Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering
Corresponding Author: Baolin Guo
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 1
Abstract
Conductive biomaterials based on conductive polymers, carbon nanomaterials, or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering, owing to the similar conductivity to human skin, good antioxidant and antibacterial activities, electrically controlled drug delivery, and photothermal effect. However, a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking. In this review, the design and fabrication methods of conductive biomaterials with various structural forms including film, nanofiber, membrane, hydrogel, sponge, foam, and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized. The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies (electrotherapy, wound dressing, and wound assessment) were reviewed. The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound (infected wound and diabetic wound) and for wound monitoring is discussed in detail. The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well.
Highlights:
1 The design and application of conductive biomaterials for wound healing are comprehensively reviewed, including versatile conductive agents, the various forms of conductive wound dressings, and different in vivo applications.
2 Three main strategies of which conductive biomaterials realizing their applications in wound healing and skin tissue engineering are discussed.
3 The challenges and perspectives in designing multifunctional conductive biomaterials and further clinical translation are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Colonna, Skin function for human CD1a-reactive T cells. Nat. Immunol. 11, 1079–1080 (2010). https://doi.org/10.1038/ni1210-1079
- F. Strodtbeck, Physiology of wound healing. Newborn Infant Nurs. Rev. 1(1), 43–52 (2001). https://doi.org/10.1053/nbin.2001.23176
- D. Harper, A. Young, C.E. McNaught, The physiology of wound healing. Surg. Infect. (Larchmt.) 32(9), 445–450 (2014). https://doi.org/10.1016/j.mpsur.2014.06.010
- B.K. Sun, Z. Siprashvili, P.A. Khavari, Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212), 941–945 (2014). https://doi.org/10.1126/science.1253836
- S.K. Nethi, S. Das, C.R. Patra, S. Mukherjee, Recent advances in inorganic nanomaterials for wound-healing applications. Biomater. Sci. 7(7), 2652–2674 (2019). https://doi.org/10.1039/c9bm00423h
- M.P. Rowan, L.C. Cancio, E.A. Elster, D.M. Burmeister, L.F. Rose et al., Burn wound healing and treatment: review and advancements. Crit. Care 19, 243 (2015). https://doi.org/10.1186/s13054-015-0961-2
- C.K. Sen, Human wound and its burden: updated 2020 compendium of estimates. Adv. Wound Care 10, 281–292 (2021). https://doi.org/10.1089/wound.2021.0026
- S.R. Nussbaum, M.J. Carter, C.E. Fife, J. DaVanzo, R. Haughtm et al., An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21(1), 27–32 (2018). https://doi.org/10.1016/j.jval.2017.07.007
- J.G. Powers, L.M. Morton, T.J. Phillips, Dressings for chronic wounds. Dermatol. Ther. 26(3), 197–206 (2013). https://doi.org/10.1111/dth.12055
- G. Han, R. Ceilley, Chronic wound healing: a review of current management and treatments. Adv. Ther. 34, 599–610 (2017). https://doi.org/10.1007/s12325-017-0478-y
- S. Singh, A. Young, C.E. McNaught, The physiology of wound healing. Surg (Oxford) 35(9), 473–477 (2017). https://doi.org/10.1016/j.mpsur.2017.06.004
- S. Mandla, L.D. Huyer, M. Radisic, Review: multimodal bioactive material approaches for wound healing. APL Bioeng. 2(2), 021503 (2018). https://doi.org/10.1063/1.5026773
- G.S. Schultz, J.M. Davidson, R.S. Kirsner, P. Bornstein, I.M. Herman, Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 19(2), 134–148 (2011). https://doi.org/10.1111/j.1524-475X.2011.00673.x
- J. Li, Y.P. Zhang, R.S. Kirsner, Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 60(1), 107–114 (2003). https://doi.org/10.1002/jemt.10249
- A.E. Rivera, J.M. Spencer, Clinical aspects of full-thickness wound healing. Clin. Dermatol. 25, 39–48 (2007). https://doi.org/10.1016/j.clindermatol.2006.10.001
- M. Madaghiele, C. Demitri, A. Sannino, L. Ambrosio, Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2(4), 153–161 (2014). https://doi.org/10.4103/2321-3868.143616
- L. Ambrosio, The role of biomaterials in burn treatment. Burns Trauma 2(4), 150–152 (2014). https://doi.org/10.4103/2321-3868.143608
- X. Huang, P. Liang, B. Jiang, P. Zhang, W. Yu et al., Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 259, 118246 (2020). https://doi.org/10.1016/j.lfs.2020.118246
- S. Schreml, R.M. Szeimies, L. Prantl, S. Karrer, M. Landthaler et al., Oxygen in acute and chronic wound healing. Br. J. Dermatol. 163(2), 257–268 (2010). https://doi.org/10.1111/j.1365-2133.2010.09804.x
- P.G. Rodriguez, F.N. Felix, D.T. Woodley, E.K. Shim, The role of oxygen in wound healing: a review of the literature. Dermatol. Surg. 34(9), 1159–1169 (2008). https://doi.org/10.1111/j.1524-4725.2008.34254.x
- C. Huang, T. Leavitt, L.R. Bayer, D.P. Orgill, Effect of negative pressure wound therapy on wound healing. Curr. Probl. Surg. 51(7), 301–331 (2014). https://doi.org/10.1067/j.cpsurg.2014.04.001
- P. Agarwal, R. Kukrele, D. Sharma, Vacuum assisted closure (VAC)/negative pressure wound therapy (NPWT) for difficult wounds: a review. J. Clin. Orthop. Trauma 10(5), 845–848 (2019). https://doi.org/10.1016/j.jcot.2019.06.015
- L.C. Kloth, Discussion: advanced technologies to improve wound healing: electrical stimulation, vibration therapy, and ultrasound—what is the evidence? Plast. Reconstr. Surg. 138(35), 105S-106S (2016). https://doi.org/10.1097/prs.0000000000002699
- J. Rajfur, M. Pasternok, K. Rajfur, K. Walewicz, B. Fras et al., Efficacy of selected electrical therapies on chronic low back pain: a comparative clinical pilot study. Med. Sci. Monit. 23, 85–100 (2017). https://doi.org/10.12659/msm.899461
- M. Ashrafi, T. Alonso-Rasgado, M. Baguneid, A. Bayat, The efficacy of electrical stimulation in lower extremity cutaneous wound healing: a systematic review. Exp. Dermatol. 26(2), 171–178 (2017). https://doi.org/10.1111/exd.13179
- M. Norouzi, S.M. Boroujeni, N. Omidvarkordshouli, M. Soleimani, Advances in skin regeneration: application of electrospun scaffolds. Adv. Healthcare Mater. 4(8), 1114–1133 (2015). https://doi.org/10.1002/adhm.201500001
- K. Vig, A. Chaudhari, S. Tripathi, S. Dixit, R. Sahu et al., Advances in skin regeneration using tissue engineering. Int. J. Mol. Sci. 18(4), 789 (2017). https://doi.org/10.3390/ijms18040789
- B. Horst, G. Chouhan, N.S. Moiemen, L.M. Grover, Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev. 123, 18–32 (2018). https://doi.org/10.1016/j.addr.2017.06.012
- Q.H. Phua, H.A. Han, B.S. Soh, Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J. Transl. Med. 19, 83 (2021). https://doi.org/10.1186/s12967-021-02752-2
- M.M. Martino, P.S. Briquez, A. Ranga, M.P. Lutolf, J.A. Hubbell, Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. PNAS 110, 4563–4568 (2013). https://doi.org/10.1073/pnas.1221602110
- R. Braund, The role of topical growth factors in chronic wounds. Curr. Drug Deliv. 4(3), 195–204 (2007). https://doi.org/10.2174/156720107781023857
- W. Wang, K.J. Lu, C.H. Yu, Q.L. Huang, Y.Z. Du, Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnol. 17, 82 (2019). https://doi.org/10.1186/s12951-019-0514-y
- J. Lei, L. Sun, P. Li, C. Zhu, Z. Lin et al., The wound dressings and their applications in wound healing and management. Health Sci. J. 13(4), 662 (2019). https://doi.org/10.36648/1791-809X.1000662
- R.F. Pereira, C.C. Barrias, P.L. Granja, P.J. Bartolo, Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine 8(4), 603–621 (2013). https://doi.org/10.2217/nnm.13.50
- R.C. Veld, X.F. Walboomers, J.A. Jansen, F. Wagener, Design considerations for hydrogel wound dressings: strategic and molecular advances. Tissue Eng. Part B 26(3), 230–248 (2020). https://doi.org/10.1089/ten.TEB.2019.0281
- M.J. Peters, G. Stinstra, M. Hendriks, Estimation of the electrical conductivity of human tissue. Electromagnetics 21, 545–557 (2001). https://doi.org/10.1080/027263401752246199
- C. Korupalli, H. Li, N. Nguyen, F.L. Mi, Y. Chang et al., Conductive materials for healing wounds: their incorporation in electroactive wound dressings, characterization, and perspectives. Adv. Healthcare Mater. 10(6), 2001384 (2020). https://doi.org/10.1002/adhm.202001384
- T.H. Qazi, R. Rai, A.R. Boccaccini, Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35(33), 9068–9086 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.020
- C.D. McCaig, A.M. Rajnicek, B. Song, M. Zhao, Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85(3), 943–978 (2005). https://doi.org/10.1152/physrev.00020.2004
- M. Zhao, Electrical fields in wound healing-An overriding signal that directs cell migration. Semin. Cell Dev. Biol. 20(6), 674–682 (2009). https://doi.org/10.1016/j.semcdb.2008.12.009
- M. Zhao, B. Song, J. Pu, T. Wada, B. Reid et al., Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006). https://doi.org/10.1038/nature04925
- Y. Wang, M. Rouabhia, D. Lavertu, Z. Zhang, Pulsed electrical stimulation modulates fibroblasts’ behaviour through the Smad signalling pathway. J. Tissue Eng. Regener. Med. 11(4), 1110–1121 (2017). https://doi.org/10.1002/term.2014
- J.C. Ojingwa, R.R. Isseroff, Electrical stimulation of wound healing. J. Invest. Dermatol. 121, 1–12 (2003). https://doi.org/10.1046/j.1523-1747.2003.12454.x
- G. Thakral, J. LaFontaine, B. Najafi, T.K. Talal, P. Kim et al., Electrical stimulation to accelerate wound healing. Diabetic Foot Ankle 4(1), 22081 (2013). https://doi.org/10.3402/dfa.v4i0.22081
- S.S. Park, H. Kim, I.R.S. Makin, J.B. Skiba, M.J. Izadjoo, Measurement of microelectric potentials in a bioelectrically-active wound care device in the presence of bacteria. J. Wound Care 24(1), 23–33 (2015). https://doi.org/10.12968/jowc.2015.24.1.23
- G. Torkaman, Electrical stimulation of wound healing: a review of animal experimental evidence. Adv. Wound Care 3(2), 202–218 (2014). https://doi.org/10.1089/wound.2012.0409
- D. Lala, S.J. Spaulding, S.M. Burke, P.E. Houghton, Electrical stimulation therapy for the treatment of pressure ulcers in individuals with spinal cord injury: a systematic review and meta-analysis. Int. Wound J. 13(6), 1214–1226 (2016). https://doi.org/10.1111/iwj.12446
- C. Khouri, S. Kotzki, M. Roustit, S. Blaise, F. Gueyffier et al., Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis. Wound Repair Regen. 25(5), 883–891 (2017). https://doi.org/10.1111/wrr.12594
- S. Ud-Din, A. Bayat, Electrical stimulation and cutaneous wound healing: a review of clinical evidence. Healthcare 2(4), 445–467 (2014). https://doi.org/10.3390/healthcare2040445
- Y. Lu, Y. Wang, J. Zhang, X. Hu, Z. Yang et al., In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds. Acta Biomater. 89, 217–226 (2019). https://doi.org/10.1016/j.actbio.2019.03.018
- R. Dong, P.X. Ma, B. Guo, Conductive biomaterials for muscle tissue engineering. Biomaterials 229, 119584 (2020). https://doi.org/10.1016/j.biomaterials.2019.119584
- R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10(6), 2341–2353 (2014). https://doi.org/10.1016/j.actbio.2014.02.015
- T.S. Sreeprasad, V. Berry, How do the electrical properties of graphene change with its functionalization? Small 9(3), 341–350 (2013). https://doi.org/10.1002/smll.201202196
- Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), 1804838 (2019). https://doi.org/10.1002/adma.201804838
- A.G. MacDiarmid, Synthetic metals: a novel role for oganic polymers. Synth. Met. 125(1), 11–22 (2001). https://doi.org/10.1016/S0379-6779(01)00508-2
- B. Guo, L. Glavas, A.C. Albertsson, Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38(9), 1263–1286 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.003
- R. Urie, D. Ghosh, I. Ridha, K. Rege, Inorganic nanomaterials for soft tissue repair and regeneration. Annu. Rev. Biomed. Eng. 20, 353–374 (2018). https://doi.org/10.1146/annurev-bioeng-071516-044457
- M. Kaushik, R. Niranjan, R. Thangam, B. Madhan, V. Pandiyarasan et al., Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 1169–1177 (2019). https://doi.org/10.1016/j.apsusc.2019.02.189
- M. Wu, Z. Zhang, Z. Liu, J. Zhang, Y. Zhang et al., Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 37, 101104 (2021). https://doi.org/10.1016/j.nantod.2021.101104
- C.Y. Chen, H. Yin, X. Chen, T.H. Chen, H.M. Liu et al., Ångstrom-scale silver particle–embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation. Sci. Adv. 6, eaba0942 (2020). https://doi.org/10.1126/sciadv.aba0942
- M. Talikowska, X. Fu, G. Lisak, Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens. Bioelectron. 135, 50–63 (2019). https://doi.org/10.1016/j.bios.2019.04.001
- R.K. Mohammad, A.A. Abdurahman, M.A. Dar, M.O. Aijaz, M.L. Mollah et al., Conducting and biopolymer based electrospun nanofiber membranes for wound healing applications. Curr. Nanosci. 12(2), 220–227 (2016). https://doi.org/10.2174/1573413711666150415003655
- G.S. Hussey, J.L. Dziki, S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3, 159–173 (2018). https://doi.org/10.1038/s41578-018-0023-x
- G.S. Schultz, A. Wysocki, Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17(2), 153–162 (2009). https://doi.org/10.1111/j.1524-475X.2009.00466.x
- M.P. Nikolova, M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mater. 4, 271–292 (2019). https://doi.org/10.1016/j.bioactmat.2019.10.005
- G.D. Mogoşanu, A.M. Grumezescu, Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463(2), 127–136 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.015
- M. Mir, M.N. Ali, A. Barakullah, A. Gulzar, M. Arshad et al., Synthetic polymeric biomaterials for wound healing: a review. Prog. Biomater. 7, 1–21 (2018). https://doi.org/10.1007/s40204-018-0083-4
