Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range
Corresponding Author: Lei Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 140
Abstract
Flexible pressure sensors are unprecedentedly studied on monitoring human physical activities and robotics. Simultaneously, improving the response sensitivity and sensing range of flexible pressure sensors is a great challenge, which hinders the devices’ practical application. Targeting this obstacle, we developed a Ti3C2Tx-derived iontronic pressure sensor (TIPS) by taking the advantages of the high intercalation pseudocapacitance under high pressure and rationally designed structural configuration. TIPS achieved an ultrahigh sensitivity (Smin > 200 kPa−1, Smax > 45,000 kPa−1) in a broad sensing range of over 1.4 MPa and low limit of detection of 20 Pa as well as stable long-term working durability for 10,000 cycles. The practical application of TIPS in physical activity monitoring and flexible robot manifested its versatile potential. This study provides a demonstration for exploring pseudocapacitive materials for building flexible iontronic sensors with ultrahigh sensitivity and sensing range to advance the development of high-performance wearable electronics.
Highlights:
1 The iontronic pressure sensor achieved an ultrahigh sensitivity (Smin > 200 kPa−1, Smax > 45,000 kPa−1).
2 The iontronic pressure sensor exhibited a broad sensing range of over 1.4 MPa.
3 Pseudocapacitive iontronic pressure sensor using MXene was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- M.K. Kim, C. Kantarcigil, B. Kim, R.K. Baruah, S. Maity et al., Flexible submental sensor patch with remote monitoring controls for management of oropharyngeal swallowing disorders. Sci. Adv. 5, 1–10 (2019). https://doi.org/10.1126/sciadv.aay3210
- B. Shih, D. Shah, J. Li, T.G. Thuruthel, Y.-L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot (2020). https://doi.org/10.1126/scirobotics.aaz9239
- W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6, 1–11 (2020). https://doi.org/10.1126/sciadv.aay2840
- S. Mishra, Y.S. Kim, J. Intarasirisawat, Y.T. Kwon, Y. Lee et al., Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 6, 1–12 (2020). https://doi.org/10.1126/sciadv.aay1729
- Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot (2020). https://doi.org/10.1126/scirobotics.aaz7946
- X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
- Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 8, 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2020). https://doi.org/10.1021/acsnano.9b03454
- C. Zhang, W. Bin Ye, K. Zhou, H.Y. Chen, J.Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201808783
- C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot (2018). https://doi.org/10.1126/scirobotics.aau6914
- X. Tian, P.M. Lee, Y.J. Tan, T.L.Y. Wu, H. Yao et al., Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243–251 (2019). https://doi.org/10.1038/s41928-019-0257-7
- Y.C. Huang, Y. Liu, C. Ma, H.C. Cheng, Q. He et al., Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020). https://doi.org/10.1038/s41928-019-0356-5
- Z. Wang, P. Li, R. Song, W. Qian, H. Zhou et al., High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Sci. Bull. (2020). https://doi.org/10.1016/j.scib.2020.05.002
- J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1608 (2010). https://doi.org/10.1126/science.1182383
- C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30, 1–49 (2018). https://doi.org/10.1002/adma.201801368
- S.T. Han, H. Peng, Q. Sun, S. Venkatesh, K.S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29, 1–22 (2017). https://doi.org/10.1002/adma.201700375
- R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3
- K. Keum, J. Eom, J.H. Lee, J.S. Heo, S.K. Park et al., Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 79, 101631 (2021). https://doi.org/10.1016/j.nanoen.2020.105479
- J.S. Kim, S.C. Lee, J. Hwang, E. Lee, K. Cho et al., Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid. Adv. Funct. Mater. 30, 1908993 (2020). https://doi.org/10.1002/adfm.201908993
- A. Chhetry, J. Kim, H. Yoon, J.Y. Park, Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 11, 3438–3449 (2019). https://doi.org/10.1021/acsami.8b17765
