Bioinspired Injectable Self-Healing Hydrogel Sealant with Fault-Tolerant and Repeated Thermo-Responsive Adhesion for Sutureless Post-Wound-Closure and Wound Healing
Corresponding Author: Baolin Guo
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 185
Abstract
Hydrogels with multifunctionalities, including sufficient bonding strength, injectability and self-healing capacity, responsive-adhesive ability, fault-tolerant and repeated tissue adhesion, are urgently demanded for invasive wound closure and wound healing. Motivated by the adhesive mechanism of mussel and brown algae, bioinspired dynamic bonds cross-linked multifunctional hydrogel adhesive is designed based on sodium alginate (SA), gelatin (GT) and protocatechualdehyde, with ferric ions added, for sutureless post-wound-closure. The dynamic hydrogel cross-linked through Schiff base bond, catechol-Fe coordinate bond and the strong interaction between GT with temperature-dependent phase transition and SA, endows the resulting hydrogel with sufficient mechanical and adhesive strength for efficient wound closure, injectability and self-healing capacity, and repeated closure of reopened wounds. Moreover, the temperature-dependent adhesive properties endowed mispositioning hydrogel to be removed/repositioned, which is conducive for the fault-tolerant adhesion of the hydrogel adhesives during surgery. Besides, the hydrogels present good biocompatibility, near-infrared-assisted photothermal antibacterial activity, antioxidation and repeated thermo-responsive reversible adhesion and good hemostatic effect. The in vivo incision closure evaluation demonstrated their capability to promote the post-wound-closure and wound healing of the incisions, indicating that the developed reversible adhesive hydrogel dressing could serve as versatile tissue sealant.
Highlights:
1 Mussel and brown algae inspired dual-bionic bioadhesive cross-linked by dynamic bonds exhibits good self-healing capacity and sufficient adhesive strength. And the adhesive hydrogel shows temperature-dependent reversible adhesive behavior, and could achieve fault-tolerate adhesive application and repeated tissue adhesion.
2 The coordination interaction between ferric ions and protocatechualdehyde equips the hydrogel with photothermal antibacterial effect.
3 The injectable adhesive with antioxidation and good hemostatic effect shows promising application in tissue sealant and wound closure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Li, N. Chen, X. Li, Y. Li, Z. Xie et al., Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care. Adv. Funct. Mater. 30(17), 2000130 (2020). https://doi.org/10.1002/adfm.202000130
- X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han et al., Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30(17), 1910748 (2020). https://doi.org/10.1002/adfm.201910748
- Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15(4), 7078–7093 (2021). https://doi.org/10.1021/acsnano.1c00204
- Y. Ma, J. Yao, Q. Liu, T. Han, J. Zhao et al., Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first-aid tissue adhesive. Adv. Funct. Mater. 30(39), 2001820 (2020). https://doi.org/10.1002/adfm.202001820
- B. Guo, R. Dong, Y. Liang, M. Li, Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5(11), 773–791 (2021). https://doi.org/10.1038/s41570-021-00323-z
- Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8), 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
- N. Tang, R. Zhang, Y. Zheng, J. Wang, M. Khatib et al., Highly efficient self-healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 34(3), 2106842 (2021). https://doi.org/10.1002/adma.202106842
- K. Zhang, X. Chen, Y. Xue, J. Lin, X. Liang et al., Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 32(15), 2111465 (2021). https://doi.org/10.1002/adfm.202111465
