Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents
Corresponding Author: Jiurong Liu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 135
Abstract
To tackle the aggravating electromagnetic wave (EMW) pollution issues, high-efficiency EMW absorption materials are urgently explored. Metal–organic framework (MOF) derivatives have been intensively investigated for EMW absorption due to the distinctive components and structures, which is expected to satisfy diverse application requirements. The extensive developments on MOF derivatives demonstrate its significantly important role in this research area. Particularly, MOF derivatives deliver huge performance superiorities in light weight, broad bandwidth, and robust loss capacity, which are attributed to the outstanding impedance matching, multiple attenuation mechanisms, and destructive interference effect. Herein, we summarized the relevant theories and evaluation methods, and categorized the state-of-the-art research progresses on MOF derivatives in EMW absorption field. In spite of lots of challenges to face, MOF derivatives have illuminated infinite potentials for further development as EMW absorption materials.
Highlights:
1 In terms of components and structures, this review summarizes progresses and highlights strategies of MOF derivatives for efficient electromagnetic wave absorption.
2 We also systematically delineate relevant theories and points out the prospects and current challenges.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow mxenes spheres 3D foam with ultrahigh specific em absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 12, 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto et al., Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 131, 1170–1173 (2009). https://doi.org/10.1021/ja807943v
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
- B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like cus hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015). https://doi.org/10.1039/c5ta00086f
- Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
- Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
- F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
- H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233
- M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications. Science 339, 553–559 (2013). https://doi.org/10.1126/science.1222453
- H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
- Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
- J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv et al., Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020). https://doi.org/10.1016/j.cej.2019.122591
- D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
- B. Han, W. Chu, X. Han, P. Xu, D. Liu et al., Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 168, 404–414 (2020). https://doi.org/10.1016/j.carbon.2020.07.005
- L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15, 1900900 (2019). https://doi.org/10.1002/smll.201900900
- T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). https://doi.org/10.1002/adma.201303088
- F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
- W. You, H. Bi, W. She, Y. Zhang, R. Che, Dipolar-distribution cavity gamma-Fe2O3@C@alpha-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13, 1602779 (2017). https://doi.org/10.1002/smll.201602779
- L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
- B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized mxene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
- M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). https://doi.org/10.1126/science.1067208
- A. Kirchon, L. Feng, H.F. Drake, E.A. Joseph, H.-C. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional mof materials. Chem. Soc. Rev. 47, 8611–8638 (2018). https://doi.org/10.1039/c8cs00688a
- J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: A new class of porous materials. Micropor. Mesopor. Mater. 73, 3–14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034
- E. Mohamed, K. Jaheon, R. Nathaniel, V. David, W. Joseph et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). https://doi.org/10.1126/science.1067208
- C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier et al., Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002). https://doi.org/10.1021/ja0276974
- M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi et al., Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand). Angew. Chem. Int. Ed. 38, 140–143 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3c140::AID-ANIE140%3e3.0.CO;2-9
- B. Wang, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008). https://doi.org/10.1038/nature06900
- S. Ma, H.-C. Zhou, A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J. Am. Chem. Soc. 128, 11734–11735 (2006). https://doi.org/10.1021/ja063538z
- J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953
- J.A. Thompson, C.R. Blad, N.A. Brunelli, M.E. Lydon, R.P. Lively et al., Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem. Mater. 24, 1930–1936 (2012). https://doi.org/10.1021/cm3006953
- Z. Su, J. Fan, T.-A. Okamura, W.-Y. Sun, N. Ueyama, Ligand-directed and ph-controlled assembly of chiral 3d–3d heterometallic metal−organic frameworks. Cryst. Growth Des. 10, 3515–3521 (2010). https://doi.org/10.1021/cg100418a