- R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia et al., Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuators A Phys. 321, 112425 (2021). https://doi.org/10.1016/j.sna.2020.112425
- N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 3–11 (2020). https://doi.org/10.1038/s41467-019-14054-9
- Y. Chang, L. Wang, R. Li, Z. Zhang, Q. Wang et al., First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33, 2003464 (2021). https://doi.org/10.1002/adma.202003464
- B. Nie, R. Li, J.D. Brandt, T. Pan, Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14, 1107–1116 (2014). https://doi.org/10.1039/c3lc50994j
- Z. Zhu, R. Li, T. Pan, Imperceptible epidermal–iontronic interface for wearable sensing. Adv. Mater. 30, 1–9 (2018). https://doi.org/10.1002/adma.201705122
- J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao et al., Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl. Sci. Rev. 4, 71–90 (2017). https://doi.org/10.1093/nsr/nww072
- M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
- L. Gao, J. Song, J.U. Surjadi, K. Cao, Y. Han et al., Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl. Mater. Interfaces 10, 28597–28607 (2018). https://doi.org/10.1021/acsami.8b08680
- L. Gao, J.U. Surjadi, K. Cao, H. Zhang, P. Li et al., Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces 9, 5409–5418 (2017). https://doi.org/10.1021/acsami.6b16101
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- Y.Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32, 1–26 (2020). https://doi.org/10.1002/adma.201908486
- M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
- S.R.A. Ruth, V.R. Feig, H. Tran, Z. Bao, Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 30, 2003491 (2020). https://doi.org/10.1002/adfm.202003491
- L.X. Liu, W. Chen, H. Bin Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like mxene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201905197
- A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons. 7, 1901–1911 (2020). https://doi.org/10.1039/d0mh00537a
- Q. Li, R. Yin, D. Zhang, H. Liu, X. Chen et al., Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 8, 21131–21141 (2020). https://doi.org/10.1039/d0ta07832h
- B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 1–11 (2020). https://doi.org/10.1038/s41467-020-14485-9
- C. Wu, T. Zhang, J. Zhang, J. Huang, X. Tang et al., A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect. Nanoscale Horizons. 5, 541–552 (2020). https://doi.org/10.1039/c9nh00671k
- M. Chen, X. Hu, K. Li, J. Sun, Z. Liu et al., Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive film for wearable tactile sensors and artificial skin. Carbon 164, 111–120 (2020). https://doi.org/10.1016/j.carbon.2020.03.042
- L. Zhang, X. Liu, M. Zhong, Y. Zhou, Y. Wang et al., Micro-nano hybrid-structured conductive film with ultrawide range pressure-sensitivity and bioelectrical acquirability for ubiquitous wearable applications. Appl. Mater. Today 20, 100651 (2020). https://doi.org/10.1016/j.apmt.2020.100651
- X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou et al., Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small 15, 1–9 (2019). https://doi.org/10.1002/smll.201804559
- Z. Xiao, W. Zhou, N. Zhang, Q. Zhang, X. Xia et al., All-carbon pressure sensors with high performance and excellent chemical resistance. Small 15, 1–7 (2019). https://doi.org/10.1002/smll.201804779
- Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- B. Feng, G. Zou, W. Wang, M. Dong, Y. Xiao et al., A programmable, gradient-composition strategy producing synergistic and ultrahigh sensitivity amplification for flexible pressure sensing. Nano Energy 74, 104847 (2020). https://doi.org/10.1016/j.nanoen.2020.104847
- S. Xu, G. Wei, J. Li, W. Han, Y. Gogotsi, Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451 (2017). https://doi.org/10.1039/c7ta05721k
- S. Xu, Y. Dall’Agnese, G. Wei, C. Zhang, Y. Gogotsi et al., Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 50, 479–488 (2018). https://doi.org/10.1016/j.nanoen.2018.05.064
- J. Tao, M. Dong, L. Li, C. Wang, J. Li et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsystems Nanoeng. 6, 1–10 (2020). https://doi.org/10.1038/s41378-020-0171-1