- J. Chen, J. He, Y. Yang, L. Qiao, J. Hu et al., Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater. 146, 119–130 (2022). https://doi.org/10.1016/j.actbio.2022.04.041
- Y. Liang, Y. Liang, H. Zhang, B. Guo, Antibacterial biomaterials for skin wound dressing. Asian J. Pharm. Sci. 17(3), 353–384 (2022). https://doi.org/10.1016/j.ajps.2022.01.001
- H. Zhang, T. Zhao, P. Duffy, Y. Dong, A.N. Annaidh et al., Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties. Adv. Healthc. Mater. 4(15), 2260–2268 (2015). https://doi.org/10.1002/adhm.201500406
- R. Yu, M. Li, Z. Li, G. Pan, Y. Liang et al., Supramolecular thermo-contracting adhesive hydrogel with self-removability simultaneously enhancing noninvasive wound closure and MRSA-infected wound healing. Adv. Healthc. Mater. 11(13), 2102749 (2022). https://doi.org/10.1002/adhm.202102749
- A. Sigen, Q. Xu, M. Johnson, J. Creagh-Flynn, M. Venet et al., An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive. Appl. Mater. Today 22, 100967 (2021). https://doi.org/10.1016/j.apmt.2021.100967
- L. Zhou, C. Dai, L. Fan, Y. Jiang, C. Liu et al., Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 31(14), 2007457 (2021). https://doi.org/10.1002/adfm.202007457
- K. Chen, Z. Wu, Y. Liu, Y. Yuan, C. Liu, Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 32(12), 2109687 (2021). https://doi.org/10.1002/adfm.202109687
- J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017). https://doi.org/10.1126/science.aah6362
- A.H.C. Anthis, X. Hu, M.T. Matter, A.L. Neuer, K. Wei et al., Chemically stable, strongly adhesive sealant patch for intestinal anastomotic leakage prevention. Adv. Funct. Mater. 31(16), 2007099 (2021). https://doi.org/10.1002/adfm.202007099
- X. Wu, W. Guo, L. Wang, Y. Xu, Z. Wang et al., An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery. Adv. Funct. Mater. 32(9), 2110066 (2021). https://doi.org/10.1002/adfm.202110066
- Y. Hong, F. Zhou, Y. Hua, X. Zhang, C. Ni et al., A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun. 10, 2060 (2019). https://doi.org/10.1038/s41467-019-10004-7
- B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12, 7156 (2021). https://doi.org/10.1038/s41467-021-27529-5
- R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y
- Y. Yang, Y. Liang, J. Chen, X. Duan, B. Guo, Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact. Mater. 8, 341–354 (2022). https://doi.org/10.1016/j.bioactmat.2021.06.014
- Y. Liang, M. Li, Y. Yang, L. Qiao, H. Xu et al., pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 16(2), 3194–3207 (2022). https://doi.org/10.1021/acsnano.1c11040
- M. Li, Y. Liang, Y. Liang, G. Pan, B.J.C.E.J. Guo, Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chem. Eng. J. 427, 132039 (2022). https://doi.org/10.1016/j.cej.2021.132039
- R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290
- R. Yu, Y. Yang, J. He, M. Li, B. Guo, Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021). https://doi.org/10.1016/j.cej.2020.128278
- B. Zhang, J. He, M. Shi, Y. Liang, B. Guo, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem. Eng. J. 400, 125994 (2020). https://doi.org/10.1016/j.cej.2020.125994
- M. Li, Y. Liang, J. He, H. Zhang, B. Guo, Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem. Mater. 32(23), 9937–9953 (2020). https://doi.org/10.1021/acs.chemmater.0c02823
- M. Li, G. Pan, H. Zhang, B. Guo, Hydrogel adhesives for generalized wound treatment: design and applications. J. Polym. Sci. 60(8), 1328–1359 (2022). https://doi.org/10.1002/pol.20210916
- L. Teng, Z. Shao, Q. Bai, X. Zhang, Y.S. He et al., Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 31(43), 2105628 (2021). https://doi.org/10.1002/adfm.202105628
