Stereolithographic 3D Printing-Based Hierarchically Cellular Lattices for High-Performance Quasi-Solid Supercapacitor
Corresponding Author: Yang Lu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 46
Abstract
3D printing-based supercapacitors have been extensively explored, yet the rigid rheological requirement for corresponding ink preparation significantly limits the manufacturing of true 3D architecture in achieving superior energy storage. We proposed the stereolithographic technique to fabricate the metallic composite lattices with octet-truss arrangement by using electroless plating and engineering the 3D hierarchically porous graphene onto the scaffolds to build the hierarchically cellular lattices in quasi-solid supercapacitor application. The supercapacitor device that is composed of composite lattices span several pore size orders from nm to mm holds promising behavior on the areal capacitance (57.75 mF cm−2), rate capability (70% retention, 2–40 mA cm−2), and long lifespan (96% after 5000 cycles), as well as superior energy density of 0.008 mWh cm−2, which are comparable to the state-of-the-art carbon-based supercapacitor. By synergistically combining this facile stereolithographic 3D printing technology with the hierarchically porous graphene architecture, we provide a novel route of manufacturing energy storage device as well as new insight into building other high-performance functional electronics.
Highlights:
1 Stereolithographic 3D printing was introduced to fabricate polymeric lattices.
2 Electroless plating was employed to make the lattices conductive and mechanically robust.
3 Hydrogen bubbles were served as template for engineering the hierarchically porous graphene.
4 The supercapacitor device holds great promise in the rational coupling of energy and power density.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xie, Q. Yan, J. Zhao, X. Zhao, Y. Zhang et al., Duplex printing of all-in-one integrated electronic devices for temperature monitoring. J. Mater. Chem. A 7(3), 972–978 (2018). https://doi.org/10.1039/C8TA09783F
- J. Zhao, H. Li, C. Li, Q. Zhang, J. Sun et al., MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45, 420–431 (2018). https://doi.org/10.1016/j.nanoen.2018.01.021
- G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju, Y.-K. Han, J.S. Yu, Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
- Y. Song, H. Chen, X. Chen, H. Wu, H. Guo, X. Cheng, B. Meng, H. Zhang, All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53, 189–197 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
- C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10(2), 538–545 (2017). https://doi.org/10.1039/C6EE03716J
- L. Gao, H. Zhang, J.U. Surjadi, P. Li, Y. Han, D. Sun, Y. Lu, Mechanically stable ternary heterogeneous electrodes for energy storage and conversion. Nanoscale 10, 2613–2622 (2018). https://doi.org/10.1039/C7NR07789K
- L. Gao, S. Xu, C. Xue, Z. Hai, D. Sun, Y. Lu, Self-assembly of hierarchical 3D starfish-like Co3O4 nanowire bundles on nickel foam for high-performance supercapacitor. J. Nanoparticle Res. 18(5), 112 (2016). https://doi.org/10.1007/s11051-016-3419-9
- L. Gao, K. Cao, H. Zhang, P. Li, J. Song, J.U. Surjadi, Y. Li, D. Sun, Y. Lu, Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitors. J. Mater. Chem. A 5, 16944–16952 (2017). https://doi.org/10.1039/C7TA04998F
- Q. Zhang, B. Zhao, J. Wang, C. Qu, H. Sun, K. Zhang, M. Liu, High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn–Ni–Al–Co oxide nanosheets. Nano Energy 28, 475–485 (2016). https://doi.org/10.1016/j.nanoen.2016.08.049
- J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019). https://doi.org/10.1016/j.nanoen.2018.12.011
- M.S. Saleh, J. Li, J. Park, R. Panat, 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 23, 70–78 (2018). https://doi.org/10.1016/j.addma.2018.07.006
