Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase
Corresponding Author: Qing Huang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 158
Abstract
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g−1 and volumetric capacity of 570 mAh cm−3 as well as superior rate performance of 95 mAh g−1 (110 mAh cm−3) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn–Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
Highlights:
1 Small size V2SnC MAX phase was prepared by the molten salt method.
2 V2SnC MAX phase electrode is able to deliver high gravimetric capacity up to 490 mAh g−1 and volumetric capacity of 570 mAh cm−3
3 A charge storage mechanism with V2C-Li redox and Sn–Li alloying dual reactions was proposed
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.W. Barsoum, The Mn+1AXn phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem 28(1–4), 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
- M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1(2), 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
- T. Galvin, N.C. Hyatt, W.M. Rainforth, I.M. Reaney, D. Shepherd, Molten salt synthesis of MAX phases in the Ti-Al-C system. J. Eur. Ceram. Soc. 38(14), 4585–4589 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.034
- X. Liu, N. Fechler, M. Antonietti, Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 42(21), 8237–8265 (2013). https://doi.org/10.1039/c3cs60159e
- W.B. Tian, P.L. Wang, Y.M. Kan, G.J. Zhang, Cr2AlC powders prepared by molten salt method. J. Alloy. Compd. 461(1–2), L5–L10 (2008). https://doi.org/10.1016/j.jallcom.2007.06.094
- X. Guo, J. Wang, S. Yang, L. Gao, B. Qian, Preparation of Ti3SiC2 powders by the molten salt method. Mater. Lett. 111, 211–213 (2013). https://doi.org/10.1016/j.matlet.2013.08.077
- B. Wang, A. Zhou, Q. Hu, L. Wang, Synthesis and oxidation resistance of V2AlC powders by molten salt method. Int. J. Appl. Ceram. Technol. 14(5), 873–879 (2017). https://doi.org/10.1111/ijac.12723
- C. Roy, P. Banerjee, S. Bhattacharyya, Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air. J. Eur. Ceram. Soc. 40(3), 923–929 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
- C. Wei, H. Fei, Y. Tian, Y. An, Y. Tao et al., Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chin. Chem. Lett. 31(4), 980–983 (2020). https://doi.org/10.1016/j.cclet.2019.12.033
- J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2(6), 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 31 (2020). https://doi.org/10.1007/s40820-020-00522-1
- J. Xu, M.Q. Zhao, Y. Wang, W. Yao, C. Chen et al., Demonstration of Li-ion capacity of MAX phases. ACS Energy Lett. 1(6), 1094–1099 (2016). https://doi.org/10.1021/acsenergylett.6b00488
- X. Chen, Y. Zhu, X. Zhu, W. Peng, Y. Li et al., Partially etched Ti3AlC2 as a promising high-capacity lithium-ion battery anode. Chemsuschem 11(16), 2677–2680 (2018). https://doi.org/10.1002/cssc.201801200
- S. Luan, J. Zhou, Y. Xi, M. Han, D. Wang et al., High lithium-ion storage performance of Ti3SiC2 MAX by oxygen doping. ChemistrySelect 4(18), 5319–5321 (2019). https://doi.org/10.1002/slct.201900328
- X. Zhou, Z. Dai, S. Liu, J. Bao, Y.G. Guo, Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv. Mater. 26(23), 3943–3949 (2014). https://doi.org/10.1002/adma.201400173
- F. Wan, H.Y. Lü, X.L. Wu, X. Yan, J.Z. Guo et al., Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Mater. 5, 214–222 (2016). https://doi.org/10.1016/j.ensm.2016.06.003
- S. Zhang, H. Ying, B. Yuan, R. Hu, W.Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano Micro Lett. 12, 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
- S. Zhao, Y. DallAgnese, X. Chu, X. Zhao, Y. Gogotsi et al., Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Lett 4(10), 2452–2457 (2019). https://doi.org/10.1021/acsenergylett.9b01580
- Q. Xu, Y. Zhou, H. Zhang, A. Jiang, Q. Tao et al., Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. J. Adv. Ceram. 9(4), 481–492 (2020). https://doi.org/10.1007/s40145-020-0391-8