- R. Wang, J. Li, W. Chen, T. Xu, S. Yun et al., A biomimetic mussel-inspired epsilon-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv. Funct. Mater. 27(8), 1604894 (2017). https://doi.org/10.1002/adfm.201604894
- H. Zhang, X. Sun, J. Wang, Y. Zhang, M. Dong et al., Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv. Funct. Mater. 31(23), 2100093 (2021). https://doi.org/10.1002/adfm.202100093
- X. Zhao, D. Pei, Y. Yang, K. Xu, J. Yu et al., Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv. Funct. Mater. 31(18), 2100093 (2021). https://doi.org/10.1002/adfm.202009442
- K. Zheng, Y. Tong, S. Zhang, R. He, L. Xiao et al., Flexible bicolorimetric polyacrylamide/chitosan hydrogels for smart real-time monitoring and promotion of wound healing. Adv. Funct. Mater. 31(34), 2102599 (2021). https://doi.org/10.1002/adfm.202102599
- A. Cholewinski, F. Yang, B. Zhao, Algae-mussel-inspired hydrogel composite glue for underwater bonding. Mater. Horiz. 6(2), 285–293 (2019). https://doi.org/10.1039/c8mh01421c
- X. Su, W. Xie, P. Wang, Z. Tian, H. Wang et al., Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules. Mater. Horiz. 8(8), 2199–2207 (2021). https://doi.org/10.1039/D1MH00533B
- J. He, Z. Zhang, Y. Yang, F. Ren, J. Li et al., Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021). https://doi.org/10.1007/s40820-020-00585-0
- E.R. Tarakhovskaya, Mechanisms of bioadhesion of macrophytic algae. Russ. J. Plant Physiol. 61(1), 19–25 (2014). https://doi.org/10.1134/S1021443714010154
- M.L. Presti, G. Rizzo, G.M. Farinola, F.G. Omenetto, Bioinspired biomaterial composite for all-water-based high-performance adhesives. Adv. Sci. 8(16), 2004786 (2021). https://doi.org/10.1002/advs.202004786
- S. Nam, D. Mooney, Polymeric tissue adhesives. Chem. Rev. 121(18), 11336–11384 (2021). https://doi.org/10.1021/acs.chemrev.0c00798
- X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu et al., Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121(8), 4309–4372 (2021). https://doi.org/10.1021/acs.chemrev.0c01088
- C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 44(7), 1820–1835 (2015). https://doi.org/10.1039/c4cs00332b
- D. Gan, T. Shuai, X. Wang, Z. Huang, F. Ren et al., Mussel-inspired redox-active and hydrophilic conductive polymer nanops for adhesive hydrogel bioelectronics. Nano-Micro Lett. 12, 169 (2020). https://doi.org/10.1007/s40820-020-00507-0
- L. Han, X. Lu, K. Liu, K. Wang, L. Fang et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3), 2561–2574 (2017). https://doi.org/10.1021/acsnano.6b05318
- B. Yang, S. Jin, Y. Park, Y.M. Jung, H.J. Cha, Coacervation of interfacial adhesive proteins for initial mussel adhesion to a wet surface. Small 14(52), 1803377 (2018). https://doi.org/10.1002/smll.201803377
- J. Sun, L. Xiao, B. Li, K. Zhao, Z. Wang et al., Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem. Int. Ed. 60(44), 23687–23694 (2021). https://doi.org/10.1002/anie.202100064
- D. Gan, T. Xu, W. Xing, X. Ge, L. Fang et al., Mussel-inspired contact-active antibacterial hydrogel with high cell affinity, toughness, and recoverability. Adv. Funct. Mater. 29(1), 1805964 (2019). https://doi.org/10.1002/adfm.201805964
- H.H. Chen, C.H. Lin, H.Y. Kang, Maturation effects in fish gelatin and HPMC composite gels. Food Hydrocol. 23(7), 1756–1761 (2009). https://doi.org/10.1016/j.foodhyd.2009.03.004
- Q. Feng, K. Wei, K. Zhang, B. Yang, F. Tian et al., One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Mater. 10(1), e455 (2018). https://doi.org/10.1038/am.2017.208
- J. Zheng, M. Zhu, G. Ferracci, N.J. Cho, B.H. Lee, Hydrolytic stability of methacrylamide and methacrylate in gelatin methacryloyl and decoupling of gelatin methacrylamide from gelatin methacryloyl through hydrolysis. Macromol. Chem. Phys. 219(18), 1800266 (2018). https://doi.org/10.1002/macp.201800266
