One-Step Cutting of Multi-Walled Carbon Nanotubes Using Nanoscissors
Corresponding Author: Yafei Zhang
Nano-Micro Letters,
Vol. 3 No. 2 (2011), Article Number: 86-90
Abstract
A novel, simple and effective one-step method has been developed to cut the conventional long and entangled multi-walled carbon nanotubes (MWCNTs) with nanoscissors. The cutting process was carried out by the interactive collision of CNTs with the silicon carbide particles adhered on the abrasive papers. The final cut nanotubes have an average length of 200∼300 nm. The statistical length distribution result indicates that cutting by this method achieves high cutting efficiency for short duration of 2 min. Shortened nanotubes are found to be easily dispersed into aqueous and ethanol solutions. The cut MWCNTs/copper composite thin film fabricated by combined electrophoresis and electroplating techniques reveals that MWCNTs after cutting are well distributed and adhered to the Cu matrix. This method is not only fast and efficient but also no chemical waste, which will expand many potential applications of CNTs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima, Nature 354, 56 (1991). http://dx.doi.org/10.1038/354056a0
- J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). http://dx.doi.org/10.1126/science.280.5367.1253
- K. Chu, H. Guo, C. C. Jia, F. Z. Yin, X. M. Zhang, X. B. Liang and H. Chen, Nanoscale Res. Lett. 5, 868 (2010). http://dx.doi.org/10.1007/s11671-010-9577-2
- Z. Li, L. Wang, Y. Su, P. Liu and Y. Zhang, Nano-Micro Lett. 1, 9 (2010).
- G. Kalita, S. Adhikari, H. R. Aryal, M. Umeno, R. Afre, T. Soga and M. Sharon, Appl. Phys. Lett. 92, 123508 (2008). http://dx.doi.org/10.1063/1.2903493
- S. Wang, R. Liang, B. Wang and C. Zhang, Carbon 47, 53 (2009). http://dx.doi.org/10.1016/j.carbon.2008.08.024
- Z. Zhang, Z. Sun and Y. Chen, Appl. Surf. Sci. 253, 3292 (2007). http://dx.doi.org/10.1016/j.apsusc.2006.07.043
- H. M. Cheng, Q. H. Yang and C. Liu, Carbon 39, 1447 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00306-7
- D. Ogrin, R. E. Anderson, R. Colorado, B. Maruyama, M. J. Pender, V. C. Moore, S. T. Pheasant, L. McJilton, H. K. Schmidt, R. H. Hauge, W. E. Billups, J. M. Tour, R. E. Smalley and A. R. Barron, J. Phys. Chem. C 111, 17804 (2007). http://dx.doi.org/10.1021/jp0712506
- I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards and O. Jaschinski, Chem. Phys. Lett. 331, 125 (2000). http://dx.doi.org/10.1016/S0009-2614(00)01163-5
- G. Maurin, I. Stepanek, P. Bernier, J. F. Colomer, J. B. Nagy and F. Henn, Carbon 39, 1273 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00250-5
- Amorphous and Nanostructured Carbon, Materials Research Society, Warrendale, 2000.