- Y. Li, J. Lu, M. Li, K. Chang, X. Zha et al., Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. USA 117(2), 820–825 (2020). https://doi.org/10.1073/pnas.1916256117
- H. Fashandi, M. Dahlqvist, J. Lu, J. Palisaitis, S.I. Simak et al., Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 16(8), 814–818 (2017). https://doi.org/10.1038/nmat4896
- M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
- Y. Li, M. Li, J. Lu, B. Ma, Z. Wang et al., Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano 13(8), 9198–9205 (2019). https://doi.org/10.1021/acsnano.9b03530
- H. Ding, Y. Li, J. Lu, K. Luo, K. Chen et al., Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9 by A-site replacement reaction in molten salts. Mater Res Lett 7(12), 510–516 (2019). https://doi.org/10.1080/21663831.2019.1672822
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- B. Gangaja, S. Nair, D. Santhanagopalan, Surface-engineered Li4Ti5O12 nanostructures for high-power li-ion batteries. Nano-Micro Lett. 12(1), 30 (2020). https://doi.org/10.1007/s40820-020-0366-x
- M.S. Jo, S. Ghosh, S.M. Jeong, Y.C. Kang, J.S. Cho, Coral-like yolk–shell–structured nickel oxide/carbon composite microspheres for high–performance li-ion storage anodes. Nano-Micro Lett. 11(1), 3 (2019). https://doi.org/10.1007/s40820-018-0234-0
- W. Wang, H. Zhai, L. Chen, Y. Zhou, Z. Huang et al., Sintering and properties of mechanical alloyed Ti3AlC2-Cu composites. Mater. Sci. Engin. A 685, 154–158 (2017). https://doi.org/10.1016/j.msea.2017.01.003
- S. Li, G.L. Pan, X.P. Gao, J.Q. Qu, F. Wu et al., The electrochemical properties of MmNi3.6Co0.7Al0.3Mn0.4 alloy modified with carbon nanomaterials by ball milling. J Alloy Compd 364(1), 250–256 (2004). https://doi.org/10.1016/s0925-8388(03)00535-8
- B.H. Hou, Y.Y. Wang, J.Z. Gu, Y. Zhang, Q.L. Ning et al., A scalable strategy to develop advanced dnode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance. ACS Appl. Mater. Interfaces 10(4), 3581–3589 (2018). https://doi.org/10.1021/acsami.7b16580
- B.H. Hou, Y.Y. Wang, Q.L. Ning, W.H. Li, X.T. Xi et al., Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 31(40), 1903125 (2019). https://doi.org/10.1002/adma.201903125
References
M.W. Barsoum, The Mn+1AXn phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem 28(1–4), 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6
M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases. Trends Chem. 1(2), 210–223 (2019). https://doi.org/10.1016/j.trechm.2019.02.016
T. Galvin, N.C. Hyatt, W.M. Rainforth, I.M. Reaney, D. Shepherd, Molten salt synthesis of MAX phases in the Ti-Al-C system. J. Eur. Ceram. Soc. 38(14), 4585–4589 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.06.034
X. Liu, N. Fechler, M. Antonietti, Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 42(21), 8237–8265 (2013). https://doi.org/10.1039/c3cs60159e
W.B. Tian, P.L. Wang, Y.M. Kan, G.J. Zhang, Cr2AlC powders prepared by molten salt method. J. Alloy. Compd. 461(1–2), L5–L10 (2008). https://doi.org/10.1016/j.jallcom.2007.06.094
X. Guo, J. Wang, S. Yang, L. Gao, B. Qian, Preparation of Ti3SiC2 powders by the molten salt method. Mater. Lett. 111, 211–213 (2013). https://doi.org/10.1016/j.matlet.2013.08.077
B. Wang, A. Zhou, Q. Hu, L. Wang, Synthesis and oxidation resistance of V2AlC powders by molten salt method. Int. J. Appl. Ceram. Technol. 14(5), 873–879 (2017). https://doi.org/10.1111/ijac.12723
C. Roy, P. Banerjee, S. Bhattacharyya, Molten salt shielded synthesis (MS3) of Ti2AlN and V2AlC MAX phase powders in open air. J. Eur. Ceram. Soc. 40(3), 923–929 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
C. Wei, H. Fei, Y. Tian, Y. An, Y. Tao et al., Scalable construction of SiO/wrinkled MXene composite by a simple electrostatic self-assembly strategy as anode for high-energy lithium-ion batteries. Chin. Chem. Lett. 31(4), 980–983 (2020). https://doi.org/10.1016/j.cclet.2019.12.033
J. Luo, E. Matios, H. Wang, X. Tao, W. Li, Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion. InfoMat 2(6), 1057–1076 (2020). https://doi.org/10.1002/inf2.12118