- M. Li, H. Wang, J. Hu, J. Hu, S. Zhang et al., Smart hydrogels with antibacterial properties built from all natural building blocks. Chem. Mater. 31(18), 7678–7685 (2019). https://doi.org/10.1021/acs.chemmater.9b02547
- E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili et al., Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358(6362), 502–505 (2017). https://doi.org/10.1126/science.aao0350
- C. Xiao, H. Liu, Y. Lu, L. Zhang, Blend films from sodium alginate and gelatin solutions. J. Macromol. Sci. Pure Appl. Chem. 38(3), 317–328 (2001). https://doi.org/10.1081/Ma-100103352
- Z. Dong, Q. Wang, Y. Du, Alginate/gelatin blend films and their properties for drug controlled release. J. Membr. Sci. 280(1), 37–44 (2006). https://doi.org/10.1016/j.memsci.2006.01.002
- Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao et al., Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos. Part B 162, 671–677 (2019). https://doi.org/10.1016/j.compositesb.2019.01.048
- L. Tang, D. Zhang, L. Gong, Y. Zhang, S. Xie et al., Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels. Macromolecules 52(24), 9512–9525 (2019). https://doi.org/10.1021/acs.macromol.9b01686
- S. Ge, N. Ji, S. Cui, W. Xie, M. Li et al., Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J. Agric. Food Chem. 67(41), 11489–11497 (2019). https://doi.org/10.1021/acs.jafc.9b03947
- X. Zhao, M. Zhang, B. Guo, P.X. Ma, Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions. J. Mater. Chem. B 4(41), 6644–6651 (2016). https://doi.org/10.1039/c6tb01776b
- H. Abe, H. Yabu, Bio-inspired incrustation interfacial polymerization of dopamine and cross-linking with gelatin toward robust, biodegradable three-dimensional hydrogels. Langmuir 37(20), 6201–6207 (2021). https://doi.org/10.1021/acs.langmuir.1c00364
- H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
- B. Liu, L. Burdine, T. Kodadek, Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalanine-containing molecules to proteins. J. Am. Chem. Soc. 128(47), 15228–15235 (2006). https://doi.org/10.1021/ja065794h
- B. Li, Y. Dong, L. Li, Preparation and catalytic performance of Fe(III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-fenton catalyst. Cellulose 22(2), 1295–1309 (2015). https://doi.org/10.1007/s10570-015-0562-x
- S. Das, P. Martin, G. Vasilyev, R. Nandi, N. Amdursky et al., Processable, ion-conducting hydrogel for flexible electronic devices with self-healing capability. Macromolecules 53(24), 11130–11141 (2020). https://doi.org/10.1021/acs.macromol.0c02060
- J. Li, K. Sun, C. Leng, J. Jiang, Zipping assembly of an Fe3O4/carbon nanosheet composite as a high-performance supercapacitor electrode material. RSC Adv. 8, 37417–37423 (2018). https://doi.org/10.1039/C8RA06970K
- C. Maerten, L. Lopez, P. Lupattelli, G. Rydzek, S. Pronkin et al., Electrotriggered confined self-assembly of metal–polyphenol nanocoatings using a morphogenic approach. Chem. Mater. 29(22), 9668–9679 (2017). https://doi.org/10.1021/acs.chemmater.7b03349
- W. Li, F. Li, H. Yang, X. Wu, P. Zhang et al., A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 10, 5074 (2019). https://doi.org/10.1038/s41467-019-13052-1
- S. Bai, X. Zhang, X. Lv, M. Zhang, X. Huang et al., Bioinspired mineral-organic bone adhesives for stable fracture fixation and accelerated bone regeneration. Adv. Funct. Mater. 30(5), 1908381 (2020). https://doi.org/10.1002/adfm.201908381
- Y. Liang, Y. Hao, Y. Wu, Z. Zhou, J. Li et al., Integrated hydrogel platform for programmed antitumor therapy based on near infrared-triggered hyperthermia and vascular disruption. ACS Appl. Mater. Interfaces 11(24), 21381–21390 (2019). https://doi.org/10.1021/acsami.9b05536