- H. Zhao, M. Zhou, L. Wen, Y. Lei, Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy 13, 790–813 (2015). https://doi.org/10.1016/j.nanoen.2015.02.024
- C. Xin, X. Qi, M. Zhu, S. Zhao, Y. Zhu, Hydroxyapatite whisker-reinforced composite scaffolds through 3D printing for bone repair. J. Inorg. Mater. 32(8), 837–844 (2017). https://doi.org/10.15541/jim20160628
- H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6(5), 277–281 (2011). https://doi.org/10.1038/nnano.2011.38
- T. Zhang, J. Zhang, X. Feng, Z. Zheng, R. Dong, Y. Mai, S. Liu, F. Wang, Soft-template construction of 3D macroporous polypyrrole scaffolds. Small 13(14), 1604099 (2017). https://doi.org/10.1002/smll.201604099
- C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
- B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3(2), 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
- Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11(12), 1–21 (2019). https://doi.org/10.1038/s41427-019-0112-3
- K. Fu, Y. Yao, J. Dai, L. Hu, Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29(9), 1603486 (2017). https://doi.org/10.1002/adma.201603486
- X. Tian, J. Jin, S. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv. Energy Mater. 7(17), 1–17 (2017). https://doi.org/10.1002/aenm.201700127
- L.F. Arenas, C. Ponce de León, F.C. Walsh, 3D-printed porous electrodes for advanced electrochemical flow reactors: a Ni/stainless steel electrode and its mass transport characteristics. Electrochem. Commun. 77, 133–137 (2017). https://doi.org/10.1016/j.elecom.2017.03.009
- F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, 3D printing technologies for electrochemical energy storage. Nano Energy 40, 418–431 (2017). https://doi.org/10.1016/j.nanoen.2017.08.037
- A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45(10), 2740–2755 (2016). https://doi.org/10.1039/C5CS00714C
- C. Zhu, T. Liu, F. Qian, W. Chen, S. Chandrasekaran et al., 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107–120 (2017). https://doi.org/10.1016/j.nantod.2017.06.007
- L. Gao, J. Song, Z. Jiao, W. Liao, J. Luan et al., High-Entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 20(1), 1–8 (2018). https://doi.org/10.1002/adem.201700625
- J.U. Surjadi, L. Gao, K. Cao, R. Fan, Y. Lu, Mechanical enhancement of core-shell microlattices through high-entropy alloy coating. Sci. Rep. 8(1), 5442 (2018). https://doi.org/10.1038/s41598-018-23857-7
- J. Song, L. Gao, K. Cao, H. Zhang, S. Xu et al., Metal-coated hybrid meso-lattice composites and their mechanical characterizations. Compos. Struct. 203, 750–763 (2018). https://doi.org/10.1016/j.compstruct.2018.07.074
- Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, C. Zhu, 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3(7), 1–8 (2018). https://doi.org/10.1002/admt.201800053
- T. Gao, Z. Zhou, J. Yu, J. Zhao, G. Wang, D. Cao, B. Ding, Y. Li, 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 9(8), 1802578 (2019). https://doi.org/10.1002/aenm.201802578
- X. Tang, C. Zhu, D. Cheng, H. Zhou, X. Liu, P. Xie, Q. Zhao, D. Zhang, T. Fan, Architectured leaf-inspired Ni0.33Co0.66S2/graphene aerogels via 3D printing for high-performance energy storage. Adv. Funct. Mater. 28(51), 1805057 (2018). https://doi.org/10.1002/adfm.201805057
- R. Xiong, Q. Zhou, Y. Yang, X. Song, T. Hsiai et al., Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22, 414–421 (2016). https://doi.org/10.1016/j.nanoen.2016.02.045
- C. Kim, D.Y. Kang, J.H. Moon, Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy 53, 182–188 (2018). https://doi.org/10.1016/j.nanoen.2018.08.044
- B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng et al., Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8(9), 1–10 (2018). https://doi.org/10.1002/aenm.201702247