- M. Okamoto, B. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.001
- H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog. Polym. Sci. 37(2), 237–280 (2012). https://doi.org/10.1016/j.progpolymsci.2011.06.004
- L.D. Koh, J. Yeo, Y.Y. Lee, Q. Ong, M. Han et al., Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Mater. Sci. Eng. C 86, 151–172 (2018). https://doi.org/10.1016/j.msec.2018.01.007
- B. Guo, P.X. Ma, Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 57, 490–500 (2014). https://doi.org/10.1007/s11426-014-5086-y
- MathSciNet
- J. Boateng, O. Catanzano, Advanced therapeutic dressings for effective wound healing—a review. J. Pharm. Sci. 104(11), 3653–3680 (2015). https://doi.org/10.1002/jps.24610
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8), 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- Y. Liu, S. Zhou, Y. Gao, Y. Zhai, Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J. Pharm. Sci. 14(2), 130–143 (2019). https://doi.org/10.1016/j.ajps.2018.04.004
- Z. Liu, X. Zhang, S. Poyraz, S.P. Surwade, S.K. Manohar, Oxidative template for conducting polymer nanoclips. J. Am. Chem. Soc. 132(38), 13158–13159 (2010). https://doi.org/10.1021/ja105966c
- Z. Zha, X. Yue, Q. Ren, Z. Dai, Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 25(5), 777–782 (2013). https://doi.org/10.1002/adma.201202211
- E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari et al., Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J. Med. Chem. 63(1), 1–22 (2020). https://doi.org/10.1021/acs.jmedchem.9b00803
- X. Xiao, G.R. Chen, A. Libanori, J. Chen, Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 3(4), 279–290 (2021). https://doi.org/10.1016/j.trechm.2021.01.001
- B. Guo, P.X. Ma, Conducting polymers for tissue engineering. Biomacromol 19(6), 1764–1782 (2018). https://doi.org/10.1021/acs.biomac.8b00276
- S. Nambiar, J.T. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011). https://doi.org/10.1016/j.bios.2010.09.046
- Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019). https://doi.org/10.1039/C9NR04348A
- C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46(5), 1510–1525 (2017). https://doi.org/10.1039/C6CS00555A
- K. Guo, D.L. Zhang, X.M. Zhang, J. Zhang, L.S. Ding et al., Conductive elastomers with autonomic self-healing properties. Angew. Chem. Int. Ed. 54(41), 12127–12133 (2015). https://doi.org/10.1002/anie.201505790
- G. Cai, J. Wang, K. Qian, J. Chen, S. Li et al., Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4(2), 1600190 (2017). https://doi.org/10.1002/advs.201600190
- E.L. Hopley, S. Salmasi, D.M. Kalaskar, A.M. Seifalian, Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol. Adv. 32(5), 1000–1014 (2014). https://doi.org/10.1016/j.biotechadv.2014.05.003
- G. Moku, V.R. Gopalsamuthiram, T.R. Hoye, J. Panyam, Surface modification of nanoparticles: methods and applications. Surface Modification of Polymers (Wiley-VCH) chapter 11, 317–346 (2019). https://doi.org/10.1002/9783527819249.ch11
- P. Humpolíček, V. Kašpárková, J. Pacherník, J. Stejskal, P. Bober et al., The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C 91, 303–310 (2018). https://doi.org/10.1016/j.msec.2018.05.037
- G. Jia, H. Wang, L. Yan, X. Wang, R. Pei et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005). https://doi.org/10.1021/es048729l
- Y. Liu, K. Xu, Q. Chang, M.A. Darabi, B. Lin et al., Highly flexible and resilient elastin hybrid cryogels with shape memory, injectability, conductivity, and magnetic responsive properties. Adv. Mater. 28(35), 7758–7767 (2016). https://doi.org/10.1002/adma.201601066
- S.J. Song, I.S. Raja, Y.B. Lee, M.S. Kang, H.J. Seo et al., Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 23, 23 (2019). https://doi.org/10.1186/s40824-019-0174-x
- D. An, J. Fu, Z. Xie, C. Xing, B. Zhang et al., Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J. Mater. Chem. B 8(32), 7076–7120 (2020). https://doi.org/10.1039/D0TB00824A
- M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthcare Mater. 8(1), 1801137 (2019). https://doi.org/10.1002/adhm.201801137
- R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 3(4), 2125–2131 (2020). https://doi.org/10.1021/acsabm.0c00007
- S. Xiong, X. Chen, Y. Liu, T. Fan, Q. Wang et al., Black phosphorus as a versatile nanoplatform: from unique properties to biomedical applications. J. Innov. Opt. Health Sci. 13, 2030008 (2020). https://doi.org/10.1142/s1793545820300086
- T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3, 8 (2019). https://doi.org/10.1038/s41699-019-0089-3
- H. Xu, L. Ma, H. Shi, C. Gao, C. Han, Chitosan–hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies. Polym. Adv. Technol. 18(11), 869–875 (2007). https://doi.org/10.1002/pat.906
- D. Aycan, B. Selmi, E. Kelel, T. Yildirim, N. Alemdar, Conductive polymeric film loaded with ibuprofen as a wound dressing material. Eur. Polym. J. 121, 109308 (2019). https://doi.org/10.1016/j.eurpolymj.2019.109308
- D.D. Ateh, P. Vadgama, H.A. Navsaria, Culture of human keratinocytes on polypyrrole-based conducting polymers. Tissue Eng. 12(4), 645–655 (2006). https://doi.org/10.1089/ten.2006.12.645
- L.J. Valle, D. Aradilla, R. Oliver, F. Sepulcre, A. Gamez et al., Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): benefits in the electroactivity of the conducting polymer. Eur. Polym. J. 43(6), 2342–2349 (2007). https://doi.org/10.1016/j.eurpolymj.2007.03.050
- R. Deepachitra, V. Ramnath, T.P. Sastry, Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material. RSC Adv. 4(107), 62717–62727 (2014). https://doi.org/10.1039/C4RA10150B
- G. Shi, M. Rouabhia, S. Meng, Z. Zhang, Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J. Biomed. Mater. Res. Part A 84A(4), 1026–1037 (2008). https://doi.org/10.1002/jbm.a.31337
- L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12(7), 481–494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c481::AID-ADMA481%3e3.0.CO;2-C
- J.Y. Lee, C.E. Schmidt, Amine-functionalized polypyrrole: inherently cell adhesive conducting polymer. J. Biomed. Mater. Res. Part A 103(6), 2126–2132 (2015). https://doi.org/10.1002/jbm.a.35344
- J.H. Collier, J.P. Camp, T.W. Hudson, C.E. Schmidt, Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50(4), 574–584 (2000). https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4%3c574::AID-JBM13%3e3.0.CO;2-I
- K. Svennersten, M.H. Bolin, E.W.H. Jager, M. Berggren, A. Richter-Dahlfors, Electrochemical modulation of epithelia formation using conducting polymers. Biomaterials 30(31), 6257–6264 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.059
- A. Akkouch, G. Shi, Z. Zhang, M. Rouabhia, Bioactivating electrically conducting polypyrrole with fibronectin and bovine serum albumin. J. Biomed. Mater. Res. Part A 92A(1), 221–231 (2010). https://doi.org/10.1002/jbm.a.32357
- A.M. Wan, D.J. Brooks, A. Gumus, C. Fischbach, G.G. Malliaras, Electrical control of cell density gradients on a conducting polymer surface. Chem. Commun. 279(35), 5278–5280 (2009). https://doi.org/10.1039/b911130a
- A. Gumus, J.P. Califano, A.M.D. Wan, J. Huynh, C.A. Reinhart-King et al., Control of cell migration using a conducting polymer device. Soft Matter 6(20), 5138–5142 (2010). https://doi.org/10.1039/B923064E
- E.M. Stewart, M. Fabretto, M. Mueller, P.J. Molino, H.J. Griesser et al., Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation. Biomater. Sci. 1(4), 368–378 (2013). https://doi.org/10.1039/C2BM00143H
- S.K. Yadav, Y.C. Jung, J.H. Kim, Y.I. Ko, H.J. Ryu et al., Electrically conductive biocomposite films using antimicrobial chitosan-functionalized graphenes. Part. Part. Syst. Charact. 30, 721–727 (2013). https://doi.org/10.1002/ppsc.201300044
- J. Banerjee, P. DasGhatak, S. Roy, S. Khanna, E.K. Sequin et al., Improvement of human keratinocyte migration by a redox active bioelectric dressing. PLoS ONE 9, e89239 (2014). https://doi.org/10.1371/journal.pone.0089239
- M. Marzocchi, I. Gualandi, M. Calienni, I. Zironi, E. Scavetta et al., Physical and electrochemical properties of PEDOT:PSS as a tool for controlling cell growth. ACS Appl. Mater. Interfaces 7(32), 17993–18003 (2015). https://doi.org/10.1021/acsami.5b04768
- N.A. Chowdhury, A.M. Al-Jumaily, Regenerated cellulose/polypyrrole/silver nanoparticles/ionic liquid composite films for potential wound healing applications. Wound Med. 14, 16–18 (2016). https://doi.org/10.1016/j.wndm.2016.07.001
- N. Pramanik, K. Dutta, R.K. Basu, P.P. Kundu, Aromatic π-conjugated curcumin on surface modified polyaniline/polyhydroxyalkanoate based 3D porous scaffolds for tissue engineering applications. ACS Biomater. Sci. Eng. 2(12), 2365–2377 (2016). https://doi.org/10.1021/acsbiomaterials.6b00595
- S.H. Bhang, W.S. Jang, J. Han, J.K. Yoon, W.G. La et al., Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 27(1), 1603497 (2017). https://doi.org/10.1002/adfm.201603497
- Y. Long, H. Wei, J. Li, G. Yao, B. Yu et al., Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 12(12), 12533–12540 (2018). https://doi.org/10.1021/acsnano.8b07038
- M. Khamrai, S.L. Banerjee, S. Paul, A.K. Ghosh, P. Sarkar et al., A mussel mimetic, bioadhesive, antimicrobial patch based on dopamine-modified bacterial cellulose/rGO/Ag NPs: a green approach toward wound-healing applications. ACS Sustain. Chem. Eng. 7(14), 12083–12097 (2019). https://doi.org/10.1021/acssuschemeng.9b01163
- M. Li, J. Chen, M. Shi, H. Zhang, P.X. Ma et al., Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem. Eng. J. 375, 121999 (2019). https://doi.org/10.1016/j.cej.2019.121999
- X. Fu, J.K. Wang, A.C. Ramírez-Pérez, C. Choong, G. Lisak, Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater. Sci. Eng. C 108, 110392 (2020). https://doi.org/10.1016/j.msec.2019.110392
- S. Liu, J. Li, S. Zhang, X. Zhang, J. Ma et al., Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Appl. Bio Mater. 3(2), 848–858 (2020). https://doi.org/10.1021/acsabm.9b00942
- L. Zhang, Y. Yu, S. Zheng, L. Zhong, J. Xue, Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr. Polym. 257, 117671 (2021). https://doi.org/10.1016/j.carbpol.2021.117671
- X.W. Huang, J.J. Wei, M.Y. Zhang, X.L. Zhang, X.F. Yin et al., Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications. ACS Appl. Mater. Interfaces 10(41), 35495–35502 (2018). https://doi.org/10.1021/acsami.8b12523
- W. Wentao, Z. Tao, S. Bulei, Z. Tongchang, Z. Qicheng et al., Functionalization of polyvinyl alcohol composite film wrapped in am-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing. Appl. Mater. Today 17, 36–44 (2019). https://doi.org/10.1016/j.apmt.2019.07.001
- T.J. Simmons, S.H. Lee, T.J. Park, D.P. Hashim, P.M. Ajayan et al., Antiseptic single wall carbon nanotube bandages. Carbon 47(6), 1561–1564 (2009). https://doi.org/10.1016/j.carbon.2009.02.005
- T.J. Simmons, C.J. Rivet, G. Singh, J. Beaudet, E. Sterner et al., Application of carbon nanotubes to wound healing biotechnology. in Nanomaterials for Biomedicine (ACS Symposium Series) chapter 7, 155–174 (2012). https://doi.org/10.1021/bk-2012-1119.ch007
- G. Shi, Z. Zhang, M. Rouabhia, The regulation of cell functions electrically using biodegradable polypyrrole–polylactide conductors. Biomaterials 29(28), 3792–3798 (2008). https://doi.org/10.1016/j.biomaterials.2008.06.010
- M. Rouabhia, H. Park, S. Meng, H. Derbali, Z. Zhang, Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS ONE 8, e71660 (2013). https://doi.org/10.1371/journal.pone.0071660
- H.J. Park, M. Rouabhia, D. Lavertu, Z. Zhang, Electrical stimulation modulates the expression of multiple wound healing genes in primary human dermal fibroblasts. Tissue Eng. Part A 21(13–14), 1982–1990 (2015). https://doi.org/10.1089/ten.TEA.2014.0687
- C.L. Weaver, J.M. LaRosa, X. Luo, X.T. Cui, Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8(2), 1834–1843 (2014). https://doi.org/10.1021/nn406223e
- G.A. Justin, S. Zhu, T.R. Nicholson, J. Maskrod, J. Mbugua et al., On-demand controlled release of anti-inflammatory and analgesic drugs from conducting polymer films to aid in wound healing. in 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, (28 August - 1 September, 2012). https://doi.org/10.1109/EMBC.2012.6346153
- T.M. Nguyen, S. Lee, S.B. Lee, Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery. Nanomedicine 9(15), 2263–2272 (2014). https://doi.org/10.2217/nnm.13.153
- B. Guo, A. Finne-Wistrand, A.C. Albertsson, Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromol 12(7), 2601–2609 (2011). https://doi.org/10.1021/bm200389t
- A. Masotti, M.R. Miller, A. Celluzzi, L. Rose, F. Micciulla et al., Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine 12(6), 1511–1522 (2016). https://doi.org/10.1016/j.nano.2016.02.017
- W. Yang, Y. Wang, J. Li, X. Yang, Polymer wrapping technique: an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygen reduction. Energ. Environ. Sci. 3(1), 144–149 (2010). https://doi.org/10.1039/B916423E
- S. Wei, X. Zou, J. Tian, H. Huang, W. Guo et al., Control of protein conformation and orientation on graphene. J. Am. Chem. Soc. 141(51), 20335–20343 (2019). https://doi.org/10.1021/jacs.9b10705
- S. Shahmoradi, H. Golzar, M. Hashemi, V. Mansouri, M. Omidi et al., Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology 29(47), 475101 (2018). https://doi.org/10.1088/1361-6528/aadedc
- H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome et al., Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv. Healthcare Mater. 6(22), 1700465 (2017). https://doi.org/10.1002/adhm.201700465
- J. Shao, C. Ruan, H. Xie, Z. Li, H. Wang et al., Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5(5), 1700848 (2018). https://doi.org/10.1002/advs.201700848