- C. Hou, Q. Yuan, D. Huo, S. Zheng, D. Zhan, Investigation on clotting and hemolysis characteristics of heparin-immobilized polyether sulfones biomembrane. J. Biomed. Mater. Res. Part A 85A(3), 847–852 (2008). https://doi.org/10.1002/jbm.a.31502
- Z. Ma, G. Bao, J. Li, Multifaceted design and emerging applications of tissue adhesives. Adv. Mater. 33(24), 2007663 (2021). https://doi.org/10.1002/adma.202007663
- A. Nishiguchi, H. Ichimaru, S. Ito, K. Nagasaka, T. Taguchi, Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomater. 146, 80–93 (2022). https://doi.org/10.1016/j.actbio.2022.04.037
References
S. Li, N. Chen, X. Li, Y. Li, Z. Xie et al., Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care. Adv. Funct. Mater. 30(17), 2000130 (2020). https://doi.org/10.1002/adfm.202000130
X. Zhao, Y. Liang, Y. Huang, J. He, Y. Han et al., Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 30(17), 1910748 (2020). https://doi.org/10.1002/adfm.201910748
Y. Liang, Z. Li, Y. Huang, R. Yu, B. Guo, Dual-dynamic-bond cross-linked antibacterial adhesive hydrogel sealants with on-demand removability for post-wound-closure and infected wound healing. ACS Nano 15(4), 7078–7093 (2021). https://doi.org/10.1021/acsnano.1c00204
Y. Ma, J. Yao, Q. Liu, T. Han, J. Zhao et al., Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first-aid tissue adhesive. Adv. Funct. Mater. 30(39), 2001820 (2020). https://doi.org/10.1002/adfm.202001820
B. Guo, R. Dong, Y. Liang, M. Li, Haemostatic materials for wound healing applications. Nat. Rev. Chem. 5(11), 773–791 (2021). https://doi.org/10.1038/s41570-021-00323-z
Y. Liang, J. He, B. Guo, Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 15(8), 12687–12722 (2021). https://doi.org/10.1021/acsnano.1c04206
N. Tang, R. Zhang, Y. Zheng, J. Wang, M. Khatib et al., Highly efficient self-healing multifunctional dressing with antibacterial activity for sutureless wound closure and infected wound monitoring. Adv. Mater. 34(3), 2106842 (2021). https://doi.org/10.1002/adma.202106842
K. Zhang, X. Chen, Y. Xue, J. Lin, X. Liang et al., Tough hydrogel bioadhesives for sutureless wound sealing, hemostasis and biointerfaces. Adv. Funct. Mater. 32(15), 2111465 (2021). https://doi.org/10.1002/adfm.202111465
J. Chen, J. He, Y. Yang, L. Qiao, J. Hu et al., Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater. 146, 119–130 (2022). https://doi.org/10.1016/j.actbio.2022.04.041
Y. Liang, Y. Liang, H. Zhang, B. Guo, Antibacterial biomaterials for skin wound dressing. Asian J. Pharm. Sci. 17(3), 353–384 (2022). https://doi.org/10.1016/j.ajps.2022.01.001
H. Zhang, T. Zhao, P. Duffy, Y. Dong, A.N. Annaidh et al., Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties. Adv. Healthc. Mater. 4(15), 2260–2268 (2015). https://doi.org/10.1002/adhm.201500406
R. Yu, M. Li, Z. Li, G. Pan, Y. Liang et al., Supramolecular thermo-contracting adhesive hydrogel with self-removability simultaneously enhancing noninvasive wound closure and MRSA-infected wound healing. Adv. Healthc. Mater. 11(13), 2102749 (2022). https://doi.org/10.1002/adhm.202102749
A. Sigen, Q. Xu, M. Johnson, J. Creagh-Flynn, M. Venet et al., An injectable multi-responsive hydrogel as self-healable and on-demand dissolution tissue adhesive. Appl. Mater. Today 22, 100967 (2021). https://doi.org/10.1016/j.apmt.2021.100967
L. Zhou, C. Dai, L. Fan, Y. Jiang, C. Liu et al., Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Adv. Funct. Mater. 31(14), 2007457 (2021). https://doi.org/10.1002/adfm.202007457
K. Chen, Z. Wu, Y. Liu, Y. Yuan, C. Liu, Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 32(12), 2109687 (2021). https://doi.org/10.1002/adfm.202109687
J. Li, A.D. Celiz, J. Yang, Q. Yang, I. Wamala et al., Tough adhesives for diverse wet surfaces. Science 357(6349), 378–381 (2017). https://doi.org/10.1126/science.aah6362