References
S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
M.K. Kim, C. Kantarcigil, B. Kim, R.K. Baruah, S. Maity et al., Flexible submental sensor patch with remote monitoring controls for management of oropharyngeal swallowing disorders. Sci. Adv. 5, 1–10 (2019). https://doi.org/10.1126/sciadv.aay3210
B. Shih, D. Shah, J. Li, T.G. Thuruthel, Y.-L. Park et al., Electronic skins and machine learning for intelligent soft robots. Sci. Robot (2020). https://doi.org/10.1126/scirobotics.aaz9239
W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6, 1–11 (2020). https://doi.org/10.1126/sciadv.aay2840
S. Mishra, Y.S. Kim, J. Intarasirisawat, Y.T. Kwon, Y. Lee et al., Soft, wireless periocular wearable electronics for real-time detection of eye vergence in a virtual reality toward mobile eye therapies. Sci. Adv. 6, 1–12 (2020). https://doi.org/10.1126/sciadv.aay1729
Y. Yu, J. Nassar, C. Xu, J. Min, Y. Yang et al., Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot (2020). https://doi.org/10.1126/scirobotics.aaz7946
X. Yu, Z. Xie, Y. Yu, J. Lee, A. Vazquez-Guardado et al., Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019). https://doi.org/10.1038/s41586-019-1687-0
Y. Yang, Y. Song, X. Bo, J. Min, O.S. Pak et al., A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 8, 217–224 (2020). https://doi.org/10.1038/s41587-019-0321-x
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13, 9139–9147 (2020). https://doi.org/10.1021/acsnano.9b03454
C. Zhang, W. Bin Ye, K. Zhou, H.Y. Chen, J.Q. Yang et al., Bioinspired artificial sensory nerve based on nafion memristor. Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201808783
C.M. Boutry, M. Negre, M. Jorda, O. Vardoulis, A. Chortos et al., A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot (2018). https://doi.org/10.1126/scirobotics.aau6914
X. Tian, P.M. Lee, Y.J. Tan, T.L.Y. Wu, H. Yao et al., Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243–251 (2019). https://doi.org/10.1038/s41928-019-0257-7
Y.C. Huang, Y. Liu, C. Ma, H.C. Cheng, Q. He et al., Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020). https://doi.org/10.1038/s41928-019-0356-5
Z. Wang, P. Li, R. Song, W. Qian, H. Zhou et al., High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Sci. Bull. (2020). https://doi.org/10.1016/j.scib.2020.05.002
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics. Science 327, 1603–1608 (2010). https://doi.org/10.1126/science.1182383
C. Wang, C. Wang, Z. Huang, S. Xu, Materials and structures toward soft electronics. Adv. Mater. 30, 1–49 (2018). https://doi.org/10.1002/adma.201801368
S.T. Han, H. Peng, Q. Sun, S. Venkatesh, K.S. Chung et al., An overview of the development of flexible sensors. Adv. Mater. 29, 1–22 (2017). https://doi.org/10.1002/adma.201700375
R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3
K. Keum, J. Eom, J.H. Lee, J.S. Heo, S.K. Park et al., Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy 79, 101631 (2021). https://doi.org/10.1016/j.nanoen.2020.105479
J.S. Kim, S.C. Lee, J. Hwang, E. Lee, K. Cho et al., Enhanced sensitivity of iontronic graphene tactile sensors facilitated by spreading of ionic liquid pinned on graphene grid. Adv. Funct. Mater. 30, 1908993 (2020). https://doi.org/10.1002/adfm.201908993
A. Chhetry, J. Kim, H. Yoon, J.Y. Park, Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 11, 3438–3449 (2019). https://doi.org/10.1021/acsami.8b17765
R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia et al., Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sens. Actuators A Phys. 321, 112425 (2021). https://doi.org/10.1016/j.sna.2020.112425
N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 3–11 (2020). https://doi.org/10.1038/s41467-019-14054-9
Y. Chang, L. Wang, R. Li, Z. Zhang, Q. Wang et al., First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 33, 2003464 (2021). https://doi.org/10.1002/adma.202003464
B. Nie, R. Li, J.D. Brandt, T. Pan, Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 14, 1107–1116 (2014). https://doi.org/10.1039/c3lc50994j