- H. Yang, X. Wang, Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 31, 1800743 (2018). https://doi.org/10.1002/adma.201800743
- C.-C. Hou, Q. Xu, Metal–organic frameworks for energy. Adv. Energy Mater. 9, 1801307 (2019). https://doi.org/10.1002/aenm.201801307
- D.J. Rocca, D. Liu, W. Lin, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts Chem. Res. 44, 957–968 (2011). https://doi.org/10.1021/ar200028a
- Z.-Y. Gu, C.-X. Yang, N. Chang, X.-P. Yan, Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Accounts Chem. Res. 45, 734–745 (2012). https://doi.org/10.1021/ar2002599
- J.-R. Li, J. Sculley, H.-C. Zhou, Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012). https://doi.org/10.1021/cr200190s
- S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3, 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75
- R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/c5ta01457c
- X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017). https://doi.org/10.1039/c6cs00426a
- Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671–3682 (2016). https://doi.org/10.1007/s12274-016-1238-z
- X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7, 385–393 (2020). https://doi.org/10.1039/c9qi01259a
- J. Ma, X. Zhang, W. Liu, G. Ji, Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption. J. Mater. Chem. C 4, 11419–11426 (2016). https://doi.org/10.1039/c6tc04048a
- Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
- Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
- Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 383, 123207 (2020). https://doi.org/10.1016/j.cej.2019.123207
- X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao et al., A novel Co/TiO2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 4, 1860–1870 (2016). https://doi.org/10.1039/c6tc00248j
- L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk–shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
- Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10, 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093
- Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34, 15854–15863 (2018). https://doi.org/10.1021/acs.langmuir.8b03238
- W. Liu, S. Tan, Z. Yang, G. Ji, Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138, 143–153 (2018). https://doi.org/10.1016/j.carbon.2018.06.009
- H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full x band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
- C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012). https://doi.org/10.1002/adma.201200674
- J.-M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz et al., Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J. Phys. Chem. C 111, 11186–11192 (2007). https://doi.org/10.1021/jp0701690
- H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7, 1801318 (2019). https://doi.org/10.1002/adom.201801318
- Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019). https://doi.org/10.1002/advs.201801057
- F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
- M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of m-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004). https://doi.org/10.1016/j.jmmm.2003.09.045
- Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
- Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristic. IEEE T. Microw. Theory Techn. 19, 65–72 (1971). https://doi.org/10.1109/TMTT.1971.1127446
- S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim et al., Complex permeability and permittivity and microwave absorption of ferrite-rubber composite in X-band frequencies. IEEE T. Magn. 27, 5462–5464 (1991). https://doi.org/10.1109/20.278872
- D. Blokhintzev, The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18, 322–328 (1946). https://doi.org/10.1121/1.1916368
- C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang et al., SiC–Fe3O4 dielectric–magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014). https://doi.org/10.1039/c4ta02907k
- Z. Ma, C.-T. Cao, Q.-F. Liu, J.-B. Wang, A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401 (2012). https://doi.org/10.1088/0256-307x/29/3/038401
- Y.-Q. Huang, J. Yuan, W.-L. Song, B. Wen, X.-Y. Fang et al., Microwave absorbing materials: solutions for real functions under ideal conditions of microwave absorption. Chin. Phys. Lett. 27, 027702 (2010). https://doi.org/10.1088/0256-307x/27/2/027702
- L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li et al., Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117, 19701–19711 (2013). https://doi.org/10.1021/jp4058498
- L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang et al., Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins. J. Phys. Chem. C 117, 2135–2146 (2013). https://doi.org/10.1021/jp309984p
- Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto, T. Ohmi, High permeability and low loss Ni–Fe composite material for high-frequency applications. IEEE Trans. Magn. 44, 2100–2106 (2008). https://doi.org/10.1109/TMAG.2008.2001073
- T. Inui, K. Konishi, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999). https://doi.org/10.1109/20.801110
- Z. Yu, N. Zhang, Z. Yao, X. Han, Z. Jiang, Synthesis of hierarchical dendritic micro–nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance. J. Mater. Chem. A 1, 12462 (2013). https://doi.org/10.1039/c3ta12840g