- P. Zhang, B. Sun, F. Wu, Q. Zhang, X. Chu et al., Wound healing acceleration by antibacterial biodegradable black phosphorus nanosheets loaded with cationic carbon dots. J. Mater. Sci. 56, 6411–6426 (2021). https://doi.org/10.1007/s10853-020-05766-1
- C. Xue, L. Sutrisno, M. Li, W. Zhu, Y. Fei et al., Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/chemotherapy and wound healing. Biomaterials 269, 120623 (2021). https://doi.org/10.1016/j.biomaterials.2020.120623
- L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao et al., Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthcare Mater. 9(19), 2000872 (2020). https://doi.org/10.1002/adhm.202000872
- E.A. Mayerberger, R.M. Street, R.M. McDaniel, M.W. Barsoum, C.L. Schauer, Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 8(62), 35386–35394 (2018). https://doi.org/10.1039/C8RA06274A
- L. Zhou, H. Zheng, Z. Liu, S. Wang, Z. Liu et al., Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano 15(2), 2468–2480 (2021). https://doi.org/10.1021/acsnano.0c06287
- M.S. Pacheco, G.E. Kano, L.A. Paulo, P.S. Lopes, M.A. de Moraes, Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing. Int. J. Biol. Macromol. 152, 803–811 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.140
- E.A. Kamoun, E.R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017). https://doi.org/10.1016/j.jare.2017.01.005
- R. Gharibi, H. Yeganeh, H. Gholami, Z.M. Hassan, Aniline tetramer embedded polyurethane/siloxane membranes and their corresponding nanosilver composites as intelligent wound dressing materials. RSC Adv. 4(107), 62046–62060 (2014). https://doi.org/10.1039/C4RA11454J
- M. Alexandru, M. Cazacu, M. Cristea, A. Nistor, C. Grigoras et al., Poly(siloxane-urethane) crosslinked structures obtained by sol-gel technique. J. Polym. Sci. Part A Polym. Chem. 49(7), 1708–1718 (2011). https://doi.org/10.1002/pola.24602
- R. Gharibi, H. Yeganeh, A.R. Lactoee, Z.M. Hassan, Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations. ACS Appl. Mater. Interfaces 7(43), 24296–24311 (2015). https://doi.org/10.1021/acsami.5b08376
- Y.C. Hsiao, P.R. Jheng, H.T. Nguyen, Y.H. Chen, Y.B. Manga et al., Photothermal-irradiated polyethyleneimine-polypyrrole nanopigment film-coated polyethylene fabrics for infrared-inspired with pathogenic evaluation. ACS Appl. Mater. Interfaces 13(2), 2483–2495 (2021). https://doi.org/10.1021/acsami.0c17169
- F. Croisier, G. Atanasova, Y. Poumay, C. Jérôme, Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv. Healthcare Mater. 3(12), 2032–2039 (2014). https://doi.org/10.1002/adhm.201400380
- S.I. Jeong, I.D. Jun, M.J. Choi, Y.C. Nho, Y.M. Lee et al., Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol. Biosci. 8(7), 627–637 (2008). https://doi.org/10.1002/mabi.200800005
- M. Gizdavic-Nikolaidis, S. Ray, J.R. Bennett, A.J. Easteal, R.P. Cooney, Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering. Macromol. Biosci. 10(12), 1424–1431 (2010). https://doi.org/10.1002/mabi.201000237
- S. Aznar-Cervantes, M.I. Roca, J.G. Martinez, L. Meseguer-Olmo, J.L. Cenis et al., Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85, 36–43 (2012). https://doi.org/10.1016/j.bioelechem.2011.11.008
- B. Lu, T. Li, H. Zhao, X. Li, C. Gao et al., Graphene-based composite materials beneficial to wound healing. Nanoscale 4(9), 2978–2982 (2012). https://doi.org/10.1039/C2NR11958G
- Y. Wang, M. Rouabhia, Z. Zhang, PPy-coated PET fabrics and electric pulse-stimulated fibroblasts. J. Mater. Chem. B 1(31), 3789–3796 (2013). https://doi.org/10.1039/C3TB20257G
- X. Niu, M. Rouabhia, N. Chiffot, M.W. King, Z. Zhang, An electrically conductive 3D scaffold based on a nonwoven web of poly(l-lactic acid) and conductive poly(3,4-ethylenedioxythiophene). J. Biomed. Mater. Res. Part A 103(8), 2635–2644 (2015). https://doi.org/10.1002/jbm.a.35408
- Y. Wang, M. Rouabhia, Z. Zhang, Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis. Biochim. Biophys. Acta 1860(7), 1551–1559 (2016). https://doi.org/10.1016/j.bbagen.2016.03.023
- H.C. Chang, T. Sun, N. Sultana, M.M. Lim, T.H. Khan et al., Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater. Sci. Eng. C 61, 396–410 (2016). https://doi.org/10.1016/j.msec.2015.12.074
- H.K. Patra, Y. Sharma, M.M. Islam, M.J. Jafari, N.A. Murugan et al., Inflammation-sensitive in situ smart scaffolding for regenerative medicine. Nanoscale 8(39), 17213–17222 (2016). https://doi.org/10.1039/C6NR06157E
- G. Ruiz-Velasco, F. Martínez-Flores, J. Morales-Corona, R. Olayo-Valles, R. Olayo, Polymeric scaffolds for skin. Macromol. Symp. 374(1), 1600133 (2017). https://doi.org/10.1002/masy.201600133
- D. Gh, D. Kong, J. Gautrot, S.K. Vootla, Fabrication and characterization of conductive conjugated polymer-coated Antheraea mylitta silk fibroin fibers for biomedical applications. Macromol. Biosci. 17(7), 1600443 (2017). https://doi.org/10.1002/mabi.201600443
- Q. Zhang, Q. Du, Y. Zhao, F. Chen, Z. Wang et al., Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds with potential as skin wound dressings. RSC Adv. 7(46), 28826–28836 (2017). https://doi.org/10.1039/C7RA03997B
- B.K. Gu, S.J. Park, C.H. Kim, Beneficial effect of aligned nanofiber scaffolds with electrical conductivity for the directional guide of cells. J. Biomater. Sci. Polym. Ed. 29(7–9), 1053–1065 (2018). https://doi.org/10.1080/09205063.2017.1364097
- R. Román-Doval, M.M. Tellez-Cruz, H. Rojas-Chávez, H. Cruz-Martínez, G. Carrasco-Torres et al., Enhancing electrospun scaffolds of PVP with polypyrrole/iodine for tissue engineering of skin regeneration by coating via a plasma process. J. Mater. Sci. 54, 3342–3353 (2019). https://doi.org/10.1007/s10853-018-3024-7
- J. He, Y. Liang, M. Shi, B. Guo, Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 385, 123464 (2020). https://doi.org/10.1016/j.cej.2019.123464
- M. Zarei, A. Samimi, M. Khorram, M.M. Abdi, S.I. Golestaneh, Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int. J. Biol. Macromol. 168, 175–186 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.031
- I. Altinbasak, R. Jijie, A. Barras, B. Golba, R. Sanyal et al., Reduced graphene-oxide-embedded polymeric nanofiber mats: an “on-demand” photothermally triggered antibiotic release platform. ACS Appl. Mater. Interfaces 10(48), 41098–41106 (2018). https://doi.org/10.1021/acsami.8b14784
- Z. Jia, J. Gong, Y. Zeng, J. Ran, J. Liu et al., Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv. Funct. Mater. 31(19), 2010461 (2021). https://doi.org/10.1002/adfm.202010461
- B.W. Walker, R.P. Lara, E. Mogadam, C.H. Yu, W. Kimball et al., Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog. Polym. Sci. 92, 135–157 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.007
- J. Xu, Y.L. Tsai, S.H. Hsu, Design strategies of conductive hydrogel for biomedical applications. Molecules 25(22), 5296 (2020). https://doi.org/10.3390/molecules25225296
- J. Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma et al., Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183, 185–199 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.044
- Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15(4), 7078–7093 (2021). https://doi.org/10.1021/acsnano.1c00204
- R. Yu, Y. Yang, J. He, M. Li, B. Guo, Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021). https://doi.org/10.1016/j.cej.2020.128278
- X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu et al., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
- M. di Luca, O. Vittorio, G. Cirillo, M. Curcio, M. Czuban et al., Electro-responsive graphene oxide hydrogels for skin bandages: the outcome of gelatin and trypsin immobilization. Int. J. Pharm. 546(1–2), 50–60 (2018). https://doi.org/10.1016/j.ijpharm.2018.05.027
- D. Gan, L. Han, M. Wang, W. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018). https://doi.org/10.1021/acsami.8b10280
- C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang et al., Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12(2), 1747–1759 (2018). https://doi.org/10.1021/acsnano.7b08500
- M.K. Satapathy, B. Nyambat, C.W. Chiang, C.H. Chen, P.C. Wong et al., A gelatin hydrogel-containing nano-organic PEI–Ppy with a photothermal responsive effect for tissue engineering applications. Molecules 23(6), 1256 (2018). https://doi.org/10.3390/molecules23061256
- Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin et al., Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12), 1900046 (2019). https://doi.org/10.1002/smll.201900046
- Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019). https://doi.org/10.1016/j.jcis.2019.08.083
- J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma et al., Degradable conductive injectable hydrogels as novel antibacterial, antioxidant wound dressings for wound healing. Chem. Eng. J. 362, 548–560 (2019). https://doi.org/10.1016/j.cej.2019.01.028
- Y. Zhao, Z. Li, S. Song, K. Yang, H. Liu et al., Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv. Funct. Mater. 29(31), 1901474 (2019). https://doi.org/10.1002/adfm.201901474
- J. He, M. Shi, Y. Liang, B. Guo, Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 394, 124888 (2020). https://doi.org/10.1016/j.cej.2020.124888
- X. Jin, Y. Shang, Y. Zou, M. Xiao, H. Huang et al., Injectable hypoxia-induced conductive hydrogel to promote diabetic wound healing. ACS Appl. Mater. Interfaces 12(51), 56681–56691 (2020). https://doi.org/10.1021/acsami.0c13197
- M. Li, Y. Liang, J. He, H. Zhang, B. Guo, Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem. Mater. 32(23), 9937–9953 (2020). https://doi.org/10.1021/acs.chemmater.0c02823
- S. Li, L. Wang, W. Zheng, G. Yang, X. Jiang, Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body. Adv. Funct. Mater. 30(31), 2002370 (2020). https://doi.org/10.1002/adfm.202002370
- Y. Liang, B. Chen, M. Li, J. He, Z. Yin et al., Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromol 21(5), 1841–1852 (2020). https://doi.org/10.1021/acs.biomac.9b01732
- J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. PNAS 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
- B. Zhang, J. He, M. Shi, Y. Liang, B. Guo, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem. Eng. J. 400, 125994 (2020). https://doi.org/10.1016/j.cej.2020.125994
- J. Zhang, C. Wu, Y. Xu, J. Chen, N. Ning et al., Highly stretchable and conductive self-healing hydrogels for temperature and strain sensing and chronic wound treatment. ACS Appl. Mater. Interfaces 12(37), 40990–40999 (2020). https://doi.org/10.1021/acsami.0c08291
- X. Zhang, G. Chen, Y. Liu, L. Sun, L. Sun et al., Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano 14(5), 5901–5908 (2020). https://doi.org/10.1021/acsnano.0c01059
- Y. Zhao, Z. Li, Q. Li, L. Yang, H. Liu et al., Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromol. Rapid Commun. 41(24), 2000441 (2020). https://doi.org/10.1002/marc.202000441
- Y. Zhu, J. Zhang, J. Song, J. Yang, Z. Du et al., A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30(6), 1905493 (2020). https://doi.org/10.1002/adfm.201905493
- S.H. Jeong, Y. Lee, M.G. Lee, W.J. Song et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021). https://doi.org/10.1016/j.nanoen.2020.105463
- Z. Li, W. Xu, X. Wang, W. Jiang, X. Ma et al., Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur. Polym. J. 146, 110253 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110253
- C. Hu, L. Long, J. Cao, S. Zhang, Y. Wang, Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J. 411, 128564 (2021). https://doi.org/10.1016/j.cej.2021.128564
- Y. Wang, Y. Lu, J. Zhang, X. Hu, Z. Yang et al., A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)–alginate hydrogel for treating infected chronic wounds. J. Mater. Chem. B 7(4), 538–547 (2019). https://doi.org/10.1039/C8TB02679C
- Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin et al., A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 24(25), 3933–3943 (2014). https://doi.org/10.1002/adfm.201304202
- S.O. Blacklow, J. Li, B.R. Freedman, M. Zeidi, C. Chen et al., Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5(7), eaaw3963 (2019). https://doi.org/10.1126/sciadv.aaw3963
- L. Yan, T. Zhou, L. Han, M. Zhu, Z. Cheng et al., Conductive cellulose bio-nanosheets assembled biostable hydrogel for reliable bioelectronics. Adv. Funct. Mater. 31(17), 2010465 (2021). https://doi.org/10.1002/adfm.202010465
- C.W. Hsiao, H.L. Chen, Z.X. Liao, R. Sureshbabu, H.C. Hsiao et al., Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv. Funct. Mater. 25(5), 721–728 (2015). https://doi.org/10.1002/adfm.201403478
- H.B.T. Moran, J.L. Turley, M. Andersson, E.C. Lavelle, Immunomodulatory properties of chitosan polymers. Biomaterials 184, 1–9 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.054
- X. Zhao, P. Li, B. Guo, P.X. Ma, Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 26, 236–248 (2015). https://doi.org/10.1016/j.actbio.2015.08.006
- A. Ramadan, M. Elsaidy, R. Zyada, Effect of low-intensity direct current on the healing of chronic wounds: a literature review. J. Wound Care 17(7), 292–296 (2008). https://doi.org/10.12968/jowc.2008.17.7.30520
- Z. Li, H. Wang, B. Yang, Y. Sun, R. Huo, Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater. Sci. Eng. C 57, 181–188 (2015). https://doi.org/10.1016/j.msec.2015.07.062
- C. Nie, G. Zhang, D. Yang, T. Liu, D. Liu et al., Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J. Tissue Eng. Regener. Med. 9(3), 224–235 (2015). https://doi.org/10.1002/term.1622
- Q. Wang, Y. Jin, X. Deng, H. Liu, H. Pang et al., Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials 53, 659–668 (2015). https://doi.org/10.1016/j.biomaterials.2015.03.011
- J. Rnjak-Kovacina, A.S. Weiss, Increasing the pore size of electrospun scaffolds. Tissue Eng. Part B 17(5), 365–372 (2011). https://doi.org/10.1089/ten.teb.2011.0235