Z. Zhu, R. Li, T. Pan, Imperceptible epidermal–iontronic interface for wearable sensing. Adv. Mater. 30, 1–9 (2018). https://doi.org/10.1002/adma.201705122
J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao et al., Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization. Natl. Sci. Rev. 4, 71–90 (2017). https://doi.org/10.1093/nsr/nww072
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017). https://doi.org/10.1021/acs.chemmater.7b02847
L. Gao, J. Song, J.U. Surjadi, K. Cao, Y. Han et al., Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl. Mater. Interfaces 10, 28597–28607 (2018). https://doi.org/10.1021/acsami.8b08680
L. Gao, J.U. Surjadi, K. Cao, H. Zhang, P. Li et al., Flexible fiber-shaped supercapacitor based on nickel-cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces 9, 5409–5418 (2017). https://doi.org/10.1021/acsami.6b16101
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
Y.Z. Zhang, Y. Wang, Q. Jiang, J.K. El-Demellawi, H. Kim et al., MXene printing and patterned coating for device applications. Adv. Mater. 32, 1–26 (2020). https://doi.org/10.1002/adma.201908486
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier et al., Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). https://doi.org/10.1126/science.1241488
S.R.A. Ruth, V.R. Feig, H. Tran, Z. Bao, Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 30, 2003491 (2020). https://doi.org/10.1002/adfm.202003491
L.X. Liu, W. Chen, H. Bin Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like mxene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201905197
A. Ren, J. Zou, H. Lai, Y. Huang, L. Yuan et al., Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Mater. Horizons. 7, 1901–1911 (2020). https://doi.org/10.1039/d0mh00537a
Q. Li, R. Yin, D. Zhang, H. Liu, X. Chen et al., Flexible conductive MXene/cellulose nanocrystal coated nonwoven fabrics for tunable wearable strain/pressure sensors. J. Mater. Chem. A 8, 21131–21141 (2020). https://doi.org/10.1039/d0ta07832h
B. Lee, J.Y. Oh, H. Cho, C.W. Joo, H. Yoon et al., Ultraflexible and transparent electroluminescent skin for real-time and super-resolution imaging of pressure distribution. Nat. Commun. 11, 1–11 (2020). https://doi.org/10.1038/s41467-020-14485-9
C. Wu, T. Zhang, J. Zhang, J. Huang, X. Tang et al., A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect. Nanoscale Horizons. 5, 541–552 (2020). https://doi.org/10.1039/c9nh00671k
M. Chen, X. Hu, K. Li, J. Sun, Z. Liu et al., Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive film for wearable tactile sensors and artificial skin. Carbon 164, 111–120 (2020). https://doi.org/10.1016/j.carbon.2020.03.042
L. Zhang, X. Liu, M. Zhong, Y. Zhou, Y. Wang et al., Micro-nano hybrid-structured conductive film with ultrawide range pressure-sensitivity and bioelectrical acquirability for ubiquitous wearable applications. Appl. Mater. Today 20, 100651 (2020). https://doi.org/10.1016/j.apmt.2020.100651
X. Tang, C. Wu, L. Gan, T. Zhang, T. Zhou et al., Multilevel microstructured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins. Small 15, 1–9 (2019). https://doi.org/10.1002/smll.201804559
Z. Xiao, W. Zhou, N. Zhang, Q. Zhang, X. Xia et al., All-carbon pressure sensors with high performance and excellent chemical resistance. Small 15, 1–7 (2019). https://doi.org/10.1002/smll.201804779
Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12, 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
B. Feng, G. Zou, W. Wang, M. Dong, Y. Xiao et al., A programmable, gradient-composition strategy producing synergistic and ultrahigh sensitivity amplification for flexible pressure sensing. Nano Energy 74, 104847 (2020). https://doi.org/10.1016/j.nanoen.2020.104847
S. Xu, G. Wei, J. Li, W. Han, Y. Gogotsi, Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 5, 17442–17451 (2017). https://doi.org/10.1039/c7ta05721k
S. Xu, Y. Dall’Agnese, G. Wei, C. Zhang, Y. Gogotsi et al., Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors. Nano Energy 50, 479–488 (2018). https://doi.org/10.1016/j.nanoen.2018.05.064
J. Tao, M. Dong, L. Li, C. Wang, J. Li et al., Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsystems Nanoeng. 6, 1–10 (2020). https://doi.org/10.1038/s41378-020-0171-1