou et al., Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens. Actuators B: Chem. 305, 127393 (2020). https://doi.org/10.1016/j.snb.2019.127393
Y.T. Han, Y. Liu, C. Su, S.T. Wang, H. Li et al., Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B: Chem. 296, 126666 (2019). https://doi.org/10.1016/j.snb.2019.126666
Z. Pan, F. Cao, X. Hu, X. Ji, A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 7, 8984 (2019). https://doi.org/10.1039/C9TA00085B
R.M. Clark, J.C. Kotsakidis, B. Weber, K.J. Berean, B.J. Carey et al., Exfoliation of quasi-stratified Bi2S3 crystals into micron-scale ultrathin corrugated nanosheets. Chem. Mater. 28(24), 8942–8950 (2016). https://doi.org/10.1021/acs.chemmater.6b03478
F. Lu, R. Li, N. Yan Li, J. Yang. Huo et al., Improving the field-effect performance of Bi2S3 single nanowires by an asymmetric device fabrication. ChemPhysChem (2015). https://doi.org/10.1002/cphc.201402594
J. Ni, Y. Zhao, T. Liu, H. Zheng, L. Gao et al., Strongly coupled Bi2S3@CNT hybrids for robust lithium storage. Adv. Energy Mater. 4, 1400798 (2014). https://doi.org/10.1002/aenm.201400798
T. Hurma, S. Kose, XRD Raman analysis and optical properties of CuS nanostructured film. Optik 127, 6000 (2016). https://doi.org/10.1016/j.ijleo.2016.04.019
S. Bera, A.K. Katiyar, A.K. Sinha, S.P. Mondal, S.K. Ray, Resistive switching characteristics of a single Zn-doped CuS nanoball anchored with multi-walled carbon nanotubes. Mater. Design 101, 197–203 (2016). https://doi.org/10.1016/j.matdes.2016.03.160
C. Hong, Y.I. Kim, J.H. Seo, J.H. Kim, A. Ma et al., Comprehensive study of the growth mechanism and photoelectrochemical activity of a BiVO4/Bi2S3 nanowire composite. ACS Appl. Mater. Interfaces 12(35), 39713–39719 (2020). https://doi.org/10.1021/acsami.0c07577
L. Liu, M. Ikram, L. Ma, X. Zhang, H. Lv et al., Edge-exposed MoS2 nanospheres assembled with SnS2 nanosheet to boost NO2 gas sensing at room temperature. J. Hazard. Mater. 393, 122325 (2020). https://doi.org/10.1016/j.jhazmat.2020.122325
L. Meng, J. He, W. Tian, M. Wang, R. Long et al., Ni/Fe codoped In2S3 nanosheet arrays boost photo-electrochemical performance of planar Si photocathodes. Adv. Energy Mater. 9, 1902135 (2019). https://doi.org/10.1002/aenm.201902135
Y. Guo, J. Yang, D. Wu, H. Bai, Z. Yang et al., Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation. J. Mater. Chem. A 8, 16218 (2020). https://doi.org/10.1039/D0TA03793A
W. Zheng, Y. Xu, L. Zheng, C. Yang, N. Pinna et al., MoS2 van der waals p–n junctions enabling highly selective room-temperature NO2 sensor. Adv. Funct. Mater. 30, 2000435 (2020). https://doi.org/10.1002/adfm.202000435
S.Y. Cho, H.J. Koh, H.W. Yoo, J.S. Kim, H.T. Jung, Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS2. ACS Sens. 2(1), 183–189 (2017). https://doi.org/10.1021/acssensors.6b00801
H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu et al., Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26, 2718–2724 (2014). https://doi.org/10.1002/adma.201304366
Q. Sun, J. Wang, J. Hao, S. Zheng, P. Wan et al., SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection. Nanoscale 11, 13741–13749 (2019). https://doi.org/10.1039/C9NR02780G
S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS2 nanosheets through SnO2 nanocrystal decoration for high-performance gas sensing in air. Small 11, 2305–2313 (2015). https://doi.org/10.1002/smll.201402923
Z. Qin, C. Ouyang, J. Zhang, L. Wan, S. Wang et al., 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sens. Actuators B: Chem. 253, 1034–1042 (2017). https://doi.org/10.1016/j.snb.2017.07.052
W.Y. Chen, X. Jiang, S.-N. Lai, D. Peroulis, L. Stanciu, Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 11, 1302 (2020). https://doi.org/10.1038/s41467-020-15092-4
K.M.B. Urs, N.K. Katiyar, R. Kumar, K. Biswas, A.K. Singh et al., Multi-component (Ag–Au–Cu–Pd–Pt) alloy nanoparticle-decorated p-type 2D-molybdenum disulfide (MoS2) for enhanced hydrogen sensing. Nanoscale 12, 11830–11841 (2020). https://doi.org/10.1039/D0NR02177F
D. Fu, C. Zhu, X. Zhang, C. Li, Y. Chen, Two-dimensional net-like SnO2/ZnO heteronanostructures for high-performance H2S gas sensor. J. Mater. Chem. A 4, 1390–1398 (2016). https://doi.org/10.1039/C5TA09190J
J. Hao, D. Zhang, Q. Sun, S. Zheng, J. Sun, Y. Wang, Hierarchical SnS2/SnO2 nanoheterojunctions with increased active-sites and charge transfer for ultrasensitive NO2 detection. Nanoscale 10, 7210–7217 (2018). https://doi.org/10.1039/C8NR01379A
J.V. Vaghasiya, C.C.M. Martinez, J. Vyskočil, Z. Sofer, M. Pumera, Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti3C2 MXene and 1T-Phase WS2 Nanosheets. Adv. Funct. Mater. 30, 2003673 (2020). https://doi.org/10.1002/adfm.202003673