- G.G. Wallace, D. Li, R.B. Kaner, M.B. Müller, S. Gilje, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). https://doi.org/10.1038/nnano.2007.451
- L. Gao, J. Song, J.U. Surjadi, K. Cao, Y. Han, D. Sun, X. Tao, Y. Lu, Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl. Mater. Interfaces 10(34), 28597–28607 (2018). https://doi.org/10.1021/acsami.8b08680
- L. Gao, J.U. Surjadi, K. Cao, H. Zhang, P. Li, S. Xu, C. Jiang, J. Song, D. Sun, Y. Lu, Flexible fiber-shaped supercapacitor based on nickel–cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces 9(6), 5409–5418 (2017). https://doi.org/10.1021/acsami.6b16101
- E. Asher, X. Sun, X. Li, J. Yang, S. Deng, T. Zhang, Paper with power: engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors. Adv. Funct. Mater. 28(37), 1803600 (2018). https://doi.org/10.1002/adfm.201803600
- X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
- Y. Liu, X. Zhai, K. Yang, F. Wang, H. Wei, W. Zhang, F. Ren, H. Pang, Mesoporous NH4NiPO4∙H2O for high-performance flexible all-solid-state asymmetric supercapacitors. Front. Chem. 7(118), 1–7 (2019). https://doi.org/10.3389/fchem.2019.00118
- J.U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N.X. Fang, Y. Lu, Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201800864
- L.R. Meza, S. Das, J.R. Greer, Strong, lightweight and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014). https://doi.org/10.1126/science.1255908
- X.Y. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte et al., Spadaccini, ultralight, ultrastiff mechanical metamaterials. Science 344(6190), 1373–1377 (2014). https://doi.org/10.1126/science.1252291
- R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003
- J. Lian, D. Jang, L. Valdevit, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, J.R. Greer, Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures. Nano Lett. 11(10), 4118–4125 (2011). https://doi.org/10.1021/nl202475p
- J. Rys, L. Valdevit, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, J.R. Greer, Fabrication and deformation of metallic glass micro-lattices. Adv. Eng. Mater. 16(7), 889–896 (2014). https://doi.org/10.1002/adem.201300454
- L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260 (2015). https://doi.org/10.1038/ncomms8260
- X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23(25), 2833–2838 (2011). https://doi.org/10.1002/adma.201100261
- G.K. Veerasubramani, K. Krishnamoorthy, P. Pazhamalai, S.J. Kim, Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon 105, 638–648 (2016). https://doi.org/10.1016/j.carbon.2016.05.008
- P. Sun, R. Lin, Z. Wang, M. Qiu, Z. Chai et al., Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31, 432–440 (2017). https://doi.org/10.1016/j.nanoen.2016.11.052
- R. Huang, M. Huang, X. Li, F. An, N. Koratkar, Z.-Z. Yu, Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv. Mater. 30, 1707025 (2018). https://doi.org/10.1002/adma.201707025
- Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitors based on cellular graphene films. Mater. Horiz. 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
- X. Pu, M. Liu, L. Li, S. Han, X. Li et al., Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 6(24), 1601254 (2016). https://doi.org/10.1002/aenm.201601254
- J. Yu, M. Wang, P. Xu, S.H. Cho, J. Suhr et al., Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon 119, 332–338 (2017). https://doi.org/10.1016/j.carbon.2017.04.052
- L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin et al., Flexible micro-supercapacitor based on graphene with 3D structure. Small 13(10), 1–10 (2017). https://doi.org/10.1002/smll.201603114
- A. Ramadoss, K.Y. Yoon, M.J. Kwak, S.I. Kim, S.T. Ryu, J.H. Jang, Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 337, 159–165 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.091