- X. Qi, Y. Yang, W. Zhong, C. Qin, Y. Deng et al., Simultaneous synthesis of carbon nanobelts and carbon/Fe–Cu hybrids for microwave absorption. Carbon 48, 3512–3522 (2010). https://doi.org/10.1016/j.carbon.2010.05.047
- L. Olmedo, P. Hourquebie, F. Jousse, Microwave absorbing materials based on conducting polymers. Adv. Mater. 5, 373–377 (1993). https://doi.org/10.1002/adma.19930050509
- P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core–shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11, 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
- L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.4825378
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx mxene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
- F. Yan, S. Zhang, X. Zhang, C. Li, C. Zhu et al., Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. J. Mater. Chem. C 6, 12781–12787 (2018). https://doi.org/10.1039/c8tc04222e
- L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5, 2005–2014 (2017). https://doi.org/10.1039/c6tc05179k
- Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 11, 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
- S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core–shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
- K.S. Cole, H.R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
- M. Zhdanov, Generalized effective-medium theory of induced polarization. Geophysics 73, 197–211 (2008). https://doi.org/10.1190/1.2973462
- C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011). https://doi.org/10.1063/1.3555436
- S. Dong, J. Song, X. Zhang, P. Hu, B. Sun et al., Strong contribution of in situ grown nanowires to enhance the thermostabilities and microwave absorption properties of porous graphene foams under different atmospheres. J. Mater. Chem. C. 5, 11837–11846 (2017). https://doi.org/10.1039/c7tc04102k
- J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13(1), 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
- B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu et al., Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 320, 1106–1111 (2008). https://doi.org/10.1016/j.jmmm.2007.10.030
- D. Li, H. Liao, H. Kikuchi, T. Liu, Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9, 44704–44714 (2017). https://doi.org/10.1021/acsami.7b13538
- M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404 (2002). https://doi.org/10.1063/1.1484248
- J. Qiao, X. Zhang, C. Liu, L. Lyu, Z. Wang et al., Facile fabrication of Ni embedded TiO2/C core–shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. B Eng. 200, 108343 (2020). https://doi.org/10.1016/j.compositesb.2020.108343
- N. Zhou, Q. An, Z. Xiao, S. Zhai, Z. Shi, Rational design of superior microwave shielding composites employing synergy of encapsulating character of alginate hydrogels and task-specific components (Ni NPs, Fe3O4/CNTs). ACS Sustain. Chem. Eng. 5, 5394–5407 (2017). https://doi.org/10.1021/acssuschemeng.7b00711
- C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73(2), 155–161 (1948). https://doi.org/10.1103/PhysRev.73.155
- X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang et al., Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016). https://doi.org/10.1021/acsami.6b00388
- X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
- H. Zhao, Y. Cheng, W. Liu, Z. Yang, B. Zhang et al., The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology 29, 295603 (2018). https://doi.org/10.1088/1361-6528/aac0de
- Y. Zhao, L. Liu, J. Han, W. Wu, G. Tong, Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high snoek’s limit. J. Alloys Compd. 728, 100–111 (2017). https://doi.org/10.1016/j.jallcom.2017.08.238
- G.G. Bush, Generalization of Snoek’s limit for modeling initial permeability of magnetic materials. J. Appl. Phys. 63, 3765–3767 (1988). https://doi.org/10.1063/1.340661
- L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
- W. Xu, G.-S. Wang, P.-G. Yin, Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759–767 (2018). https://doi.org/10.1016/j.carbon.2018.07.044
- J. Feng, Y. Hou, Y. Wang, L. Li, Synthesis of hierarchical ZnFe2O4@SiO2@rGO core–shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 14103–14111 (2017). https://doi.org/10.1021/acsami.7b03330
- N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6, 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
- H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16, 2003407 (2020). https://doi.org/10.1002/smll.202003407
- J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng, Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274
- Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5, 065302 (2018). https://doi.org/10.1088/2053-1591/aac67e
- L. Huang, S. Huang, Z. Yang, A. Zhao, C. Liu et al., In-situ conversion of ZnO/Ni3ZnC0.7/CNT composite from nizn bimetallic mof precursor with enhanced electromagnetic property. Nanomaterials 8, 600 (2018). https://doi.org/10.3390/nano8080600
- X. Liang, B. Quan, G. Ji, W. Liu, H. Zhao et al., Tunable dielectric performance derived from the metal–organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 5, 10570–10579 (2017). https://doi.org/10.1021/acssuschemeng.7b02565
- S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: A new exploration. Nanoscale 10, 6945–6953 (2018). https://doi.org/10.1039/c8nr01244j