- F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang and C. Chen, Carbon 41, 2527 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00302-6
- N. Pierard, A. Fonseca, J. F. Colomer, C. Bossuot, J. M. Benoit, G. Van Tendeloo, J. P. Pirard and J. B. Nagy, Carbon 42, 1691 (2004). http://dx.doi.org/10.1016/j.carbon.2004.02.031
- K. C. Park, M. Fujishige, K. Takeuchi, S. Arai, S. Morimoto and M. Endo, J. Chem. Solids 69, 2481 (2008). http://dx.doi.org/10.1016/j.jpcs.2008.05.006
- S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa and K. D. Sams, Nano Lett. 3, 1007 (2003). http://dx.doi.org/10.1021/nl034219y
- J. Lee, T. Jeong, J. Heo, S. H. Park, D. Lee, J. B. Park, H. Han, Y. Kwon, I. Kovalev, S. M. Yoon, J. Y. Choi, Y. Jin, J. M. Kim, K. H. An, Y. H. Lee and S. Yu, Carbon 44, 2984 (2006). http://dx.doi.org/10.1016/j.carbon.2006.05.045
- F. Banhart, J. X. Li and M. Terrones, Small 1, 953 (2005). http://dx.doi.org/10.1002/smll.200500162
- U. Rauwald, J. Shaver, D. A. Klosterman, Z. Y. Chen, C. Silvera-Batista, H. K. Schmidt, R. H. Hauge, R. E. Smalley and K. J. Ziegler, Carbon 47, 178 (2009). http://dx.doi.org/10.1016/j.carbon.2008.09.043
- J. Y. Li and Y. F. Zhang, Appl. Surf. Sci. 252, 2944 (2006). http://dx.doi.org/10.1016/j.apsusc.2005.04.039
- M. Q. Tran, C. Tridech, A. Alfrey, A. Bismarck and M. S. P. Shaffer, Carbon 45, 2341 (2007). http://dx.doi.org/10.1016/j.carbon.2007.07.012
- Z. Y. Chen, K. J. Ziegler, J. Shaver, R. H. Hauge and R. E. Smalley, J. Phys. Chem. B 110, 11624 (2006). http://dx.doi.org/10.1021/jp057494c
- Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley and J. L. Margrave, Nano Lett. 2, 1009 (2002). http://dx.doi.org/10.1021/nl025675+
- A. L. Elias, A. R. Botello-Mendez, D. Meneses-Rodriguez, V. J. Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P. M. Ajayan, H. Terrones and M. Terrones, Nano Lett. 10, 366 (2010). http://dx.doi.org/10.1021/nl901631z
- P. Liu, D. Xu, Z. J. Li, B. Zhao, E. S. W. Kong and Y. F. Zhang, Microelectron. Eng. 85, 1984 (2008). http://dx.doi.org/10.1016/j.mee.2008.04.046
- Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne and J. N. Coleman, J. Phys. Chem. C 112, 10692 (2008). http://dx.doi.org/10.1021/jp8021634
References
S. Iijima, Nature 354, 56 (1991). http://dx.doi.org/10.1038/354056a0
J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science 280, 1253 (1998). http://dx.doi.org/10.1126/science.280.5367.1253
K. Chu, H. Guo, C. C. Jia, F. Z. Yin, X. M. Zhang, X. B. Liang and H. Chen, Nanoscale Res. Lett. 5, 868 (2010). http://dx.doi.org/10.1007/s11671-010-9577-2
Z. Li, L. Wang, Y. Su, P. Liu and Y. Zhang, Nano-Micro Lett. 1, 9 (2010).
G. Kalita, S. Adhikari, H. R. Aryal, M. Umeno, R. Afre, T. Soga and M. Sharon, Appl. Phys. Lett. 92, 123508 (2008). http://dx.doi.org/10.1063/1.2903493
S. Wang, R. Liang, B. Wang and C. Zhang, Carbon 47, 53 (2009). http://dx.doi.org/10.1016/j.carbon.2008.08.024
Z. Zhang, Z. Sun and Y. Chen, Appl. Surf. Sci. 253, 3292 (2007). http://dx.doi.org/10.1016/j.apsusc.2006.07.043
H. M. Cheng, Q. H. Yang and C. Liu, Carbon 39, 1447 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00306-7
D. Ogrin, R. E. Anderson, R. Colorado, B. Maruyama, M. J. Pender, V. C. Moore, S. T. Pheasant, L. McJilton, H. K. Schmidt, R. H. Hauge, W. E. Billups, J. M. Tour, R. E. Smalley and A. R. Barron, J. Phys. Chem. C 111, 17804 (2007). http://dx.doi.org/10.1021/jp0712506
I. Stepanek, G. Maurin, P. Bernier, J. Gavillet, A. Loiseau, R. Edwards and O. Jaschinski, Chem. Phys. Lett. 331, 125 (2000). http://dx.doi.org/10.1016/S0009-2614(00)01163-5
G. Maurin, I. Stepanek, P. Bernier, J. F. Colomer, J. B. Nagy and F. Henn, Carbon 39, 1273 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00250-5
Amorphous and Nanostructured Carbon, Materials Research Society, Warrendale, 2000.