A.H.C. Anthis, X. Hu, M.T. Matter, A.L. Neuer, K. Wei et al., Chemically stable, strongly adhesive sealant patch for intestinal anastomotic leakage prevention. Adv. Funct. Mater. 31(16), 2007099 (2021). https://doi.org/10.1002/adfm.202007099
X. Wu, W. Guo, L. Wang, Y. Xu, Z. Wang et al., An injectable asymmetric-adhesive hydrogel as a GATA6+ cavity macrophage trap to prevent the formation of postoperative adhesions after minimally invasive surgery. Adv. Funct. Mater. 32(9), 2110066 (2021). https://doi.org/10.1002/adfm.202110066
Y. Hong, F. Zhou, Y. Hua, X. Zhang, C. Ni et al., A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat. Commun. 10, 2060 (2019). https://doi.org/10.1038/s41467-019-10004-7
B. Xue, J. Gu, L. Li, W. Yu, S. Yin et al., Hydrogel tapes for fault-tolerant strong wet adhesion. Nat. Commun. 12, 7156 (2021). https://doi.org/10.1038/s41467-021-27529-5
R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nano-Micro Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y
Y. Yang, Y. Liang, J. Chen, X. Duan, B. Guo, Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioact. Mater. 8, 341–354 (2022). https://doi.org/10.1016/j.bioactmat.2021.06.014
Y. Liang, M. Li, Y. Yang, L. Qiao, H. Xu et al., pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing. ACS Nano 16(2), 3194–3207 (2022). https://doi.org/10.1021/acsnano.1c11040
M. Li, Y. Liang, Y. Liang, G. Pan, B.J.C.E.J. Guo, Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chem. Eng. J. 427, 132039 (2022). https://doi.org/10.1016/j.cej.2021.132039
R. Dong, B. Guo, Smart wound dressings for wound healing. Nano Today 41, 101290 (2021). https://doi.org/10.1016/j.nantod.2021.101290
R. Yu, Y. Yang, J. He, M. Li, B. Guo, Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 417, 128278 (2021). https://doi.org/10.1016/j.cej.2020.128278
B. Zhang, J. He, M. Shi, Y. Liang, B. Guo, Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem. Eng. J. 400, 125994 (2020). https://doi.org/10.1016/j.cej.2020.125994
M. Li, Y. Liang, J. He, H. Zhang, B. Guo, Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem. Mater. 32(23), 9937–9953 (2020). https://doi.org/10.1021/acs.chemmater.0c02823
M. Li, G. Pan, H. Zhang, B. Guo, Hydrogel adhesives for generalized wound treatment: design and applications. J. Polym. Sci. 60(8), 1328–1359 (2022). https://doi.org/10.1002/pol.20210916
L. Teng, Z. Shao, Q. Bai, X. Zhang, Y.S. He et al., Biomimetic glycopolypeptide hydrogels with tunable adhesion and microporous structure for fast hemostasis and highly efficient wound healing. Adv. Funct. Mater. 31(43), 2105628 (2021). https://doi.org/10.1002/adfm.202105628
R. Wang, J. Li, W. Chen, T. Xu, S. Yun et al., A biomimetic mussel-inspired epsilon-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv. Funct. Mater. 27(8), 1604894 (2017). https://doi.org/10.1002/adfm.201604894
H. Zhang, X. Sun, J. Wang, Y. Zhang, M. Dong et al., Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: enhancing biomineralization strategy. Adv. Funct. Mater. 31(23), 2100093 (2021). https://doi.org/10.1002/adfm.202100093
X. Zhao, D. Pei, Y. Yang, K. Xu, J. Yu et al., Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment. Adv. Funct. Mater. 31(18), 2100093 (2021). https://doi.org/10.1002/adfm.202009442
K. Zheng, Y. Tong, S. Zhang, R. He, L. Xiao et al., Flexible bicolorimetric polyacrylamide/chitosan hydrogels for smart real-time monitoring and promotion of wound healing. Adv. Funct. Mater. 31(34), 2102599 (2021). https://doi.org/10.1002/adfm.202102599
A. Cholewinski, F. Yang, B. Zhao, Algae-mussel-inspired hydrogel composite glue for underwater bonding. Mater. Horiz. 6(2), 285–293 (2019). https://doi.org/10.1039/c8mh01421c