- B. Quan, X. Liang, H. Yi, Y. Chen, J. Xiang et al., Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response. J. Mater. Chem. C 6, 11659–11665 (2018). https://doi.org/10.1039/c8tc03628d
- J. Yan, Y. Huang, X. Han, X. Gao, P. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. B Eng. 163, 67–76 (2019). https://doi.org/10.1016/j.compositesb.2018.11.008
- P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348–359 (2020). https://doi.org/10.1016/j.carbon.2020.03.041
- K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 10, 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
- L. Huang, X. Liu, R. Yu, An efficient Co/C microwave absorber with tunable Co nanoparticles derived from a ZnCo bimetallic zeolitic imidazolate framework. Part. Part. Syst. Char. 35, 1800107 (2018). https://doi.org/10.1002/ppsc.201800107
- B.-Y. Zhu, P. Miao, J. Kong, X.-L. Zhang, G.-Y. Wang et al., Co/C composite derived from a newly constructed metal–organic framework for effective microwave absorption. Cryst. Growth Des. 19, 1518–1524 (2019). https://doi.org/10.1021/acs.cgd.9b00064
- J. Li, P. Miao, K.-J. Chen, J.-W. Cao, J. Liang et al., Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal–organic framework. Compos. B Eng. 182, 107613 (2020). https://doi.org/10.1016/j.compositesb.2019.107613
- X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109
- Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
- H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 9, 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
- W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10, 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
- W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12, 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
- N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11, 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
- M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal–organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
- L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. B. Eng. 166, 464–471 (2019). https://doi.org/10.1016/j.compositesb.2019.02.054
- X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal–organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
- R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
- W. Feng, Y. Wang, J. Chen, B. Li, L. Guo et al., Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 6, 10–18 (2018). https://doi.org/10.1039/c7tc03784h
- N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal–organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
- P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces 7, 1901820 (2020). https://doi.org/10.1002/admi.201901820
- Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
- W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
- J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 11, 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
- D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7(17), 5037–5046 (2019). https://doi.org/10.1039/c9tc00771g
- L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
- X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang et al., Thermal conversion of an Fe3O4@metal–organic framework: A new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a
- S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
- Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8, 18863–18871 (2020). https://doi.org/10.1039/d0ta05540a
- Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
- Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014
- X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal–organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12, 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
- L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
- J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered nico alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
- X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In situ confined bimetallic metal–organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 11, 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
- J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal–organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11, 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
- Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal–organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
- W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5, 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
- B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
- C. Zhou, C. Wu, D. Liu, M. Yan, Metal–organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25, 2234–2241 (2018). https://doi.org/10.1002/chem.201805565
- X. Liang, B. Quan, G. Ji, W. Liu, Y. Cheng et al., Novel nanoporous carbon derived from metal–organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front. 3, 1516–1526 (2016). https://doi.org/10.1039/c6qi00359a
- W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO@N-doped porous carbon/Co3ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
- W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
- L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081