- X. Zhang, D. Chang, J. Liu, Y. Luo, Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. J. Mater. Chem. 20(24), 5080–5085 (2010). https://doi.org/10.1039/C0JM00050G
- G.R. Mueller, T.J. Pineda, H.X. Xie, J.S. Teach, A.D. Barofsky et al., A novel sponge-based wound stasis dressing to treat lethal noncompressible hemorrhage. J. Trauma Acute Care Surg. 73(2), S134–S139 (2012). https://doi.org/10.1097/TA.0b013e3182617c3c
- J.L.S. Antonio, L.M. Lira, V.R. Gonçales, S.I.C. Torresi, Fully conducting hydro-sponges with electro-swelling properties tuned by synthetic parameters. Electrochim. Acta 101, 216–224 (2013). https://doi.org/10.1016/j.electacta.2012.11.012
- Y. Lu, W. He, T. Cao, H. Guo, Y. Zhang et al., Elastic, conductive, polymeric hydrogels and sponges. Sci. Rep. 4, 5792 (2014). https://doi.org/10.1038/srep05792
- H. Maleki, L. Durães, C.A. García-González, P. Gaudio, A. Portugal et al., Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 236, 1–27 (2016). https://doi.org/10.1016/j.cis.2016.05.011
- D.M. Supp, S.T. Boyce, Engineered skin substitutes: practices and potentials. Clin. Dermatol. 23(4), 403–412 (2005). https://doi.org/10.1016/j.clindermatol.2004.07.023
- A.D. Metcalfe, M.W.J. Ferguson, Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28(34), 5100–5113 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.031
- M.L. Iorio, J. Shuck, C.E. Attinger, Wound healing in the upper and lower extremities: a systematic review on the use of acellular dermal matrices. Plast. Reconstr. Surg. 130, 232S-241S (2012). https://doi.org/10.1097/PRS.0b013e3182615703
- X. Guo, D. Mu, F. Gao, Efficacy and safety of acellular dermal matrix in diabetic foot ulcer treatment: a systematic review and meta-analysis. Int. J. Surg. 40, 1–7 (2017). https://doi.org/10.1016/j.ijsu.2017.02.008
- S. Zhou, M. Wang, X. Chen, F. Xu, Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain. Chem. Eng. 3(12), 3346–3354 (2015). https://doi.org/10.1021/acssuschemeng.5b01020
- P. Thangavel, R. Kannan, B. Ramachandran, G. Moorthy, L. Suguna et al., Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J. Colloid Interface Sci. 517, 251–264 (2018). https://doi.org/10.1016/j.jcis.2018.01.110
- M.R. Santos, J.J. Alcaraz-Espinoza, M.M. Costa, H.P. Oliveira, Usnic acid-loaded polyaniline/polyurethane foam wound dressing: preparation and bactericidal activity. Mater. Sci. Eng. C 89, 33–40 (2018). https://doi.org/10.1016/j.msec.2018.03.019
- X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 9, 2784 (2018). https://doi.org/10.1038/s41467-018-04998-9
- F.A.G. Silva, C.M.S. Araújo, J.J. Alcaraz-Espinoza, H.P. Oliveira, Toward flexible and antibacterial piezoresistive porous devices for wound dressing and motion detectors. J. Polym. Sci. Part B Polym. Phys. 56(14), 1063–1072 (2018). https://doi.org/10.1002/polb.24626
- J. Fu, Y. Zhang, J. Chu, X. Wang, W. Yan et al., Reduced graphene oxide incorporated acellular dermal composite scaffold enables efficient local delivery of mesenchymal stem cells for accelerating diabetic wound healing. ACS Biomater. Sci. Eng. 5(8), 4054–4066 (2019). https://doi.org/10.1021/acsbiomaterials.9b00485
- R. Ma, Y. Wang, H. Qi, C. Shi, G. Wei et al., Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos. B Eng. 167, 396–405 (2019). https://doi.org/10.1016/j.compositesb.2019.03.006
- P. Tang, L. Han, P. Li, Z. Jia, K. Wang et al., Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl. Mater. Interfaces 11(8), 7703–7714 (2019). https://doi.org/10.1021/acsami.8b18931
- Y. Chen, Y. Liang, J. Liu, J. Yang, N. Jia et al., Optimizing microenvironment by integrating negative pressure and exogenous electric fields via a flexible porous conductive dressing to accelerate wound healing. Biomater. Sci. 9(1), 238–251 (2021). https://doi.org/10.1039/D0BM01172J
- R. Shechter, M. Schwartz, CNS sterile injury: just another wound healing? Trends Mol. Med. 19(3), 135–143 (2013). https://doi.org/10.1016/j.molmed.2012.11.007
- P. Zhang, B. Zou, Y.C. Liou, C. Huang, The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma 9, tkaa0477 (2021). https://doi.org/10.1093/burnst/tkaa047
- R. Nunan, K.G. Harding, P. Martin, Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis. Model. Mech. 7(11), 1205–1213 (2014). https://doi.org/10.1242/dmm.016782
- A.A. Chaudhari, K. Vig, D.R. Baganizi, R. Sahu, S. Dixit et al., Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17(12), 1974 (2016). https://doi.org/10.3390/ijms17121974
- S. Guo, L.A. DiPietro, Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010). https://doi.org/10.1177/0022034509359125
- A. McLister, J. McHugh, J. Cundell, J. Davis, New developments in smart bandage technologies for wound diagnostics. Adv. Mater. 28(27), 5732–5737 (2016). https://doi.org/10.1002/adma.201504829
- N.X. Landén, D. Li, M. Ståhle, Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861–3885 (2016). https://doi.org/10.1007/s00018-016-2268-0
- T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 118(14), 6766–6843 (2018). https://doi.org/10.1021/acs.chemrev.6b00275
- C. Chen, X. Bai, Y. Ding, I.S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 25 (2019). https://doi.org/10.1186/s40824-019-0176-8
- Q. Gao, X. Zhang, W. Yin, D. Ma, C. Xie et al., Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 14(45), 1802290 (2018). https://doi.org/10.1002/smll.201802290
- Q. Shi, X. Luo, Z. Huang, A.C. Midgley, B. Wang et al., Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomater. 86, 465–479 (2019). https://doi.org/10.1016/j.actbio.2018.12.048
- M.A. Shahbazi, M.P. Ferreira, H.A. Santos, Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine 14, 2269–2272 (2019). https://doi.org/10.2217/nnm-2019-0236
- Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao et al., Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7(6), 1902673 (2020). https://doi.org/10.1002/advs.201902673
- C. Korupalli, C.C. Huang, W.C. Lin, W.Y. Pan, P.Y. Lin et al., Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials 116, 1–9 (2017). https://doi.org/10.1016/j.biomaterials.2016.11.045
- X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei et al., Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 9(36), 30470–30479 (2017). https://doi.org/10.1021/acsami.7b09638
- X. Yang, P. Xia, Y. Zhang, S. Lian, H. Li et al., Photothermal nano-antibiotic for effective treatment of multidrug-resistant bacterial infection. ACS Appl. Bio Mater. 3(8), 5395–5406 (2020). https://doi.org/10.1021/acsabm.0c00702
- W.L. Chiang, T.T. Lin, R. Sureshbabu, W.T. Chia, H.C. Hsiao et al., A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses. J. Control. Release 199, 53–62 (2015). https://doi.org/10.1016/j.jconrel.2014.12.011
- L. Zhao, L. Niu, H. Liang, H. Tan, C. Liu et al., pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl. Mater. Interfaces 9(43), 37563–37574 (2017). https://doi.org/10.1021/acsami.7b09395
- H. Nosrati, R.A. Khouy, A. Nosrati, M. Khodaei, M. Banitalebi-Dehkordi et al., Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J. Nanobiotechnology 19, 1 (2021). https://doi.org/10.1186/s12951-020-00755-7
- A. Kumar, T. Behl, S. Chadha, A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. J. Drug Delivery Sci. Technol. 60, 101930 (2020). https://doi.org/10.1016/j.jddst.2020.101930
- R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290
- Z. Deng, R. Yu, B. Guo, Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front. 5(5), 2092–2123 (2021). https://doi.org/10.1039/D0QM00868K
- R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I.K. Yazdi et al., A low-cost flexible pH sensor array for wound assessment. Sens. Actuat. B 229, 609–617 (2016). https://doi.org/10.1016/j.snb.2015.12.082
- L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell et al., Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). https://doi.org/10.1038/s41565-018-0112-4
- R. Barber, S. Cameron, A. Devine, A. McCombe, L. Kirsty Pourshahidi et al., Laser induced graphene sensors for assessing pH: application to wound management. Electrochem. Commun. 123, 106914 (2021). https://doi.org/10.1016/j.elecom.2020.106914
- A. Tamayol, M. Akbari, Y. Zilberman, M. Comotto, E. Lesha et al., Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Healthcare Mater. 5(6), 711–719 (2016). https://doi.org/10.1002/adhm.201500553
- L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298, 413–420 (2007). https://doi.org/10.1007/s00403-006-0713-x
- T. Guinovart, G. Valdés-Ramírez, J.R. Windmiller, F.J. Andrade, J. Wang, Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis 26(6), 1345–1353 (2014). https://doi.org/10.1002/elan.201300558
- P. Mostafalu, A. Tamayol, R. Rahimi, M. Ochoa, A. Khalilpour et al., Smart bandage for monitoring and treatment of chronic wounds. Small 14(33), 1703509 (2018). https://doi.org/10.1002/smll.201703509
- S.D. Milne, I. Seoudi, H.A. Hamad, T.K. Talal, A.A. Anoop et al., A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. Int. Wound J. 13(6), 1309–1314 (2016). https://doi.org/10.1111/iwj.12521
- S. RoyChoudhury, Y. Umasankar, J. Jaller, I. Herskovitz, J. Mervis et al., Continuous monitoring of wound healing using a wearable enzymatic uric acid biosensor. J. Electrochem. Soc. 165, B3168–B3175 (2018). https://doi.org/10.1149/2.0231808jes
- X. Zhang, J. Chen, J. He, Y. Bai, H. Zeng, Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. J. Colloid Interface Sci. 585, 420–432 (2021). https://doi.org/10.1016/j.jcis.2020.10.023
- T. Someya, Z. Bao, G.G. Malliaras, The rise of plastic bioelectronics. Nature 540, 379–385 (2016). https://doi.org/10.1038/nature21004
- M. Jia, M. Rolandi, Soft and ion-conducting materials in bioelectronics: from conducting polymers to hydrogels. Adv. Healthcare Mater. 9(5), 1901372 (2020). https://doi.org/10.1002/adhm.201901372
- P. Chansai, A. Sirivat, S. Niamlang, D. Chotpattananont, K. Viravaidya-Pasuwat, Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int. J. Pharm. 381(1), 25–33 (2009). https://doi.org/10.1016/j.ijpharm.2009.07.019
- X. Luo, X.T. Cui, Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochem. Commun. 11(10), 1956–1959 (2009). https://doi.org/10.1016/j.elecom.2009.08.027
- N. Paradee, A. Sirivat, Electrically controlled release of benzoic acid from poly(3,4-ethylenedioxythiophene)/alginate matrix: effect of conductive poly(3,4-ethylenedioxythiophene) morphology. J. Phys. Chem. B 118(31), 9263–9271 (2014). https://doi.org/10.1021/jp502674f
- C.J. Pérez-Martínez, S.D.M. Chávez, T. Castillo-Castro, T.E.L. Ceniceros, M.M. Castillo-Ortega et al., Electroconductive nanocomposite hydrogel for pulsatile drug release. React. Funct. Polym. 100, 12–17 (2016). https://doi.org/10.1016/j.reactfunctpolym.2015.12.017
- S. Niamlang, N. Paradee, A. Sirivat, Hybrid transdermal drug delivery patch made from poly(p-phenylene vinylene)/natural rubber latex and controlled by an electric field. Polym. Int. 67(6), 747–754 (2018). https://doi.org/10.1002/pi.5566
- J. Qu, X. Zhao, P.X. Ma, B. Guo, Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater. 72, 55–69 (2018). https://doi.org/10.1016/j.actbio.2018.03.018
- C.F. Hsu, L. Zhang, H. Peng, J. Travas-Sejdic, P.A. Kilmartin, Scavenging of DPPH free radicals by polypyrrole powders of varying levels of overoxidation and/or reduction. Synth. Met. 158(21–24), 946–952 (2008). https://doi.org/10.1016/j.synthmet.2008.06.017
- R.L. Thangapazham, S. Sharad, R.K. Maheshwari, Skin regenerative potentials of curcumin. BioFactors 39(1), 141–149 (2013). https://doi.org/10.1002/biof.1078
- P. Zarrintaj, A.S. Moghaddam, S. Manouchehri, Z. Atoufi, A. Amiri et al., Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine 12, 2403–2422 (2017). https://doi.org/10.2217/nnm-2017-0173
- Z. Su, H. Ma, Z. Wu, H. Zeng, Z. Li et al., Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater. Sci. Eng. C 44, 440–448 (2014). https://doi.org/10.1016/j.msec.2014.07.039
- H. Brem, A. Kodra, M.S. Golinko, H. Entero, O. Stojadinovic et al., Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J. Invest. Dermatol. 129(9), 2275–2287 (2009). https://doi.org/10.1038/jid.2009.26
- N. Gomez, C.E. Schmidt, Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J. Biomed. Mater. Res. A 81, 135–149 (2007). https://doi.org/10.1002/jbm.a.31047
- B. Guo, J. Qu, X. Zhao, M. Zhang, Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomater. 84, 180–193 (2019). https://doi.org/10.1016/j.actbio.2018.12.008
- J.L. Liao, S. Zhong, S.H. Wang, J.Y. Liu, J. Chen et al., Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing. Exp. Ther. Med. 14, 2341–2348 (2017). https://doi.org/10.3892/etm.2017.4752
- Y. Zhu, Q. Zeng, Q. Zhang, K. Li, X. Shi et al., Temperature/near-infrared light-responsive conductive hydrogels for controlled drug release and real-time monitoring. Nanoscale 12(16), 8679–8686 (2020). https://doi.org/10.1039/D0NR01736A
References
M. Colonna, Skin function for human CD1a-reactive T cells. Nat. Immunol. 11, 1079–1080 (2010). https://doi.org/10.1038/ni1210-1079
F. Strodtbeck, Physiology of wound healing. Newborn Infant Nurs. Rev. 1(1), 43–52 (2001). https://doi.org/10.1053/nbin.2001.23176
D. Harper, A. Young, C.E. McNaught, The physiology of wound healing. Surg. Infect. (Larchmt.) 32(9), 445–450 (2014). https://doi.org/10.1016/j.mpsur.2014.06.010
B.K. Sun, Z. Siprashvili, P.A. Khavari, Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212), 941–945 (2014). https://doi.org/10.1126/science.1253836
S.K. Nethi, S. Das, C.R. Patra, S. Mukherjee, Recent advances in inorganic nanomaterials for wound-healing applications. Biomater. Sci. 7(7), 2652–2674 (2019). https://doi.org/10.1039/c9bm00423h
M.P. Rowan, L.C. Cancio, E.A. Elster, D.M. Burmeister, L.F. Rose et al., Burn wound healing and treatment: review and advancements. Crit. Care 19, 243 (2015). https://doi.org/10.1186/s13054-015-0961-2