X. Su, W. Xie, P. Wang, Z. Tian, H. Wang et al., Strong underwater adhesion of injectable hydrogels triggered by diffusion of small molecules. Mater. Horiz. 8(8), 2199–2207 (2021). https://doi.org/10.1039/D1MH00533B
J. He, Z. Zhang, Y. Yang, F. Ren, J. Li et al., Injectable self-healing adhesive pH-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 13, 80 (2021). https://doi.org/10.1007/s40820-020-00585-0
E.R. Tarakhovskaya, Mechanisms of bioadhesion of macrophytic algae. Russ. J. Plant Physiol. 61(1), 19–25 (2014). https://doi.org/10.1134/S1021443714010154
M.L. Presti, G. Rizzo, G.M. Farinola, F.G. Omenetto, Bioinspired biomaterial composite for all-water-based high-performance adhesives. Adv. Sci. 8(16), 2004786 (2021). https://doi.org/10.1002/advs.202004786
S. Nam, D. Mooney, Polymeric tissue adhesives. Chem. Rev. 121(18), 11336–11384 (2021). https://doi.org/10.1021/acs.chemrev.0c00798
X. Zhao, X. Chen, H. Yuk, S. Lin, X. Liu et al., Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 121(8), 4309–4372 (2021). https://doi.org/10.1021/acs.chemrev.0c01088
C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial. Chem. Soc. Rev. 44(7), 1820–1835 (2015). https://doi.org/10.1039/c4cs00332b
D. Gan, T. Shuai, X. Wang, Z. Huang, F. Ren et al., Mussel-inspired redox-active and hydrophilic conductive polymer nanops for adhesive hydrogel bioelectronics. Nano-Micro Lett. 12, 169 (2020). https://doi.org/10.1007/s40820-020-00507-0
L. Han, X. Lu, K. Liu, K. Wang, L. Fang et al., Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3), 2561–2574 (2017). https://doi.org/10.1021/acsnano.6b05318
B. Yang, S. Jin, Y. Park, Y.M. Jung, H.J. Cha, Coacervation of interfacial adhesive proteins for initial mussel adhesion to a wet surface. Small 14(52), 1803377 (2018). https://doi.org/10.1002/smll.201803377
J. Sun, L. Xiao, B. Li, K. Zhao, Z. Wang et al., Genetically engineered polypeptide adhesive coacervates for surgical applications. Angew. Chem. Int. Ed. 60(44), 23687–23694 (2021). https://doi.org/10.1002/anie.202100064
D. Gan, T. Xu, W. Xing, X. Ge, L. Fang et al., Mussel-inspired contact-active antibacterial hydrogel with high cell affinity, toughness, and recoverability. Adv. Funct. Mater. 29(1), 1805964 (2019). https://doi.org/10.1002/adfm.201805964
H.H. Chen, C.H. Lin, H.Y. Kang, Maturation effects in fish gelatin and HPMC composite gels. Food Hydrocol. 23(7), 1756–1761 (2009). https://doi.org/10.1016/j.foodhyd.2009.03.004
Q. Feng, K. Wei, K. Zhang, B. Yang, F. Tian et al., One-pot solvent exchange preparation of non-swellable, thermoplastic, stretchable and adhesive supramolecular hydrogels based on dual synergistic physical crosslinking. NPG Asia Mater. 10(1), e455 (2018). https://doi.org/10.1038/am.2017.208
J. Zheng, M. Zhu, G. Ferracci, N.J. Cho, B.H. Lee, Hydrolytic stability of methacrylamide and methacrylate in gelatin methacryloyl and decoupling of gelatin methacrylamide from gelatin methacryloyl through hydrolysis. Macromol. Chem. Phys. 219(18), 1800266 (2018). https://doi.org/10.1002/macp.201800266
M. Li, H. Wang, J. Hu, J. Hu, S. Zhang et al., Smart hydrogels with antibacterial properties built from all natural building blocks. Chem. Mater. 31(18), 7678–7685 (2019). https://doi.org/10.1021/acs.chemmater.9b02547
E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili et al., Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358(6362), 502–505 (2017). https://doi.org/10.1126/science.aao0350
C. Xiao, H. Liu, Y. Lu, L. Zhang, Blend films from sodium alginate and gelatin solutions. J. Macromol. Sci. Pure Appl. Chem. 38(3), 317–328 (2001). https://doi.org/10.1081/Ma-100103352
Z. Dong, Q. Wang, Y. Du, Alginate/gelatin blend films and their properties for drug controlled release. J. Membr. Sci. 280(1), 37–44 (2006). https://doi.org/10.1016/j.memsci.2006.01.002