F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang and C. Chen, Carbon 41, 2527 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00302-6
N. Pierard, A. Fonseca, J. F. Colomer, C. Bossuot, J. M. Benoit, G. Van Tendeloo, J. P. Pirard and J. B. Nagy, Carbon 42, 1691 (2004). http://dx.doi.org/10.1016/j.carbon.2004.02.031
K. C. Park, M. Fujishige, K. Takeuchi, S. Arai, S. Morimoto and M. Endo, J. Chem. Solids 69, 2481 (2008). http://dx.doi.org/10.1016/j.jpcs.2008.05.006
S. R. Lustig, E. D. Boyes, R. H. French, T. D. Gierke, M. A. Harmer, P. B. Hietpas, A. Jagota, R. S. McLean, G. P. Mitchell, G. B. Onoa and K. D. Sams, Nano Lett. 3, 1007 (2003). http://dx.doi.org/10.1021/nl034219y
J. Lee, T. Jeong, J. Heo, S. H. Park, D. Lee, J. B. Park, H. Han, Y. Kwon, I. Kovalev, S. M. Yoon, J. Y. Choi, Y. Jin, J. M. Kim, K. H. An, Y. H. Lee and S. Yu, Carbon 44, 2984 (2006). http://dx.doi.org/10.1016/j.carbon.2006.05.045
F. Banhart, J. X. Li and M. Terrones, Small 1, 953 (2005). http://dx.doi.org/10.1002/smll.200500162
U. Rauwald, J. Shaver, D. A. Klosterman, Z. Y. Chen, C. Silvera-Batista, H. K. Schmidt, R. H. Hauge, R. E. Smalley and K. J. Ziegler, Carbon 47, 178 (2009). http://dx.doi.org/10.1016/j.carbon.2008.09.043
J. Y. Li and Y. F. Zhang, Appl. Surf. Sci. 252, 2944 (2006). http://dx.doi.org/10.1016/j.apsusc.2005.04.039
M. Q. Tran, C. Tridech, A. Alfrey, A. Bismarck and M. S. P. Shaffer, Carbon 45, 2341 (2007). http://dx.doi.org/10.1016/j.carbon.2007.07.012
Z. Y. Chen, K. J. Ziegler, J. Shaver, R. H. Hauge and R. E. Smalley, J. Phys. Chem. B 110, 11624 (2006). http://dx.doi.org/10.1021/jp057494c
Z. Gu, H. Peng, R. H. Hauge, R. E. Smalley and J. L. Margrave, Nano Lett. 2, 1009 (2002). http://dx.doi.org/10.1021/nl025675+
A. L. Elias, A. R. Botello-Mendez, D. Meneses-Rodriguez, V. J. Gonzalez, D. Ramirez-Gonzalez, L. Ci, E. Munoz-Sandoval, P. M. Ajayan, H. Terrones and M. Terrones, Nano Lett. 10, 366 (2010). http://dx.doi.org/10.1021/nl901631z
P. Liu, D. Xu, Z. J. Li, B. Zhao, E. S. W. Kong and Y. F. Zhang, Microelectron. Eng. 85, 1984 (2008). http://dx.doi.org/10.1016/j.mee.2008.04.046
Z. Sun, V. Nicolosi, D. Rickard, S. D. Bergin, D. Aherne and J. N. Coleman, J. Phys. Chem. C 112, 10692 (2008). http://dx.doi.org/10.1021/jp8021634