C.K. Sen, Human wound and its burden: updated 2020 compendium of estimates. Adv. Wound Care 10, 281–292 (2021). https://doi.org/10.1089/wound.2021.0026
S.R. Nussbaum, M.J. Carter, C.E. Fife, J. DaVanzo, R. Haughtm et al., An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21(1), 27–32 (2018). https://doi.org/10.1016/j.jval.2017.07.007
J.G. Powers, L.M. Morton, T.J. Phillips, Dressings for chronic wounds. Dermatol. Ther. 26(3), 197–206 (2013). https://doi.org/10.1111/dth.12055
G. Han, R. Ceilley, Chronic wound healing: a review of current management and treatments. Adv. Ther. 34, 599–610 (2017). https://doi.org/10.1007/s12325-017-0478-y
S. Singh, A. Young, C.E. McNaught, The physiology of wound healing. Surg (Oxford) 35(9), 473–477 (2017). https://doi.org/10.1016/j.mpsur.2017.06.004
S. Mandla, L.D. Huyer, M. Radisic, Review: multimodal bioactive material approaches for wound healing. APL Bioeng. 2(2), 021503 (2018). https://doi.org/10.1063/1.5026773
G.S. Schultz, J.M. Davidson, R.S. Kirsner, P. Bornstein, I.M. Herman, Dynamic reciprocity in the wound microenvironment. Wound Repair Regen. 19(2), 134–148 (2011). https://doi.org/10.1111/j.1524-475X.2011.00673.x
J. Li, Y.P. Zhang, R.S. Kirsner, Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 60(1), 107–114 (2003). https://doi.org/10.1002/jemt.10249
A.E. Rivera, J.M. Spencer, Clinical aspects of full-thickness wound healing. Clin. Dermatol. 25, 39–48 (2007). https://doi.org/10.1016/j.clindermatol.2006.10.001
M. Madaghiele, C. Demitri, A. Sannino, L. Ambrosio, Polymeric hydrogels for burn wound care: advanced skin wound dressings and regenerative templates. Burns Trauma 2(4), 153–161 (2014). https://doi.org/10.4103/2321-3868.143616
L. Ambrosio, The role of biomaterials in burn treatment. Burns Trauma 2(4), 150–152 (2014). https://doi.org/10.4103/2321-3868.143608
X. Huang, P. Liang, B. Jiang, P. Zhang, W. Yu et al., Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 259, 118246 (2020). https://doi.org/10.1016/j.lfs.2020.118246
S. Schreml, R.M. Szeimies, L. Prantl, S. Karrer, M. Landthaler et al., Oxygen in acute and chronic wound healing. Br. J. Dermatol. 163(2), 257–268 (2010). https://doi.org/10.1111/j.1365-2133.2010.09804.x
P.G. Rodriguez, F.N. Felix, D.T. Woodley, E.K. Shim, The role of oxygen in wound healing: a review of the literature. Dermatol. Surg. 34(9), 1159–1169 (2008). https://doi.org/10.1111/j.1524-4725.2008.34254.x
C. Huang, T. Leavitt, L.R. Bayer, D.P. Orgill, Effect of negative pressure wound therapy on wound healing. Curr. Probl. Surg. 51(7), 301–331 (2014). https://doi.org/10.1067/j.cpsurg.2014.04.001
P. Agarwal, R. Kukrele, D. Sharma, Vacuum assisted closure (VAC)/negative pressure wound therapy (NPWT) for difficult wounds: a review. J. Clin. Orthop. Trauma 10(5), 845–848 (2019). https://doi.org/10.1016/j.jcot.2019.06.015
L.C. Kloth, Discussion: advanced technologies to improve wound healing: electrical stimulation, vibration therapy, and ultrasound—what is the evidence? Plast. Reconstr. Surg. 138(35), 105S-106S (2016). https://doi.org/10.1097/prs.0000000000002699
J. Rajfur, M. Pasternok, K. Rajfur, K. Walewicz, B. Fras et al., Efficacy of selected electrical therapies on chronic low back pain: a comparative clinical pilot study. Med. Sci. Monit. 23, 85–100 (2017). https://doi.org/10.12659/msm.899461
M. Ashrafi, T. Alonso-Rasgado, M. Baguneid, A. Bayat, The efficacy of electrical stimulation in lower extremity cutaneous wound healing: a systematic review. Exp. Dermatol. 26(2), 171–178 (2017). https://doi.org/10.1111/exd.13179
M. Norouzi, S.M. Boroujeni, N. Omidvarkordshouli, M. Soleimani, Advances in skin regeneration: application of electrospun scaffolds. Adv. Healthcare Mater. 4(8), 1114–1133 (2015). https://doi.org/10.1002/adhm.201500001
K. Vig, A. Chaudhari, S. Tripathi, S. Dixit, R. Sahu et al., Advances in skin regeneration using tissue engineering. Int. J. Mol. Sci. 18(4), 789 (2017). https://doi.org/10.3390/ijms18040789
B. Horst, G. Chouhan, N.S. Moiemen, L.M. Grover, Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev. 123, 18–32 (2018). https://doi.org/10.1016/j.addr.2017.06.012
Q.H. Phua, H.A. Han, B.S. Soh, Translational stem cell therapy: vascularized skin grafts in skin repair and regeneration. J. Transl. Med. 19, 83 (2021). https://doi.org/10.1186/s12967-021-02752-2
M.M. Martino, P.S. Briquez, A. Ranga, M.P. Lutolf, J.A. Hubbell, Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. PNAS 110, 4563–4568 (2013). https://doi.org/10.1073/pnas.1221602110
R. Braund, The role of topical growth factors in chronic wounds. Curr. Drug Deliv. 4(3), 195–204 (2007). https://doi.org/10.2174/156720107781023857
W. Wang, K.J. Lu, C.H. Yu, Q.L. Huang, Y.Z. Du, Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnol. 17, 82 (2019). https://doi.org/10.1186/s12951-019-0514-y
J. Lei, L. Sun, P. Li, C. Zhu, Z. Lin et al., The wound dressings and their applications in wound healing and management. Health Sci. J. 13(4), 662 (2019). https://doi.org/10.36648/1791-809X.1000662
R.F. Pereira, C.C. Barrias, P.L. Granja, P.J. Bartolo, Advanced biofabrication strategies for skin regeneration and repair. Nanomedicine 8(4), 603–621 (2013). https://doi.org/10.2217/nnm.13.50
R.C. Veld, X.F. Walboomers, J.A. Jansen, F. Wagener, Design considerations for hydrogel wound dressings: strategic and molecular advances. Tissue Eng. Part B 26(3), 230–248 (2020). https://doi.org/10.1089/ten.TEB.2019.0281
M.J. Peters, G. Stinstra, M. Hendriks, Estimation of the electrical conductivity of human tissue. Electromagnetics 21, 545–557 (2001). https://doi.org/10.1080/027263401752246199
C. Korupalli, H. Li, N. Nguyen, F.L. Mi, Y. Chang et al., Conductive materials for healing wounds: their incorporation in electroactive wound dressings, characterization, and perspectives. Adv. Healthcare Mater. 10(6), 2001384 (2020). https://doi.org/10.1002/adhm.202001384
T.H. Qazi, R. Rai, A.R. Boccaccini, Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35(33), 9068–9086 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.020
C.D. McCaig, A.M. Rajnicek, B. Song, M. Zhao, Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85(3), 943–978 (2005). https://doi.org/10.1152/physrev.00020.2004
M. Zhao, Electrical fields in wound healing-An overriding signal that directs cell migration. Semin. Cell Dev. Biol. 20(6), 674–682 (2009). https://doi.org/10.1016/j.semcdb.2008.12.009
M. Zhao, B. Song, J. Pu, T. Wada, B. Reid et al., Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442, 457–460 (2006). https://doi.org/10.1038/nature04925
Y. Wang, M. Rouabhia, D. Lavertu, Z. Zhang, Pulsed electrical stimulation modulates fibroblasts’ behaviour through the Smad signalling pathway. J. Tissue Eng. Regener. Med. 11(4), 1110–1121 (2017). https://doi.org/10.1002/term.2014
J.C. Ojingwa, R.R. Isseroff, Electrical stimulation of wound healing. J. Invest. Dermatol. 121, 1–12 (2003). https://doi.org/10.1046/j.1523-1747.2003.12454.x
G. Thakral, J. LaFontaine, B. Najafi, T.K. Talal, P. Kim et al., Electrical stimulation to accelerate wound healing. Diabetic Foot Ankle 4(1), 22081 (2013). https://doi.org/10.3402/dfa.v4i0.22081
S.S. Park, H. Kim, I.R.S. Makin, J.B. Skiba, M.J. Izadjoo, Measurement of microelectric potentials in a bioelectrically-active wound care device in the presence of bacteria. J. Wound Care 24(1), 23–33 (2015). https://doi.org/10.12968/jowc.2015.24.1.23
G. Torkaman, Electrical stimulation of wound healing: a review of animal experimental evidence. Adv. Wound Care 3(2), 202–218 (2014). https://doi.org/10.1089/wound.2012.0409
D. Lala, S.J. Spaulding, S.M. Burke, P.E. Houghton, Electrical stimulation therapy for the treatment of pressure ulcers in individuals with spinal cord injury: a systematic review and meta-analysis. Int. Wound J. 13(6), 1214–1226 (2016). https://doi.org/10.1111/iwj.12446
C. Khouri, S. Kotzki, M. Roustit, S. Blaise, F. Gueyffier et al., Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis. Wound Repair Regen. 25(5), 883–891 (2017). https://doi.org/10.1111/wrr.12594
S. Ud-Din, A. Bayat, Electrical stimulation and cutaneous wound healing: a review of clinical evidence. Healthcare 2(4), 445–467 (2014). https://doi.org/10.3390/healthcare2040445
Y. Lu, Y. Wang, J. Zhang, X. Hu, Z. Yang et al., In-situ doping of a conductive hydrogel with low protein absorption and bacterial adhesion for electrical stimulation of chronic wounds. Acta Biomater. 89, 217–226 (2019). https://doi.org/10.1016/j.actbio.2019.03.018
R. Dong, P.X. Ma, B. Guo, Conductive biomaterials for muscle tissue engineering. Biomaterials 229, 119584 (2020). https://doi.org/10.1016/j.biomaterials.2019.119584
R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 10(6), 2341–2353 (2014). https://doi.org/10.1016/j.actbio.2014.02.015
T.S. Sreeprasad, V. Berry, How do the electrical properties of graphene change with its functionalization? Small 9(3), 341–350 (2013). https://doi.org/10.1002/smll.201202196
Q. Xin, H. Shah, A. Nawaz, W. Xie, M.Z. Akram et al., Antibacterial carbon-based nanomaterials. Adv. Mater. 31(45), 1804838 (2019). https://doi.org/10.1002/adma.201804838
A.G. MacDiarmid, Synthetic metals: a novel role for oganic polymers. Synth. Met. 125(1), 11–22 (2001). https://doi.org/10.1016/S0379-6779(01)00508-2
B. Guo, L. Glavas, A.C. Albertsson, Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38(9), 1263–1286 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.003
R. Urie, D. Ghosh, I. Ridha, K. Rege, Inorganic nanomaterials for soft tissue repair and regeneration. Annu. Rev. Biomed. Eng. 20, 353–374 (2018). https://doi.org/10.1146/annurev-bioeng-071516-044457
M. Kaushik, R. Niranjan, R. Thangam, B. Madhan, V. Pandiyarasan et al., Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci. 479, 1169–1177 (2019). https://doi.org/10.1016/j.apsusc.2019.02.189
M. Wu, Z. Zhang, Z. Liu, J. Zhang, Y. Zhang et al., Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 37, 101104 (2021). https://doi.org/10.1016/j.nantod.2021.101104
C.Y. Chen, H. Yin, X. Chen, T.H. Chen, H.M. Liu et al., Ångstrom-scale silver particle–embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation. Sci. Adv. 6, eaba0942 (2020). https://doi.org/10.1126/sciadv.aba0942
M. Talikowska, X. Fu, G. Lisak, Application of conducting polymers to wound care and skin tissue engineering: a review. Biosens. Bioelectron. 135, 50–63 (2019). https://doi.org/10.1016/j.bios.2019.04.001
R.K. Mohammad, A.A. Abdurahman, M.A. Dar, M.O. Aijaz, M.L. Mollah et al., Conducting and biopolymer based electrospun nanofiber membranes for wound healing applications. Curr. Nanosci. 12(2), 220–227 (2016). https://doi.org/10.2174/1573413711666150415003655
G.S. Hussey, J.L. Dziki, S.F. Badylak, Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 3, 159–173 (2018). https://doi.org/10.1038/s41578-018-0023-x
G.S. Schultz, A. Wysocki, Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 17(2), 153–162 (2009). https://doi.org/10.1111/j.1524-475X.2009.00466.x
M.P. Nikolova, M.S. Chavali, Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mater. 4, 271–292 (2019). https://doi.org/10.1016/j.bioactmat.2019.10.005
G.D. Mogoşanu, A.M. Grumezescu, Natural and synthetic polymers for wounds and burns dressing. Int. J. Pharm. 463(2), 127–136 (2014). https://doi.org/10.1016/j.ijpharm.2013.12.015
M. Mir, M.N. Ali, A. Barakullah, A. Gulzar, M. Arshad et al., Synthetic polymeric biomaterials for wound healing: a review. Prog. Biomater. 7, 1–21 (2018). https://doi.org/10.1007/s40204-018-0083-4
M. Okamoto, B. John, Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog. Polym. Sci. 38(10–11), 1487–1503 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.001
H. Tian, Z. Tang, X. Zhuang, X. Chen, X. Jing, Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog. Polym. Sci. 37(2), 237–280 (2012). https://doi.org/10.1016/j.progpolymsci.2011.06.004
L.D. Koh, J. Yeo, Y.Y. Lee, Q. Ong, M. Han et al., Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Mater. Sci. Eng. C 86, 151–172 (2018). https://doi.org/10.1016/j.msec.2018.01.007
B. Guo, P.X. Ma, Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 57, 490–500 (2014). https://doi.org/10.1007/s11426-014-5086-y
MathSciNet
J. Boateng, O. Catanzano, Advanced therapeutic dressings for effective wound healing—a review. J. Pharm. Sci. 104(11), 3653–3680 (2015). https://doi.org/10.1002/jps.24610
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8), 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
Y. Liu, S. Zhou, Y. Gao, Y. Zhai, Electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J. Pharm. Sci. 14(2), 130–143 (2019). https://doi.org/10.1016/j.ajps.2018.04.004
Z. Liu, X. Zhang, S. Poyraz, S.P. Surwade, S.K. Manohar, Oxidative template for conducting polymer nanoclips. J. Am. Chem. Soc. 132(38), 13158–13159 (2010). https://doi.org/10.1021/ja105966c
Z. Zha, X. Yue, Q. Ren, Z. Dai, Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 25(5), 777–782 (2013). https://doi.org/10.1002/adma.201202211
E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari et al., Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J. Med. Chem. 63(1), 1–22 (2020). https://doi.org/10.1021/acs.jmedchem.9b00803
X. Xiao, G.R. Chen, A. Libanori, J. Chen, Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 3(4), 279–290 (2021). https://doi.org/10.1016/j.trechm.2021.01.001
B. Guo, P.X. Ma, Conducting polymers for tissue engineering. Biomacromol 19(6), 1764–1782 (2018). https://doi.org/10.1021/acs.biomac.8b00276
S. Nambiar, J.T. Yeow, Conductive polymer-based sensors for biomedical applications. Biosens. Bioelectron. 26(5), 1825–1832 (2011). https://doi.org/10.1016/j.bios.2010.09.046