- X. Zhang, J. Qiao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UiO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces 11, 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
- R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal−organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063
- Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
- Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang, Metal–organic framework-based Pb@MoS2 core–shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustain. Chem. Eng. 7, 7183–7192 (2019). https://doi.org/10.1021/acssuschemeng.9b00191
- X. Liu, C. Hao, L. He, C. Yang, Y. Chen et al., Yolk–shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11, 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
- K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9, 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
- H. Xu, X. Yin, M. Li, F. Ye, M. Han et al., Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018). https://doi.org/10.1016/j.carbon.2018.02.040
- W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo et al., Reduced graphene oxide decorated with in-situ growing zno nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016). https://doi.org/10.1016/j.carbon.2016.06.084
- M.N. Lyulyukin, P.A. Kolinko, D.S. Selishchev, D.V. Kozlov, Hygienic aspects of TiO2-mediated photocatalytic oxidation of volatile organic compounds: Air purification analysis using a total hazard index. Appl. Catal. B Environ. 220, 386–396 (2018). https://doi.org/10.1016/j.apcatb.2017.08.020
- N. Wu, H. Lv, J. Liu, Y. Liu, S. Wang et al., Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18, 31542–31550 (2016). https://doi.org/10.1039/c6cp06066h
- Z. Man, P. Li, D. Zhou, Y. Wang, X. Liang et al., Two birds with one stone: FeS2@C yolk–shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20, 3769–3777 (2020). https://doi.org/10.1021/acs.nanolett.0c00789
- M. Mebarki, A. Layadi, A. Guittoum, A. Benabbas, B. Ghebouli et al., Structural and electrical properties of evaporated fe thin films. Appl. Surf. Sci. 257, 7025–7029 (2011). https://doi.org/10.1016/j.apsusc.2011.02.114
- B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao et al., Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 8, 28917–28925 (2016). https://doi.org/10.1021/acsami.6b10886
- L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10, 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414
- B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan et al., Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
- W. Lv, Q. Mei, J. Xiao, M. Du, Q. Zheng, 3D multiscale superhydrophilic sponges with delicately designed pore size for ultrafast oil/water separation. Adv. Funct. Mater. 27, 1704293 (2017). https://doi.org/10.1002/adfm.201704293
- L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan et al., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J. 326, 945–955 (2017). https://doi.org/10.1016/j.cej.2017.06.006
References
X. Li, X. Yin, C. Song, M. Han, H. Xu et al., Self-assembly core–shell graphene-bridged hollow mxenes spheres 3D foam with ultrahigh specific em absorption performance. Adv. Funct. Mater. 28, 1803938 (2018). https://doi.org/10.1002/adfm.201803938
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 12, 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto et al., Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 131, 1170–1173 (2009). https://doi.org/10.1021/ja807943v
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29, 1702367 (2017). https://doi.org/10.1002/adma.201702367
B. Zhao, G. Shao, B. Fan, W. Zhao, Y. Xie et al., Synthesis of flower-like cus hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. J. Mater. Chem. A 3, 10345–10352 (2015). https://doi.org/10.1039/c5ta00086f
Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015). https://doi.org/10.1002/adma.201405788
Q. Liu, Q. Cao, H. Bi, C. Liang, K. Yuan et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28, 486–490 (2016). https://doi.org/10.1002/adma.201503149
F. Wang, N. Wang, X. Han, D. Liu, Y. Wang et al., Core–shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption. Carbon 145, 701–711 (2019). https://doi.org/10.1016/j.carbon.2019.01.082
H. Lv, Z. Yang, P.L. Wang, G. Ji, J. Song et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson et al., Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005). https://doi.org/10.1038/nature04233
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications. Science 339, 553–559 (2013). https://doi.org/10.1126/science.1222453
H. Sun, R. Che, X. You, Y. Jiang, Z. Yang et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv. Mater. 26, 8120–8125 (2014). https://doi.org/10.1002/adma.201403735
Y. Li, X. Liu, X. Nie, W. Yang, Y. Wang et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 29, 1807624 (2019). https://doi.org/10.1002/adfm.201807624
J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv et al., Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020). https://doi.org/10.1016/j.cej.2019.122591
D. Liu, Y. Du, P. Xu, F. Wang, Y. Wang et al., Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption. J. Mater. Chem. A 9(8), 5086–5096 (2021). https://doi.org/10.1039/d0ta10942h