Y. Ma, P. Qi, J. Ju, Q. Wang, L. Hao et al., Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos. Part B 162, 671–677 (2019). https://doi.org/10.1016/j.compositesb.2019.01.048
L. Tang, D. Zhang, L. Gong, Y. Zhang, S. Xie et al., Double-network physical cross-linking strategy to promote bulk mechanical and surface adhesive properties of hydrogels. Macromolecules 52(24), 9512–9525 (2019). https://doi.org/10.1021/acs.macromol.9b01686
S. Ge, N. Ji, S. Cui, W. Xie, M. Li et al., Coordination of covalent cross-linked gelatin hydrogels via oxidized tannic acid and ferric ions with strong mechanical properties. J. Agric. Food Chem. 67(41), 11489–11497 (2019). https://doi.org/10.1021/acs.jafc.9b03947
X. Zhao, M. Zhang, B. Guo, P.X. Ma, Mussel-inspired injectable supramolecular and covalent bond crosslinked hydrogels with rapid self-healing and recovery properties via a facile approach under metal-free conditions. J. Mater. Chem. B 4(41), 6644–6651 (2016). https://doi.org/10.1039/c6tb01776b
H. Abe, H. Yabu, Bio-inspired incrustation interfacial polymerization of dopamine and cross-linking with gelatin toward robust, biodegradable three-dimensional hydrogels. Langmuir 37(20), 6201–6207 (2021). https://doi.org/10.1021/acs.langmuir.1c00364
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
B. Liu, L. Burdine, T. Kodadek, Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalanine-containing molecules to proteins. J. Am. Chem. Soc. 128(47), 15228–15235 (2006). https://doi.org/10.1021/ja065794h
B. Li, Y. Dong, L. Li, Preparation and catalytic performance of Fe(III)-citric acid-modified cotton fiber complex as a novel cellulose fiber-supported heterogeneous photo-fenton catalyst. Cellulose 22(2), 1295–1309 (2015). https://doi.org/10.1007/s10570-015-0562-x
S. Das, P. Martin, G. Vasilyev, R. Nandi, N. Amdursky et al., Processable, ion-conducting hydrogel for flexible electronic devices with self-healing capability. Macromolecules 53(24), 11130–11141 (2020). https://doi.org/10.1021/acs.macromol.0c02060
J. Li, K. Sun, C. Leng, J. Jiang, Zipping assembly of an Fe3O4/carbon nanosheet composite as a high-performance supercapacitor electrode material. RSC Adv. 8, 37417–37423 (2018). https://doi.org/10.1039/C8RA06970K
C. Maerten, L. Lopez, P. Lupattelli, G. Rydzek, S. Pronkin et al., Electrotriggered confined self-assembly of metal–polyphenol nanocoatings using a morphogenic approach. Chem. Mater. 29(22), 9668–9679 (2017). https://doi.org/10.1021/acs.chemmater.7b03349
W. Li, F. Li, H. Yang, X. Wu, P. Zhang et al., A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat. Commun. 10, 5074 (2019). https://doi.org/10.1038/s41467-019-13052-1
S. Bai, X. Zhang, X. Lv, M. Zhang, X. Huang et al., Bioinspired mineral-organic bone adhesives for stable fracture fixation and accelerated bone regeneration. Adv. Funct. Mater. 30(5), 1908381 (2020). https://doi.org/10.1002/adfm.201908381
Y. Liang, Y. Hao, Y. Wu, Z. Zhou, J. Li et al., Integrated hydrogel platform for programmed antitumor therapy based on near infrared-triggered hyperthermia and vascular disruption. ACS Appl. Mater. Interfaces 11(24), 21381–21390 (2019). https://doi.org/10.1021/acsami.9b05536
C. Hou, Q. Yuan, D. Huo, S. Zheng, D. Zhan, Investigation on clotting and hemolysis characteristics of heparin-immobilized polyether sulfones biomembrane. J. Biomed. Mater. Res. Part A 85A(3), 847–852 (2008). https://doi.org/10.1002/jbm.a.31502
Z. Ma, G. Bao, J. Li, Multifaceted design and emerging applications of tissue adhesives. Adv. Mater. 33(24), 2007663 (2021). https://doi.org/10.1002/adma.202007663
A. Nishiguchi, H. Ichimaru, S. Ito, K. Nagasaka, T. Taguchi, Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomater. 146, 80–93 (2022). https://doi.org/10.1016/j.actbio.2022.04.037