- J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
- L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene–Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018). https://doi.org/10.1016/j.nanoen.2018.06.072
References
J. Xie, Q. Yan, J. Zhao, X. Zhao, Y. Zhang et al., Duplex printing of all-in-one integrated electronic devices for temperature monitoring. J. Mater. Chem. A 7(3), 972–978 (2018). https://doi.org/10.1039/C8TA09783F
J. Zhao, H. Li, C. Li, Q. Zhang, J. Sun et al., MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45, 420–431 (2018). https://doi.org/10.1016/j.nanoen.2018.01.021
G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju, Y.-K. Han, J.S. Yu, Enabling redox chemistry with hierarchically designed bilayered nanoarchitectures for pouch-type hybrid supercapacitors: a sunlight-driven rechargeable energy storage system to portable electronics. Nano Energy 50, 448–461 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
Y. Song, H. Chen, X. Chen, H. Wu, H. Guo, X. Cheng, B. Meng, H. Zhang, All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53, 189–197 (2018). https://doi.org/10.1016/j.nanoen.2018.05.063
C. Chen, Y. Zhang, Y. Li, J. Dai, J. Song et al., low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10(2), 538–545 (2017). https://doi.org/10.1039/C6EE03716J
L. Gao, H. Zhang, J.U. Surjadi, P. Li, Y. Han, D. Sun, Y. Lu, Mechanically stable ternary heterogeneous electrodes for energy storage and conversion. Nanoscale 10, 2613–2622 (2018). https://doi.org/10.1039/C7NR07789K
L. Gao, S. Xu, C. Xue, Z. Hai, D. Sun, Y. Lu, Self-assembly of hierarchical 3D starfish-like Co3O4 nanowire bundles on nickel foam for high-performance supercapacitor. J. Nanoparticle Res. 18(5), 112 (2016). https://doi.org/10.1007/s11051-016-3419-9
L. Gao, K. Cao, H. Zhang, P. Li, J. Song, J.U. Surjadi, Y. Li, D. Sun, Y. Lu, Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitors. J. Mater. Chem. A 5, 16944–16952 (2017). https://doi.org/10.1039/C7TA04998F
Q. Zhang, B. Zhao, J. Wang, C. Qu, H. Sun, K. Zhang, M. Liu, High-performance hybrid supercapacitors based on self-supported 3D ultrathin porous quaternary Zn–Ni–Al–Co oxide nanosheets. Nano Energy 28, 475–485 (2016). https://doi.org/10.1016/j.nanoen.2016.08.049
J. Li, Z. Liu, Q. Zhang, Y. Cheng, B. Zhao et al., Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors. Nano Energy 57, 22–33 (2019). https://doi.org/10.1016/j.nanoen.2018.12.011
M.S. Saleh, J. Li, J. Park, R. Panat, 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 23, 70–78 (2018). https://doi.org/10.1016/j.addma.2018.07.006
H. Zhao, M. Zhou, L. Wen, Y. Lei, Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy 13, 790–813 (2015). https://doi.org/10.1016/j.nanoen.2015.02.024
C. Xin, X. Qi, M. Zhu, S. Zhao, Y. Zhu, Hydroxyapatite whisker-reinforced composite scaffolds through 3D printing for bone repair. J. Inorg. Mater. 32(8), 837–844 (2017). https://doi.org/10.15541/jim20160628
H. Zhang, X. Yu, P.V. Braun, Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6(5), 277–281 (2011). https://doi.org/10.1038/nnano.2011.38
T. Zhang, J. Zhang, X. Feng, Z. Zheng, R. Dong, Y. Mai, S. Liu, F. Wang, Soft-template construction of 3D macroporous polypyrrole scaffolds. Small 13(14), 1604099 (2017). https://doi.org/10.1002/smll.201604099
C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448–3456 (2016). https://doi.org/10.1021/acs.nanolett.5b04965
B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian et al., Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3(2), 459–470 (2019). https://doi.org/10.1016/j.joule.2018.09.020
Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11(12), 1–21 (2019). https://doi.org/10.1038/s41427-019-0112-3