Y. Xu, Z. Shi, X. Shi, K. Zhang, H. Zhang, Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 11(31), 14491–14527 (2019). https://doi.org/10.1039/C9NR04348A
C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Polyaniline nanofibers: broadening applications for conducting polymers. Chem. Soc. Rev. 46(5), 1510–1525 (2017). https://doi.org/10.1039/C6CS00555A
K. Guo, D.L. Zhang, X.M. Zhang, J. Zhang, L.S. Ding et al., Conductive elastomers with autonomic self-healing properties. Angew. Chem. Int. Ed. 54(41), 12127–12133 (2015). https://doi.org/10.1002/anie.201505790
G. Cai, J. Wang, K. Qian, J. Chen, S. Li et al., Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. 4(2), 1600190 (2017). https://doi.org/10.1002/advs.201600190
E.L. Hopley, S. Salmasi, D.M. Kalaskar, A.M. Seifalian, Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnol. Adv. 32(5), 1000–1014 (2014). https://doi.org/10.1016/j.biotechadv.2014.05.003
G. Moku, V.R. Gopalsamuthiram, T.R. Hoye, J. Panyam, Surface modification of nanoparticles: methods and applications. Surface Modification of Polymers (Wiley-VCH) chapter 11, 317–346 (2019). https://doi.org/10.1002/9783527819249.ch11
P. Humpolíček, V. Kašpárková, J. Pacherník, J. Stejskal, P. Bober et al., The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile. Mater. Sci. Eng. C 91, 303–310 (2018). https://doi.org/10.1016/j.msec.2018.05.037
G. Jia, H. Wang, L. Yan, X. Wang, R. Pei et al., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–1383 (2005). https://doi.org/10.1021/es048729l
Y. Liu, K. Xu, Q. Chang, M.A. Darabi, B. Lin et al., Highly flexible and resilient elastin hybrid cryogels with shape memory, injectability, conductivity, and magnetic responsive properties. Adv. Mater. 28(35), 7758–7767 (2016). https://doi.org/10.1002/adma.201601066
S.J. Song, I.S. Raja, Y.B. Lee, M.S. Kang, H.J. Seo et al., Comparison of cytotoxicity of black phosphorus nanosheets in different types of fibroblasts. Biomater. Res. 23, 23 (2019). https://doi.org/10.1186/s40824-019-0174-x
D. An, J. Fu, Z. Xie, C. Xing, B. Zhang et al., Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J. Mater. Chem. B 8(32), 7076–7120 (2020). https://doi.org/10.1039/D0TB00824A
M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthcare Mater. 8(1), 1801137 (2019). https://doi.org/10.1002/adhm.201801137
R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei et al., MXene composite nanofibers for cell culture and tissue engineering. ACS Appl. Bio Mater. 3(4), 2125–2131 (2020). https://doi.org/10.1021/acsabm.0c00007
S. Xiong, X. Chen, Y. Liu, T. Fan, Q. Wang et al., Black phosphorus as a versatile nanoplatform: from unique properties to biomedical applications. J. Innov. Opt. Health Sci. 13, 2030008 (2020). https://doi.org/10.1142/s1793545820300086
T. Habib, X. Zhao, S.A. Shah, Y. Chen, W. Sun et al., Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater. Appl. 3, 8 (2019). https://doi.org/10.1038/s41699-019-0089-3
H. Xu, L. Ma, H. Shi, C. Gao, C. Han, Chitosan–hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies. Polym. Adv. Technol. 18(11), 869–875 (2007). https://doi.org/10.1002/pat.906
D. Aycan, B. Selmi, E. Kelel, T. Yildirim, N. Alemdar, Conductive polymeric film loaded with ibuprofen as a wound dressing material. Eur. Polym. J. 121, 109308 (2019). https://doi.org/10.1016/j.eurpolymj.2019.109308
D.D. Ateh, P. Vadgama, H.A. Navsaria, Culture of human keratinocytes on polypyrrole-based conducting polymers. Tissue Eng. 12(4), 645–655 (2006). https://doi.org/10.1089/ten.2006.12.645
L.J. Valle, D. Aradilla, R. Oliver, F. Sepulcre, A. Gamez et al., Cellular adhesion and proliferation on poly(3,4-ethylenedioxythiophene): benefits in the electroactivity of the conducting polymer. Eur. Polym. J. 43(6), 2342–2349 (2007). https://doi.org/10.1016/j.eurpolymj.2007.03.050
R. Deepachitra, V. Ramnath, T.P. Sastry, Graphene oxide incorporated collagen–fibrin biofilm as a wound dressing material. RSC Adv. 4(107), 62717–62727 (2014). https://doi.org/10.1039/C4RA10150B
G. Shi, M. Rouabhia, S. Meng, Z. Zhang, Electrical stimulation enhances viability of human cutaneous fibroblasts on conductive biodegradable substrates. J. Biomed. Mater. Res. Part A 84A(4), 1026–1037 (2008). https://doi.org/10.1002/jbm.a.31337
L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12(7), 481–494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c481::AID-ADMA481%3e3.0.CO;2-C
J.Y. Lee, C.E. Schmidt, Amine-functionalized polypyrrole: inherently cell adhesive conducting polymer. J. Biomed. Mater. Res. Part A 103(6), 2126–2132 (2015). https://doi.org/10.1002/jbm.a.35344
J.H. Collier, J.P. Camp, T.W. Hudson, C.E. Schmidt, Synthesis and characterization of polypyrrole–hyaluronic acid composite biomaterials for tissue engineering applications. J. Biomed. Mater. Res. 50(4), 574–584 (2000). https://doi.org/10.1002/(SICI)1097-4636(20000615)50:4%3c574::AID-JBM13%3e3.0.CO;2-I
K. Svennersten, M.H. Bolin, E.W.H. Jager, M. Berggren, A. Richter-Dahlfors, Electrochemical modulation of epithelia formation using conducting polymers. Biomaterials 30(31), 6257–6264 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.059
A. Akkouch, G. Shi, Z. Zhang, M. Rouabhia, Bioactivating electrically conducting polypyrrole with fibronectin and bovine serum albumin. J. Biomed. Mater. Res. Part A 92A(1), 221–231 (2010). https://doi.org/10.1002/jbm.a.32357
A.M. Wan, D.J. Brooks, A. Gumus, C. Fischbach, G.G. Malliaras, Electrical control of cell density gradients on a conducting polymer surface. Chem. Commun. 279(35), 5278–5280 (2009). https://doi.org/10.1039/b911130a
A. Gumus, J.P. Califano, A.M.D. Wan, J. Huynh, C.A. Reinhart-King et al., Control of cell migration using a conducting polymer device. Soft Matter 6(20), 5138–5142 (2010). https://doi.org/10.1039/B923064E
E.M. Stewart, M. Fabretto, M. Mueller, P.J. Molino, H.J. Griesser et al., Cell attachment and proliferation on high conductivity PEDOT–glycol composites produced by vapour phase polymerisation. Biomater. Sci. 1(4), 368–378 (2013). https://doi.org/10.1039/C2BM00143H
S.K. Yadav, Y.C. Jung, J.H. Kim, Y.I. Ko, H.J. Ryu et al., Electrically conductive biocomposite films using antimicrobial chitosan-functionalized graphenes. Part. Part. Syst. Charact. 30, 721–727 (2013). https://doi.org/10.1002/ppsc.201300044
J. Banerjee, P. DasGhatak, S. Roy, S. Khanna, E.K. Sequin et al., Improvement of human keratinocyte migration by a redox active bioelectric dressing. PLoS ONE 9, e89239 (2014). https://doi.org/10.1371/journal.pone.0089239
M. Marzocchi, I. Gualandi, M. Calienni, I. Zironi, E. Scavetta et al., Physical and electrochemical properties of PEDOT:PSS as a tool for controlling cell growth. ACS Appl. Mater. Interfaces 7(32), 17993–18003 (2015). https://doi.org/10.1021/acsami.5b04768
N.A. Chowdhury, A.M. Al-Jumaily, Regenerated cellulose/polypyrrole/silver nanoparticles/ionic liquid composite films for potential wound healing applications. Wound Med. 14, 16–18 (2016). https://doi.org/10.1016/j.wndm.2016.07.001
N. Pramanik, K. Dutta, R.K. Basu, P.P. Kundu, Aromatic π-conjugated curcumin on surface modified polyaniline/polyhydroxyalkanoate based 3D porous scaffolds for tissue engineering applications. ACS Biomater. Sci. Eng. 2(12), 2365–2377 (2016). https://doi.org/10.1021/acsbiomaterials.6b00595
S.H. Bhang, W.S. Jang, J. Han, J.K. Yoon, W.G. La et al., Zinc oxide nanorod-based piezoelectric dermal patch for wound healing. Adv. Funct. Mater. 27(1), 1603497 (2017). https://doi.org/10.1002/adfm.201603497
Y. Long, H. Wei, J. Li, G. Yao, B. Yu et al., Effective wound healing enabled by discrete alternative electric fields from wearable nanogenerators. ACS Nano 12(12), 12533–12540 (2018). https://doi.org/10.1021/acsnano.8b07038
M. Khamrai, S.L. Banerjee, S. Paul, A.K. Ghosh, P. Sarkar et al., A mussel mimetic, bioadhesive, antimicrobial patch based on dopamine-modified bacterial cellulose/rGO/Ag NPs: a green approach toward wound-healing applications. ACS Sustain. Chem. Eng. 7(14), 12083–12097 (2019). https://doi.org/10.1021/acssuschemeng.9b01163
M. Li, J. Chen, M. Shi, H. Zhang, P.X. Ma et al., Electroactive anti-oxidant polyurethane elastomers with shape memory property as non-adherent wound dressing to enhance wound healing. Chem. Eng. J. 375, 121999 (2019). https://doi.org/10.1016/j.cej.2019.121999
X. Fu, J.K. Wang, A.C. Ramírez-Pérez, C. Choong, G. Lisak, Flexible conducting polymer-based cellulose substrates for on-skin applications. Mater. Sci. Eng. C 108, 110392 (2020). https://doi.org/10.1016/j.msec.2019.110392
S. Liu, J. Li, S. Zhang, X. Zhang, J. Ma et al., Template-assisted magnetron sputtering of cotton nonwovens for wound healing application. ACS Appl. Bio Mater. 3(2), 848–858 (2020). https://doi.org/10.1021/acsabm.9b00942
L. Zhang, Y. Yu, S. Zheng, L. Zhong, J. Xue, Preparation and properties of conductive bacterial cellulose-based graphene oxide-silver nanoparticles antibacterial dressing. Carbohydr. Polym. 257, 117671 (2021). https://doi.org/10.1016/j.carbpol.2021.117671
X.W. Huang, J.J. Wei, M.Y. Zhang, X.L. Zhang, X.F. Yin et al., Water-based black phosphorus hybrid nanosheets as a moldable platform for wound healing applications. ACS Appl. Mater. Interfaces 10(41), 35495–35502 (2018). https://doi.org/10.1021/acsami.8b12523
W. Wentao, Z. Tao, S. Bulei, Z. Tongchang, Z. Qicheng et al., Functionalization of polyvinyl alcohol composite film wrapped in am-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing. Appl. Mater. Today 17, 36–44 (2019). https://doi.org/10.1016/j.apmt.2019.07.001
T.J. Simmons, S.H. Lee, T.J. Park, D.P. Hashim, P.M. Ajayan et al., Antiseptic single wall carbon nanotube bandages. Carbon 47(6), 1561–1564 (2009). https://doi.org/10.1016/j.carbon.2009.02.005
T.J. Simmons, C.J. Rivet, G. Singh, J. Beaudet, E. Sterner et al., Application of carbon nanotubes to wound healing biotechnology. in Nanomaterials for Biomedicine (ACS Symposium Series) chapter 7, 155–174 (2012). https://doi.org/10.1021/bk-2012-1119.ch007
G. Shi, Z. Zhang, M. Rouabhia, The regulation of cell functions electrically using biodegradable polypyrrole–polylactide conductors. Biomaterials 29(28), 3792–3798 (2008). https://doi.org/10.1016/j.biomaterials.2008.06.010
M. Rouabhia, H. Park, S. Meng, H. Derbali, Z. Zhang, Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS ONE 8, e71660 (2013). https://doi.org/10.1371/journal.pone.0071660
H.J. Park, M. Rouabhia, D. Lavertu, Z. Zhang, Electrical stimulation modulates the expression of multiple wound healing genes in primary human dermal fibroblasts. Tissue Eng. Part A 21(13–14), 1982–1990 (2015). https://doi.org/10.1089/ten.TEA.2014.0687
C.L. Weaver, J.M. LaRosa, X. Luo, X.T. Cui, Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8(2), 1834–1843 (2014). https://doi.org/10.1021/nn406223e
G.A. Justin, S. Zhu, T.R. Nicholson, J. Maskrod, J. Mbugua et al., On-demand controlled release of anti-inflammatory and analgesic drugs from conducting polymer films to aid in wound healing. in 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, (28 August - 1 September, 2012). https://doi.org/10.1109/EMBC.2012.6346153
T.M. Nguyen, S. Lee, S.B. Lee, Conductive polymer nanotube patch for fast and controlled ex vivo transdermal drug delivery. Nanomedicine 9(15), 2263–2272 (2014). https://doi.org/10.2217/nnm.13.153
B. Guo, A. Finne-Wistrand, A.C. Albertsson, Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. Biomacromol 12(7), 2601–2609 (2011). https://doi.org/10.1021/bm200389t
A. Masotti, M.R. Miller, A. Celluzzi, L. Rose, F. Micciulla et al., Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomedicine 12(6), 1511–1522 (2016). https://doi.org/10.1016/j.nano.2016.02.017
W. Yang, Y. Wang, J. Li, X. Yang, Polymer wrapping technique: an effective route to prepare Pt nanoflower/carbon nanotube hybrids and application in oxygen reduction. Energ. Environ. Sci. 3(1), 144–149 (2010). https://doi.org/10.1039/B916423E
S. Wei, X. Zou, J. Tian, H. Huang, W. Guo et al., Control of protein conformation and orientation on graphene. J. Am. Chem. Soc. 141(51), 20335–20343 (2019). https://doi.org/10.1021/jacs.9b10705
S. Shahmoradi, H. Golzar, M. Hashemi, V. Mansouri, M. Omidi et al., Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. Nanotechnology 29(47), 475101 (2018). https://doi.org/10.1088/1361-6528/aadedc
H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome et al., Accelerated wound healing on skin by electrical stimulation with a bioelectric plaster. Adv. Healthcare Mater. 6(22), 1700465 (2017). https://doi.org/10.1002/adhm.201700465
J. Shao, C. Ruan, H. Xie, Z. Li, H. Wang et al., Black-phosphorus-incorporated hydrogel as a sprayable and biodegradable photothermal platform for postsurgical treatment of cancer. Adv. Sci. 5(5), 1700848 (2018). https://doi.org/10.1002/advs.201700848
P. Zhang, B. Sun, F. Wu, Q. Zhang, X. Chu et al., Wound healing acceleration by antibacterial biodegradable black phosphorus nanosheets loaded with cationic carbon dots. J. Mater. Sci. 56, 6411–6426 (2021). https://doi.org/10.1007/s10853-020-05766-1
C. Xue, L. Sutrisno, M. Li, W. Zhu, Y. Fei et al., Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/chemotherapy and wound healing. Biomaterials 269, 120623 (2021). https://doi.org/10.1016/j.biomaterials.2020.120623
L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao et al., Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv. Healthcare Mater. 9(19), 2000872 (2020). https://doi.org/10.1002/adhm.202000872
E.A. Mayerberger, R.M. Street, R.M. McDaniel, M.W. Barsoum, C.L. Schauer, Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 8(62), 35386–35394 (2018). https://doi.org/10.1039/C8RA06274A
L. Zhou, H. Zheng, Z. Liu, S. Wang, Z. Liu et al., Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing. ACS Nano 15(2), 2468–2480 (2021). https://doi.org/10.1021/acsnano.0c06287