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 31 (2020). https://doi.org/10.1007/s40820-020-00522-1
J. Xu, M.Q. Zhao, Y. Wang, W. Yao, C. Chen et al., Demonstration of Li-ion capacity of MAX phases. ACS Energy Lett. 1(6), 1094–1099 (2016). https://doi.org/10.1021/acsenergylett.6b00488
X. Chen, Y. Zhu, X. Zhu, W. Peng, Y. Li et al., Partially etched Ti3AlC2 as a promising high-capacity lithium-ion battery anode. Chemsuschem 11(16), 2677–2680 (2018). https://doi.org/10.1002/cssc.201801200
S. Luan, J. Zhou, Y. Xi, M. Han, D. Wang et al., High lithium-ion storage performance of Ti3SiC2 MAX by oxygen doping. ChemistrySelect 4(18), 5319–5321 (2019). https://doi.org/10.1002/slct.201900328
X. Zhou, Z. Dai, S. Liu, J. Bao, Y.G. Guo, Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Adv. Mater. 26(23), 3943–3949 (2014). https://doi.org/10.1002/adma.201400173
F. Wan, H.Y. Lü, X.L. Wu, X. Yan, J.Z. Guo et al., Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Mater. 5, 214–222 (2016). https://doi.org/10.1016/j.ensm.2016.06.003
S. Zhang, H. Ying, B. Yuan, R. Hu, W.Q. Han, Partial atomic tin nanocomplex pillared few-layered Ti3C2Tx MXenes for superior lithium-ion storage. Nano Micro Lett. 12, 78 (2020). https://doi.org/10.1007/s40820-020-0405-7
S. Zhao, Y. DallAgnese, X. Chu, X. Zhao, Y. Gogotsi et al., Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Lett 4(10), 2452–2457 (2019). https://doi.org/10.1021/acsenergylett.9b01580
Q. Xu, Y. Zhou, H. Zhang, A. Jiang, Q. Tao et al., Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. J. Adv. Ceram. 9(4), 481–492 (2020). https://doi.org/10.1007/s40145-020-0391-8
Y. Li, J. Lu, M. Li, K. Chang, X. Zha et al., Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl. Acad. Sci. USA 117(2), 820–825 (2020). https://doi.org/10.1073/pnas.1916256117
H. Fashandi, M. Dahlqvist, J. Lu, J. Palisaitis, S.I. Simak et al., Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 16(8), 814–818 (2017). https://doi.org/10.1038/nmat4896
M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141(11), 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574
Y. Li, M. Li, J. Lu, B. Ma, Z. Wang et al., Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano 13(8), 9198–9205 (2019). https://doi.org/10.1021/acsnano.9b03530
H. Ding, Y. Li, J. Lu, K. Luo, K. Chen et al., Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9 by A-site replacement reaction in molten salts. Mater Res Lett 7(12), 510–516 (2019). https://doi.org/10.1080/21663831.2019.1672822
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
B. Gangaja, S. Nair, D. Santhanagopalan, Surface-engineered Li4Ti5O12 nanostructures for high-power li-ion batteries. Nano-Micro Lett. 12(1), 30 (2020). https://doi.org/10.1007/s40820-020-0366-x
M.S. Jo, S. Ghosh, S.M. Jeong, Y.C. Kang, J.S. Cho, Coral-like yolk–shell–structured nickel oxide/carbon composite microspheres for high–performance li-ion storage anodes. Nano-Micro Lett. 11(1), 3 (2019). https://doi.org/10.1007/s40820-018-0234-0
W. Wang, H. Zhai, L. Chen, Y. Zhou, Z. Huang et al., Sintering and properties of mechanical alloyed Ti3AlC2-Cu composites. Mater. Sci. Engin. A 685, 154–158 (2017). https://doi.org/10.1016/j.msea.2017.01.003
S. Li, G.L. Pan, X.P. Gao, J.Q. Qu, F. Wu et al., The electrochemical properties of MmNi3.6Co0.7Al0.3Mn0.4 alloy modified with carbon nanomaterials by ball milling. J Alloy Compd 364(1), 250–256 (2004). https://doi.org/10.1016/s0925-8388(03)00535-8
B.H. Hou, Y.Y. Wang, J.Z. Gu, Y. Zhang, Q.L. Ning et al., A scalable strategy to develop advanced dnode for sodium-ion batteries: commercial Fe3O4-derived Fe3O4@FeS with superior full-cell performance. ACS Appl. Mater. Interfaces 10(4), 3581–3589 (2018). https://doi.org/10.1021/acsami.7b16580
B.H. Hou, Y.Y. Wang, Q.L. Ning, W.H. Li, X.T. Xi et al., Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism. Adv. Mater. 31(40), 1903125 (2019). https://doi.org/10.1002/adma.201903125