K. Fu, Y. Yao, J. Dai, L. Hu, Progress in 3D printing of carbon materials for energy-related applications. Adv. Mater. 29(9), 1603486 (2017). https://doi.org/10.1002/adma.201603486
X. Tian, J. Jin, S. Yuan, C.K. Chua, S.B. Tor, K. Zhou, Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv. Energy Mater. 7(17), 1–17 (2017). https://doi.org/10.1002/aenm.201700127
L.F. Arenas, C. Ponce de León, F.C. Walsh, 3D-printed porous electrodes for advanced electrochemical flow reactors: a Ni/stainless steel electrode and its mass transport characteristics. Electrochem. Commun. 77, 133–137 (2017). https://doi.org/10.1016/j.elecom.2017.03.009
F. Zhang, M. Wei, V.V. Viswanathan, B. Swart, Y. Shao, G. Wu, C. Zhou, 3D printing technologies for electrochemical energy storage. Nano Energy 40, 418–431 (2017). https://doi.org/10.1016/j.nanoen.2017.08.037
A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 45(10), 2740–2755 (2016). https://doi.org/10.1039/C5CS00714C
C. Zhu, T. Liu, F. Qian, W. Chen, S. Chandrasekaran et al., 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15, 107–120 (2017). https://doi.org/10.1016/j.nantod.2017.06.007
L. Gao, J. Song, Z. Jiao, W. Liao, J. Luan et al., High-Entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 20(1), 1–8 (2018). https://doi.org/10.1002/adem.201700625
J.U. Surjadi, L. Gao, K. Cao, R. Fan, Y. Lu, Mechanical enhancement of core-shell microlattices through high-entropy alloy coating. Sci. Rep. 8(1), 5442 (2018). https://doi.org/10.1038/s41598-018-23857-7
J. Song, L. Gao, K. Cao, H. Zhang, S. Xu et al., Metal-coated hybrid meso-lattice composites and their mechanical characterizations. Compos. Struct. 203, 750–763 (2018). https://doi.org/10.1016/j.compstruct.2018.07.074
Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, C. Zhu, 3D-printed, superelastic polypyrrole–graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv. Mater. Technol. 3(7), 1–8 (2018). https://doi.org/10.1002/admt.201800053
T. Gao, Z. Zhou, J. Yu, J. Zhao, G. Wang, D. Cao, B. Ding, Y. Li, 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 9(8), 1802578 (2019). https://doi.org/10.1002/aenm.201802578
X. Tang, C. Zhu, D. Cheng, H. Zhou, X. Liu, P. Xie, Q. Zhao, D. Zhang, T. Fan, Architectured leaf-inspired Ni0.33Co0.66S2/graphene aerogels via 3D printing for high-performance energy storage. Adv. Funct. Mater. 28(51), 1805057 (2018). https://doi.org/10.1002/adfm.201805057
R. Xiong, Q. Zhou, Y. Yang, X. Song, T. Hsiai et al., Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22, 414–421 (2016). https://doi.org/10.1016/j.nanoen.2016.02.045
C. Kim, D.Y. Kang, J.H. Moon, Full lithographic fabrication of boron-doped 3D porous carbon patterns for high volumetric energy density microsupercapacitors. Nano Energy 53, 182–188 (2018). https://doi.org/10.1016/j.nanoen.2018.08.044
B. Zhao, L. Zhang, Q. Zhang, D. Chen, Y. Cheng et al., Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv. Energy Mater. 8(9), 1–10 (2018). https://doi.org/10.1002/aenm.201702247
G.G. Wallace, D. Li, R.B. Kaner, M.B. Müller, S. Gilje, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3(2), 101–105 (2008). https://doi.org/10.1038/nnano.2007.451
L. Gao, J. Song, J.U. Surjadi, K. Cao, Y. Han, D. Sun, X. Tao, Y. Lu, Graphene-bridged multifunctional flexible fiber supercapacitor with high energy density. ACS Appl. Mater. Interfaces 10(34), 28597–28607 (2018). https://doi.org/10.1021/acsami.8b08680
L. Gao, J.U. Surjadi, K. Cao, H. Zhang, P. Li, S. Xu, C. Jiang, J. Song, D. Sun, Y. Lu, Flexible fiber-shaped supercapacitor based on nickel–cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl. Mater. Interfaces 9(6), 5409–5418 (2017). https://doi.org/10.1021/acsami.6b16101
E. Asher, X. Sun, X. Li, J. Yang, S. Deng, T. Zhang, Paper with power: engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors. Adv. Funct. Mater. 28(37), 1803600 (2018). https://doi.org/10.1002/adfm.201803600