M.S. Pacheco, G.E. Kano, L.A. Paulo, P.S. Lopes, M.A. de Moraes, Silk fibroin/chitosan/alginate multilayer membranes as a system for controlled drug release in wound healing. Int. J. Biol. Macromol. 152, 803–811 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.140
E.A. Kamoun, E.R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017). https://doi.org/10.1016/j.jare.2017.01.005
R. Gharibi, H. Yeganeh, H. Gholami, Z.M. Hassan, Aniline tetramer embedded polyurethane/siloxane membranes and their corresponding nanosilver composites as intelligent wound dressing materials. RSC Adv. 4(107), 62046–62060 (2014). https://doi.org/10.1039/C4RA11454J
M. Alexandru, M. Cazacu, M. Cristea, A. Nistor, C. Grigoras et al., Poly(siloxane-urethane) crosslinked structures obtained by sol-gel technique. J. Polym. Sci. Part A Polym. Chem. 49(7), 1708–1718 (2011). https://doi.org/10.1002/pola.24602
R. Gharibi, H. Yeganeh, A.R. Lactoee, Z.M. Hassan, Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: in vitro and in vivo evaluations. ACS Appl. Mater. Interfaces 7(43), 24296–24311 (2015). https://doi.org/10.1021/acsami.5b08376
Y.C. Hsiao, P.R. Jheng, H.T. Nguyen, Y.H. Chen, Y.B. Manga et al., Photothermal-irradiated polyethyleneimine-polypyrrole nanopigment film-coated polyethylene fabrics for infrared-inspired with pathogenic evaluation. ACS Appl. Mater. Interfaces 13(2), 2483–2495 (2021). https://doi.org/10.1021/acsami.0c17169
F. Croisier, G. Atanasova, Y. Poumay, C. Jérôme, Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv. Healthcare Mater. 3(12), 2032–2039 (2014). https://doi.org/10.1002/adhm.201400380
S.I. Jeong, I.D. Jun, M.J. Choi, Y.C. Nho, Y.M. Lee et al., Development of electroactive and elastic nanofibers that contain polyaniline and poly(L-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol. Biosci. 8(7), 627–637 (2008). https://doi.org/10.1002/mabi.200800005
M. Gizdavic-Nikolaidis, S. Ray, J.R. Bennett, A.J. Easteal, R.P. Cooney, Electrospun functionalized polyaniline copolymer-based nanofibers with potential application in tissue engineering. Macromol. Biosci. 10(12), 1424–1431 (2010). https://doi.org/10.1002/mabi.201000237
S. Aznar-Cervantes, M.I. Roca, J.G. Martinez, L. Meseguer-Olmo, J.L. Cenis et al., Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85, 36–43 (2012). https://doi.org/10.1016/j.bioelechem.2011.11.008
B. Lu, T. Li, H. Zhao, X. Li, C. Gao et al., Graphene-based composite materials beneficial to wound healing. Nanoscale 4(9), 2978–2982 (2012). https://doi.org/10.1039/C2NR11958G
Y. Wang, M. Rouabhia, Z. Zhang, PPy-coated PET fabrics and electric pulse-stimulated fibroblasts. J. Mater. Chem. B 1(31), 3789–3796 (2013). https://doi.org/10.1039/C3TB20257G
X. Niu, M. Rouabhia, N. Chiffot, M.W. King, Z. Zhang, An electrically conductive 3D scaffold based on a nonwoven web of poly(l-lactic acid) and conductive poly(3,4-ethylenedioxythiophene). J. Biomed. Mater. Res. Part A 103(8), 2635–2644 (2015). https://doi.org/10.1002/jbm.a.35408
Y. Wang, M. Rouabhia, Z. Zhang, Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis. Biochim. Biophys. Acta 1860(7), 1551–1559 (2016). https://doi.org/10.1016/j.bbagen.2016.03.023
H.C. Chang, T. Sun, N. Sultana, M.M. Lim, T.H. Khan et al., Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater. Sci. Eng. C 61, 396–410 (2016). https://doi.org/10.1016/j.msec.2015.12.074
H.K. Patra, Y. Sharma, M.M. Islam, M.J. Jafari, N.A. Murugan et al., Inflammation-sensitive in situ smart scaffolding for regenerative medicine. Nanoscale 8(39), 17213–17222 (2016). https://doi.org/10.1039/C6NR06157E
G. Ruiz-Velasco, F. Martínez-Flores, J. Morales-Corona, R. Olayo-Valles, R. Olayo, Polymeric scaffolds for skin. Macromol. Symp. 374(1), 1600133 (2017). https://doi.org/10.1002/masy.201600133
D. Gh, D. Kong, J. Gautrot, S.K. Vootla, Fabrication and characterization of conductive conjugated polymer-coated Antheraea mylitta silk fibroin fibers for biomedical applications. Macromol. Biosci. 17(7), 1600443 (2017). https://doi.org/10.1002/mabi.201600443
Q. Zhang, Q. Du, Y. Zhao, F. Chen, Z. Wang et al., Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds with potential as skin wound dressings. RSC Adv. 7(46), 28826–28836 (2017). https://doi.org/10.1039/C7RA03997B
B.K. Gu, S.J. Park, C.H. Kim, Beneficial effect of aligned nanofiber scaffolds with electrical conductivity for the directional guide of cells. J. Biomater. Sci. Polym. Ed. 29(7–9), 1053–1065 (2018). https://doi.org/10.1080/09205063.2017.1364097
R. Román-Doval, M.M. Tellez-Cruz, H. Rojas-Chávez, H. Cruz-Martínez, G. Carrasco-Torres et al., Enhancing electrospun scaffolds of PVP with polypyrrole/iodine for tissue engineering of skin regeneration by coating via a plasma process. J. Mater. Sci. 54, 3342–3353 (2019). https://doi.org/10.1007/s10853-018-3024-7
J. He, Y. Liang, M. Shi, B. Guo, Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem. Eng. J. 385, 123464 (2020). https://doi.org/10.1016/j.cej.2019.123464
M. Zarei, A. Samimi, M. Khorram, M.M. Abdi, S.I. Golestaneh, Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int. J. Biol. Macromol. 168, 175–186 (2021). https://doi.org/10.1016/j.ijbiomac.2020.12.031
I. Altinbasak, R. Jijie, A. Barras, B. Golba, R. Sanyal et al., Reduced graphene-oxide-embedded polymeric nanofiber mats: an “on-demand” photothermally triggered antibiotic release platform. ACS Appl. Mater. Interfaces 10(48), 41098–41106 (2018). https://doi.org/10.1021/acsami.8b14784
Z. Jia, J. Gong, Y. Zeng, J. Ran, J. Liu et al., Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv. Funct. Mater. 31(19), 2010461 (2021). https://doi.org/10.1002/adfm.202010461
B.W. Walker, R.P. Lara, E. Mogadam, C.H. Yu, W. Kimball et al., Rational design of microfabricated electroconductive hydrogels for biomedical applications. Prog. Polym. Sci. 92, 135–157 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.007
J. Xu, Y.L. Tsai, S.H. Hsu, Design strategies of conductive hydrogel for biomedical applications. Molecules 25(22), 5296 (2020). https://doi.org/10.3390/molecules25225296
J. Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma et al., Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183, 185–199 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.044
Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15(4), 7078–7093 (2021). https://doi.org/10.1021/acsnano.1c00204
R. Yu, Y. Yang, J. He, M. Li, B. Guo, Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021). https://doi.org/10.1016/j.cej.2020.128278
X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu et al., Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122, 34–47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
M. di Luca, O. Vittorio, G. Cirillo, M. Curcio, M. Czuban et al., Electro-responsive graphene oxide hydrogels for skin bandages: the outcome of gelatin and trypsin immobilization. Int. J. Pharm. 546(1–2), 50–60 (2018). https://doi.org/10.1016/j.ijpharm.2018.05.027
D. Gan, L. Han, M. Wang, W. Xing, T. Xu et al., Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl. Mater. Interfaces 10(42), 36218–36228 (2018). https://doi.org/10.1021/acsami.8b10280
C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang et al., Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12(2), 1747–1759 (2018). https://doi.org/10.1021/acsnano.7b08500
M.K. Satapathy, B. Nyambat, C.W. Chiang, C.H. Chen, P.C. Wong et al., A gelatin hydrogel-containing nano-organic PEI–Ppy with a photothermal responsive effect for tissue engineering applications. Molecules 23(6), 1256 (2018). https://doi.org/10.3390/molecules23061256
Y. Liang, X. Zhao, T. Hu, B. Chen, Z. Yin et al., Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing. Small 15(12), 1900046 (2019). https://doi.org/10.1002/smll.201900046
Y. Liang, X. Zhao, T. Hu, Y. Han, B. Guo, Mussel-inspired, antibacterial, conductive, antioxidant, injectable composite hydrogel wound dressing to promote the regeneration of infected skin. J. Colloid Interface Sci. 556, 514–528 (2019). https://doi.org/10.1016/j.jcis.2019.08.083
J. Qu, X. Zhao, Y. Liang, Y. Xu, P.X. Ma et al., Degradable conductive injectable hydrogels as novel antibacterial, antioxidant wound dressings for wound healing. Chem. Eng. J. 362, 548–560 (2019). https://doi.org/10.1016/j.cej.2019.01.028
Y. Zhao, Z. Li, S. Song, K. Yang, H. Liu et al., Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv. Funct. Mater. 29(31), 1901474 (2019). https://doi.org/10.1002/adfm.201901474
J. He, M. Shi, Y. Liang, B. Guo, Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 394, 124888 (2020). https://doi.org/10.1016/j.cej.2020.124888
X. Jin, Y. Shang, Y. Zou, M. Xiao, H. Huang et al., Injectable hypoxia-induced conductive hydrogel to promote diabetic wound healing. ACS Appl. Mater. Interfaces 12(51), 56681–56691 (2020). https://doi.org/10.1021/acsami.0c13197
M. Li, Y. Liang, J. He, H. Zhang, B. Guo, Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem. Mater. 32(23), 9937–9953 (2020). https://doi.org/10.1021/acs.chemmater.0c02823
S. Li, L. Wang, W. Zheng, G. Yang, X. Jiang, Rapid fabrication of self-healing, conductive, and injectable gel as dressings for healing wounds in stretchable parts of the body. Adv. Funct. Mater. 30(31), 2002370 (2020). https://doi.org/10.1002/adfm.202002370
Y. Liang, B. Chen, M. Li, J. He, Z. Yin et al., Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromol 21(5), 1841–1852 (2020). https://doi.org/10.1021/acs.biomac.9b01732
J. Ouyang, X. Ji, X. Zhang, C. Feng, Z. Tang et al., In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. PNAS 117, 28667–28677 (2020). https://doi.org/10.1073/pnas.2016268117
B. Zhang, J. He, M. Shi, Y. Liang, B. Guo, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem. Eng. J. 400, 125994 (2020). https://doi.org/10.1016/j.cej.2020.125994
J. Zhang, C. Wu, Y. Xu, J. Chen, N. Ning et al., Highly stretchable and conductive self-healing hydrogels for temperature and strain sensing and chronic wound treatment. ACS Appl. Mater. Interfaces 12(37), 40990–40999 (2020). https://doi.org/10.1021/acsami.0c08291
X. Zhang, G. Chen, Y. Liu, L. Sun, L. Sun et al., Black phosphorus-loaded separable microneedles as responsive oxygen delivery carriers for wound healing. ACS Nano 14(5), 5901–5908 (2020). https://doi.org/10.1021/acsnano.0c01059
Y. Zhao, Z. Li, Q. Li, L. Yang, H. Liu et al., Transparent conductive supramolecular hydrogels with stimuli-responsive properties for on-demand dissolvable diabetic foot wound dressings. Macromol. Rapid Commun. 41(24), 2000441 (2020). https://doi.org/10.1002/marc.202000441
Y. Zhu, J. Zhang, J. Song, J. Yang, Z. Du et al., A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment. Adv. Funct. Mater. 30(6), 1905493 (2020). https://doi.org/10.1002/adfm.201905493
S.H. Jeong, Y. Lee, M.G. Lee, W.J. Song et al., Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021). https://doi.org/10.1016/j.nanoen.2020.105463
Z. Li, W. Xu, X. Wang, W. Jiang, X. Ma et al., Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur. Polym. J. 146, 110253 (2021). https://doi.org/10.1016/j.eurpolymj.2020.110253
C. Hu, L. Long, J. Cao, S. Zhang, Y. Wang, Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J. 411, 128564 (2021). https://doi.org/10.1016/j.cej.2021.128564
Y. Wang, Y. Lu, J. Zhang, X. Hu, Z. Yang et al., A synergistic antibacterial effect between terbium ions and reduced graphene oxide in a poly(vinyl alcohol)–alginate hydrogel for treating infected chronic wounds. J. Mater. Chem. B 7(4), 538–547 (2019). https://doi.org/10.1039/C8TB02679C
Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin et al., A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv. Funct. Mater. 24(25), 3933–3943 (2014). https://doi.org/10.1002/adfm.201304202
S.O. Blacklow, J. Li, B.R. Freedman, M. Zeidi, C. Chen et al., Bioinspired mechanically active adhesive dressings to accelerate wound closure. Sci. Adv. 5(7), eaaw3963 (2019). https://doi.org/10.1126/sciadv.aaw3963
L. Yan, T. Zhou, L. Han, M. Zhu, Z. Cheng et al., Conductive cellulose bio-nanosheets assembled biostable hydrogel for reliable bioelectronics. Adv. Funct. Mater. 31(17), 2010465 (2021). https://doi.org/10.1002/adfm.202010465
C.W. Hsiao, H.L. Chen, Z.X. Liao, R. Sureshbabu, H.C. Hsiao et al., Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv. Funct. Mater. 25(5), 721–728 (2015). https://doi.org/10.1002/adfm.201403478
H.B.T. Moran, J.L. Turley, M. Andersson, E.C. Lavelle, Immunomodulatory properties of chitosan polymers. Biomaterials 184, 1–9 (2018). https://doi.org/10.1016/j.biomaterials.2018.08.054
X. Zhao, P. Li, B. Guo, P.X. Ma, Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 26, 236–248 (2015). https://doi.org/10.1016/j.actbio.2015.08.006
A. Ramadan, M. Elsaidy, R. Zyada, Effect of low-intensity direct current on the healing of chronic wounds: a literature review. J. Wound Care 17(7), 292–296 (2008). https://doi.org/10.12968/jowc.2008.17.7.30520
Z. Li, H. Wang, B. Yang, Y. Sun, R. Huo, Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater. Sci. Eng. C 57, 181–188 (2015). https://doi.org/10.1016/j.msec.2015.07.062
C. Nie, G. Zhang, D. Yang, T. Liu, D. Liu et al., Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J. Tissue Eng. Regener. Med. 9(3), 224–235 (2015). https://doi.org/10.1002/term.1622
Q. Wang, Y. Jin, X. Deng, H. Liu, H. Pang et al., Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials 53, 659–668 (2015). https://doi.org/10.1016/j.biomaterials.2015.03.011
J. Rnjak-Kovacina, A.S. Weiss, Increasing the pore size of electrospun scaffolds. Tissue Eng. Part B 17(5), 365–372 (2011). https://doi.org/10.1089/ten.teb.2011.0235
X. Zhang, D. Chang, J. Liu, Y. Luo, Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. J. Mater. Chem. 20(24), 5080–5085 (2010). https://doi.org/10.1039/C0JM00050G
G.R. Mueller, T.J. Pineda, H.X. Xie, J.S. Teach, A.D. Barofsky et al., A novel sponge-based wound stasis dressing to treat lethal noncompressible hemorrhage. J. Trauma Acute Care Surg. 73(2), S134–S139 (2012). https://doi.org/10.1097/TA.0b013e3182617c3c
J.L.S. Antonio, L.M. Lira, V.R. Gonçales, S.I.C. Torresi, Fully conducting hydro-sponges with electro-swelling properties tuned by synthetic parameters. Electrochim. Acta 101, 216–224 (2013). https://doi.org/10.1016/j.electacta.2012.11.012
Y. Lu, W. He, T. Cao, H. Guo, Y. Zhang et al., Elastic, conductive, polymeric hydrogels and sponges. Sci. Rep. 4, 5792 (2014). https://doi.org/10.1038/srep05792
H. Maleki, L. Durães, C.A. García-González, P. Gaudio, A. Portugal et al., Synthesis and biomedical applications of aerogels: Possibilities and challenges. Adv. Colloid Interface Sci. 236, 1–27 (2016). https://doi.org/10.1016/j.cis.2016.05.011
D.M. Supp, S.T. Boyce, Engineered skin substitutes: practices and potentials. Clin. Dermatol. 23(4), 403–412 (2005). https://doi.org/10.1016/j.clindermatol.2004.07.023
A.D. Metcalfe, M.W.J. Ferguson, Bioengineering skin using mechanisms of regeneration and repair. Biomaterials 28(34), 5100–5113 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.031
M.L. Iorio, J. Shuck, C.E. Attinger, Wound healing in the upper and lower extremities: a systematic review on the use of acellular dermal matrices. Plast. Reconstr. Surg. 130, 232S-241S (2012). https://doi.org/10.1097/PRS.0b013e3182615703
X. Guo, D. Mu, F. Gao, Efficacy and safety of acellular dermal matrix in diabetic foot ulcer treatment: a systematic review and meta-analysis. Int. J. Surg. 40, 1–7 (2017). https://doi.org/10.1016/j.ijsu.2017.02.008
S. Zhou, M. Wang, X. Chen, F. Xu, Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain. Chem. Eng. 3(12), 3346–3354 (2015). https://doi.org/10.1021/acssuschemeng.5b01020
P. Thangavel, R. Kannan, B. Ramachandran, G. Moorthy, L. Suguna et al., Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J. Colloid Interface Sci. 517, 251–264 (2018). https://doi.org/10.1016/j.jcis.2018.01.110
M.R. Santos, J.J. Alcaraz-Espinoza, M.M. Costa, H.P. Oliveira, Usnic acid-loaded polyaniline/polyurethane foam wound dressing: preparation and bactericidal activity. Mater. Sci. Eng. C 89, 33–40 (2018). https://doi.org/10.1016/j.msec.2018.03.019
X. Zhao, B. Guo, H. Wu, Y. Liang, P.X. Ma, Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 9, 2784 (2018). https://doi.org/10.1038/s41467-018-04998-9
F.A.G. Silva, C.M.S. Araújo, J.J. Alcaraz-Espinoza, H.P. Oliveira, Toward flexible and antibacterial piezoresistive porous devices for wound dressing and motion detectors. J. Polym. Sci. Part B Polym. Phys. 56(14), 1063–1072 (2018). https://doi.org/10.1002/polb.24626
J. Fu, Y. Zhang, J. Chu, X. Wang, W. Yan et al., Reduced graphene oxide incorporated acellular dermal composite scaffold enables efficient local delivery of mesenchymal stem cells for accelerating diabetic wound healing. ACS Biomater. Sci. Eng. 5(8), 4054–4066 (2019). https://doi.org/10.1021/acsbiomaterials.9b00485
R. Ma, Y. Wang, H. Qi, C. Shi, G. Wei et al., Nanocomposite sponges of sodium alginate/graphene oxide/polyvinyl alcohol as potential wound dressing: in vitro and in vivo evaluation. Compos. B Eng. 167, 396–405 (2019). https://doi.org/10.1016/j.compositesb.2019.03.006
P. Tang, L. Han, P. Li, Z. Jia, K. Wang et al., Mussel-inspired electroactive and antioxidative scaffolds with incorporation of polydopamine-reduced graphene oxide for enhancing skin wound healing. ACS Appl. Mater. Interfaces 11(8), 7703–7714 (2019). https://doi.org/10.1021/acsami.8b18931
Y. Chen, Y. Liang, J. Liu, J. Yang, N. Jia et al., Optimizing microenvironment by integrating negative pressure and exogenous electric fields via a flexible porous conductive dressing to accelerate wound healing. Biomater. Sci. 9(1), 238–251 (2021). https://doi.org/10.1039/D0BM01172J
R. Shechter, M. Schwartz, CNS sterile injury: just another wound healing? Trends Mol. Med. 19(3), 135–143 (2013). https://doi.org/10.1016/j.molmed.2012.11.007
P. Zhang, B. Zou, Y.C. Liou, C. Huang, The pathogenesis and diagnosis of sepsis post burn injury. Burns Trauma 9, tkaa0477 (2021). https://doi.org/10.1093/burnst/tkaa047
R. Nunan, K.G. Harding, P. Martin, Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis. Model. Mech. 7(11), 1205–1213 (2014). https://doi.org/10.1242/dmm.016782
A.A. Chaudhari, K. Vig, D.R. Baganizi, R. Sahu, S. Dixit et al., Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int. J. Mol. Sci. 17(12), 1974 (2016). https://doi.org/10.3390/ijms17121974
S. Guo, L.A. DiPietro, Factors affecting wound healing. J. Dent. Res. 89(3), 219–229 (2010). https://doi.org/10.1177/0022034509359125
A. McLister, J. McHugh, J. Cundell, J. Davis, New developments in smart bandage technologies for wound diagnostics. Adv. Mater. 28(27), 5732–5737 (2016). https://doi.org/10.1002/adma.201504829
N.X. Landén, D. Li, M. Ståhle, Transition from inflammation to proliferation: a critical step during wound healing. Cell. Mol. Life Sci. 73, 3861–3885 (2016). https://doi.org/10.1007/s00018-016-2268-0
T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive polymers: opportunities and challenges in biomedical applications. Chem. Rev. 118(14), 6766–6843 (2018). https://doi.org/10.1021/acs.chemrev.6b00275
C. Chen, X. Bai, Y. Ding, I.S. Lee, Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 25 (2019). https://doi.org/10.1186/s40824-019-0176-8
Q. Gao, X. Zhang, W. Yin, D. Ma, C. Xie et al., Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small 14(45), 1802290 (2018). https://doi.org/10.1002/smll.201802290
Q. Shi, X. Luo, Z. Huang, A.C. Midgley, B. Wang et al., Cobalt-mediated multi-functional dressings promote bacteria-infected wound healing. Acta Biomater. 86, 465–479 (2019). https://doi.org/10.1016/j.actbio.2018.12.048
M.A. Shahbazi, M.P. Ferreira, H.A. Santos, Landing a lethal blow on bacterial infections: an emerging advance of nanodots for wound healing acceleration. Nanomedicine 14, 2269–2272 (2019). https://doi.org/10.2217/nnm-2019-0236
Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao et al., Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv. Sci. 7(6), 1902673 (2020). https://doi.org/10.1002/advs.201902673
C. Korupalli, C.C. Huang, W.C. Lin, W.Y. Pan, P.Y. Lin et al., Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials 116, 1–9 (2017). https://doi.org/10.1016/j.biomaterials.2016.11.045
X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei et al., Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters. ACS Appl. Mater. Interfaces 9(36), 30470–30479 (2017). https://doi.org/10.1021/acsami.7b09638
X. Yang, P. Xia, Y. Zhang, S. Lian, H. Li et al., Photothermal nano-antibiotic for effective treatment of multidrug-resistant bacterial infection. ACS Appl. Bio Mater. 3(8), 5395–5406 (2020). https://doi.org/10.1021/acsabm.0c00702
W.L. Chiang, T.T. Lin, R. Sureshbabu, W.T. Chia, H.C. Hsiao et al., A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses. J. Control. Release 199, 53–62 (2015). https://doi.org/10.1016/j.jconrel.2014.12.011
L. Zhao, L. Niu, H. Liang, H. Tan, C. Liu et al., pH and glucose dual-responsive injectable hydrogels with insulin and fibroblasts as bioactive dressings for diabetic wound healing. ACS Appl. Mater. Interfaces 9(43), 37563–37574 (2017). https://doi.org/10.1021/acsami.7b09395
H. Nosrati, R.A. Khouy, A. Nosrati, M. Khodaei, M. Banitalebi-Dehkordi et al., Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J. Nanobiotechnology 19, 1 (2021). https://doi.org/10.1186/s12951-020-00755-7
A. Kumar, T. Behl, S. Chadha, A rationalized and innovative perspective of nanotechnology and nanobiotechnology in chronic wound management. J. Drug Delivery Sci. Technol. 60, 101930 (2020). https://doi.org/10.1016/j.jddst.2020.101930
R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290
Z. Deng, R. Yu, B. Guo, Stimuli-responsive conductive hydrogels: design, properties, and applications. Mater. Chem. Front. 5(5), 2092–2123 (2021). https://doi.org/10.1039/D0QM00868K
R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I.K. Yazdi et al., A low-cost flexible pH sensor array for wound assessment. Sens. Actuat. B 229, 609–617 (2016). https://doi.org/10.1016/j.snb.2015.12.082
L. Lipani, B.G.R. Dupont, F. Doungmene, F. Marken, R.M. Tyrrell et al., Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 13, 504–511 (2018). https://doi.org/10.1038/s41565-018-0112-4
R. Barber, S. Cameron, A. Devine, A. McCombe, L. Kirsty Pourshahidi et al., Laser induced graphene sensors for assessing pH: application to wound management. Electrochem. Commun. 123, 106914 (2021). https://doi.org/10.1016/j.elecom.2020.106914
A. Tamayol, M. Akbari, Y. Zilberman, M. Comotto, E. Lesha et al., Flexible pH-sensing hydrogel fibers for epidermal applications. Adv. Healthcare Mater. 5(6), 711–719 (2016). https://doi.org/10.1002/adhm.201500553
L.A. Schneider, A. Korber, S. Grabbe, J. Dissemond, Influence of pH on wound-healing: a new perspective for wound-therapy? Arch. Dermatol. Res. 298, 413–420 (2007). https://doi.org/10.1007/s00403-006-0713-x
T. Guinovart, G. Valdés-Ramírez, J.R. Windmiller, F.J. Andrade, J. Wang, Bandage-based wearable potentiometric sensor for monitoring wound pH. Electroanalysis 26(6), 1345–1353 (2014). https://doi.org/10.1002/elan.201300558
P. Mostafalu, A. Tamayol, R. Rahimi, M. Ochoa, A. Khalilpour et al., Smart bandage for monitoring and treatment of chronic wounds. Small 14(33), 1703509 (2018). https://doi.org/10.1002/smll.201703509
S.D. Milne, I. Seoudi, H.A. Hamad, T.K. Talal, A.A. Anoop et al., A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. Int. Wound J. 13(6), 1309–1314 (2016). https://doi.org/10.1111/iwj.12521
S. RoyChoudhury, Y. Umasankar, J. Jaller, I. Herskovitz, J. Mervis et al., Continuous monitoring of wound healing using a wearable enzymatic uric acid biosensor. J. Electrochem. Soc. 165, B3168–B3175 (2018). https://doi.org/10.1149/2.0231808jes
X. Zhang, J. Chen, J. He, Y. Bai, H. Zeng, Mussel-inspired adhesive and conductive hydrogel with tunable mechanical properties for wearable strain sensors. J. Colloid Interface Sci. 585, 420–432 (2021). https://doi.org/10.1016/j.jcis.2020.10.023
T. Someya, Z. Bao, G.G. Malliaras, The rise of plastic bioelectronics. Nature 540, 379–385 (2016). https://doi.org/10.1038/nature21004
M. Jia, M. Rolandi, Soft and ion-conducting materials in bioelectronics: from conducting polymers to hydrogels. Adv. Healthcare Mater. 9(5), 1901372 (2020). https://doi.org/10.1002/adhm.201901372
P. Chansai, A. Sirivat, S. Niamlang, D. Chotpattananont, K. Viravaidya-Pasuwat, Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int. J. Pharm. 381(1), 25–33 (2009). https://doi.org/10.1016/j.ijpharm.2009.07.019
X. Luo, X.T. Cui, Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochem. Commun. 11(10), 1956–1959 (2009). https://doi.org/10.1016/j.elecom.2009.08.027
N. Paradee, A. Sirivat, Electrically controlled release of benzoic acid from poly(3,4-ethylenedioxythiophene)/alginate matrix: effect of conductive poly(3,4-ethylenedioxythiophene) morphology. J. Phys. Chem. B 118(31), 9263–9271 (2014). https://doi.org/10.1021/jp502674f
C.J. Pérez-Martínez, S.D.M. Chávez, T. Castillo-Castro, T.E.L. Ceniceros, M.M. Castillo-Ortega et al., Electroconductive nanocomposite hydrogel for pulsatile drug release. React. Funct. Polym. 100, 12–17 (2016). https://doi.org/10.1016/j.reactfunctpolym.2015.12.017
S. Niamlang, N. Paradee, A. Sirivat, Hybrid transdermal drug delivery patch made from poly(p-phenylene vinylene)/natural rubber latex and controlled by an electric field. Polym. Int. 67(6), 747–754 (2018). https://doi.org/10.1002/pi.5566
J. Qu, X. Zhao, P.X. Ma, B. Guo, Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater. 72, 55–69 (2018). https://doi.org/10.1016/j.actbio.2018.03.018
C.F. Hsu, L. Zhang, H. Peng, J. Travas-Sejdic, P.A. Kilmartin, Scavenging of DPPH free radicals by polypyrrole powders of varying levels of overoxidation and/or reduction. Synth. Met. 158(21–24), 946–952 (2008). https://doi.org/10.1016/j.synthmet.2008.06.017
R.L. Thangapazham, S. Sharad, R.K. Maheshwari, Skin regenerative potentials of curcumin. BioFactors 39(1), 141–149 (2013). https://doi.org/10.1002/biof.1078
P. Zarrintaj, A.S. Moghaddam, S. Manouchehri, Z. Atoufi, A. Amiri et al., Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine 12, 2403–2422 (2017). https://doi.org/10.2217/nnm-2017-0173
Z. Su, H. Ma, Z. Wu, H. Zeng, Z. Li et al., Enhancement of skin wound healing with decellularized scaffolds loaded with hyaluronic acid and epidermal growth factor. Mater. Sci. Eng. C 44, 440–448 (2014). https://doi.org/10.1016/j.msec.2014.07.039
H. Brem, A. Kodra, M.S. Golinko, H. Entero, O. Stojadinovic et al., Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. J. Invest. Dermatol. 129(9), 2275–2287 (2009). https://doi.org/10.1038/jid.2009.26
N. Gomez, C.E. Schmidt, Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J. Biomed. Mater. Res. A 81, 135–149 (2007). https://doi.org/10.1002/jbm.a.31047
B. Guo, J. Qu, X. Zhao, M. Zhang, Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomater. 84, 180–193 (2019). https://doi.org/10.1016/j.actbio.2018.12.008
J.L. Liao, S. Zhong, S.H. Wang, J.Y. Liu, J. Chen et al., Preparation and properties of a novel carbon nanotubes/poly(vinyl alcohol)/epidermal growth factor composite biological dressing. Exp. Ther. Med. 14, 2341–2348 (2017). https://doi.org/10.3892/etm.2017.4752
Y. Zhu, Q. Zeng, Q. Zhang, K. Li, X. Shi et al., Temperature/near-infrared light-responsive conductive hydrogels for controlled drug release and real-time monitoring. Nanoscale 12(16), 8679–8686 (2020). https://doi.org/10.1039/D0NR01736A