X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv. Mater. 28(1), 98–105 (2016). https://doi.org/10.1002/adma.201504403
Y. Liu, X. Zhai, K. Yang, F. Wang, H. Wei, W. Zhang, F. Ren, H. Pang, Mesoporous NH4NiPO4∙H2O for high-performance flexible all-solid-state asymmetric supercapacitors. Front. Chem. 7(118), 1–7 (2019). https://doi.org/10.3389/fchem.2019.00118
J.U. Surjadi, L. Gao, H. Du, X. Li, X. Xiong, N.X. Fang, Y. Lu, Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201800864
L.R. Meza, S. Das, J.R. Greer, Strong, lightweight and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322–1326 (2014). https://doi.org/10.1126/science.1255908
X.Y. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte et al., Spadaccini, ultralight, ultrastiff mechanical metamaterials. Science 344(6190), 1373–1377 (2014). https://doi.org/10.1126/science.1252291
R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions. Nature 540, 371–378 (2016). https://doi.org/10.1038/nature21003
J. Lian, D. Jang, L. Valdevit, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, J.R. Greer, Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures. Nano Lett. 11(10), 4118–4125 (2011). https://doi.org/10.1021/nl202475p
J. Rys, L. Valdevit, T.A. Schaedler, A.J. Jacobsen, W.B. Carter, J.R. Greer, Fabrication and deformation of metallic glass micro-lattices. Adv. Eng. Mater. 16(7), 889–896 (2014). https://doi.org/10.1002/adem.201300454
L. Liu, Y. Yu, C. Yan, K. Li, Z. Zheng, Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat. Commun. 6, 7260 (2015). https://doi.org/10.1038/ncomms8260
X. Yang, J. Zhu, L. Qiu, D. Li, Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors. Adv. Mater. 23(25), 2833–2838 (2011). https://doi.org/10.1002/adma.201100261
G.K. Veerasubramani, K. Krishnamoorthy, P. Pazhamalai, S.J. Kim, Enhanced electrochemical performances of graphene based solid-state flexible cable type supercapacitor using redox mediated polymer gel electrolyte. Carbon 105, 638–648 (2016). https://doi.org/10.1016/j.carbon.2016.05.008
P. Sun, R. Lin, Z. Wang, M. Qiu, Z. Chai et al., Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31, 432–440 (2017). https://doi.org/10.1016/j.nanoen.2016.11.052
R. Huang, M. Huang, X. Li, F. An, N. Koratkar, Z.-Z. Yu, Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv. Mater. 30, 1707025 (2018). https://doi.org/10.1002/adma.201707025
Y. Shao, J. Li, Y. Li, H. Wang, Q. Zhang, R.B. Kaner, Flexible quasi-solid-state planar micro-supercapacitors based on cellular graphene films. Mater. Horiz. 4(6), 1145–1150 (2017). https://doi.org/10.1039/C7MH00441A
X. Pu, M. Liu, L. Li, S. Han, X. Li et al., Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 6(24), 1601254 (2016). https://doi.org/10.1002/aenm.201601254
J. Yu, M. Wang, P. Xu, S.H. Cho, J. Suhr et al., Ultrahigh-rate wire-shaped supercapacitor based on graphene fiber. Carbon 119, 332–338 (2017). https://doi.org/10.1016/j.carbon.2017.04.052
L. Zhang, D. DeArmond, N.T. Alvarez, R. Malik, N. Oslin et al., Flexible micro-supercapacitor based on graphene with 3D structure. Small 13(10), 1–10 (2017). https://doi.org/10.1002/smll.201603114
A. Ramadoss, K.Y. Yoon, M.J. Kwak, S.I. Kim, S.T. Ryu, J.H. Jang, Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 337, 159–165 (2017). https://doi.org/10.1016/j.jpowsour.2016.10.091
J. Sun, Y. Huang, C. Fu, Z. Wang, Y. Huang, M. Zhu, C. Zhi, H. Hu, High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27, 230–237 (2016). https://doi.org/10.1016/j.nanoen.2016.07.008
L. Manjakkal, C.G. Núñez, W. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene–Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018). https://doi.org/10.1016/j.nanoen.2018.06.072