B. Han, W. Chu, X. Han, P. Xu, D. Liu et al., Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials. Carbon 168, 404–414 (2020). https://doi.org/10.1016/j.carbon.2020.07.005
L. Wang, X. Li, Q. Li, X. Yu, Y. Zhao et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 15, 1900900 (2019). https://doi.org/10.1002/smll.201900900
T. Xia, C. Zhang, N.A. Oyler, X. Chen, Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013). https://doi.org/10.1002/adma.201303088
F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 28, 1707205 (2018). https://doi.org/10.1002/adfm.201707205
W. You, H. Bi, W. She, Y. Zhang, R. Che, Dipolar-distribution cavity gamma-Fe2O3@C@alpha-MnO2 nanospindle with broadened microwave absorption bandwidth by chemically etching. Small 13, 1602779 (2017). https://doi.org/10.1002/smll.201602779
L. Cui, Y. Wang, X. Han, P. Xu, F. Wang et al., Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution. Carbon 174, 673–682 (2021). https://doi.org/10.1016/j.carbon.2020.10.070
B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang et al., Electrostatically self-assembled two-dimensional magnetized mxene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J. Mater. Chem. A 9(6), 3500–3510 (2021). https://doi.org/10.1039/d0ta10551a
M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). https://doi.org/10.1126/science.1067208
A. Kirchon, L. Feng, H.F. Drake, E.A. Joseph, H.-C. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional mof materials. Chem. Soc. Rev. 47, 8611–8638 (2018). https://doi.org/10.1039/c8cs00688a
J.L.C. Rowsell, O.M. Yaghi, Metal–organic frameworks: A new class of porous materials. Micropor. Mesopor. Mater. 73, 3–14 (2004). https://doi.org/10.1016/j.micromeso.2004.03.034
E. Mohamed, K. Jaheon, R. Nathaniel, V. David, W. Joseph et al., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002). https://doi.org/10.1126/science.1067208
C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier et al., Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy. J. Am. Chem. Soc. 124, 13519–13526 (2002). https://doi.org/10.1021/ja0276974
M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi et al., Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine-2,3-dicarboxylate; L=a Pillar Ligand). Angew. Chem. Int. Ed. 38, 140–143 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3c140::AID-ANIE140%3e3.0.CO;2-9
B. Wang, A.P. Côté, H. Furukawa, M. O’Keeffe, O.M. Yaghi, Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008). https://doi.org/10.1038/nature06900
S. Ma, H.-C. Zhou, A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J. Am. Chem. Soc. 128, 11734–11735 (2006). https://doi.org/10.1021/ja063538z
J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008). https://doi.org/10.1021/ja8057953
J.A. Thompson, C.R. Blad, N.A. Brunelli, M.E. Lydon, R.P. Lively et al., Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem. Mater. 24, 1930–1936 (2012). https://doi.org/10.1021/cm3006953
Z. Su, J. Fan, T.-A. Okamura, W.-Y. Sun, N. Ueyama, Ligand-directed and ph-controlled assembly of chiral 3d–3d heterometallic metal−organic frameworks. Cryst. Growth Des. 10, 3515–3521 (2010). https://doi.org/10.1021/cg100418a
H. Yang, X. Wang, Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications. Adv. Mater. 31, 1800743 (2018). https://doi.org/10.1002/adma.201800743
C.-C. Hou, Q. Xu, Metal–organic frameworks for energy. Adv. Energy Mater. 9, 1801307 (2019). https://doi.org/10.1002/aenm.201801307
D.J. Rocca, D. Liu, W. Lin, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts Chem. Res. 44, 957–968 (2011). https://doi.org/10.1021/ar200028a
Z.-Y. Gu, C.-X. Yang, N. Chang, X.-P. Yan, Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Accounts Chem. Res. 45, 734–745 (2012). https://doi.org/10.1021/ar2002599
J.-R. Li, J. Sculley, H.-C. Zhou, Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012). https://doi.org/10.1021/cr200190s
S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3, 17075 (2018). https://doi.org/10.1038/natrevmats.2017.75
R. Qiang, Y. Du, H. Zhao, Y. Wang, C. Tian et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J. Mater. Chem. A 3, 13426–13434 (2015). https://doi.org/10.1039/c5ta01457c
X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal–organic frameworks: Preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46, 2660–2677 (2017). https://doi.org/10.1039/c6cs00426a
Z. Yang, H. Lv, R. Wu, Rational construction of graphene oxide with MOF-derived porous NiFe@C nanocubes for high-performance microwave attenuation. Nano Res. 9, 3671–3682 (2016). https://doi.org/10.1007/s12274-016-1238-z
X. Zhang, J. Qiao, C. Liu, F. Wang, Y. Jiang et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption. Inorg. Chem. Front. 7, 385–393 (2020). https://doi.org/10.1039/c9qi01259a
J. Ma, X. Zhang, W. Liu, G. Ji, Direct synthesis of MOF-derived nanoporous CuO/carbon composites for high impedance matching and advanced microwave absorption. J. Mater. Chem. C 4, 11419–11426 (2016). https://doi.org/10.1039/c6tc04048a
Y. Lu, Y. Wang, H. Li, Y. Lin, Z. Jiang et al., MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 7, 13604–13611 (2015). https://doi.org/10.1021/acsami.5b03177
Y. Yin, X. Liu, X. Wei, Y. Li, X. Nie et al., Magnetically aligned Co-C/MWCNTs composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber. ACS Appl. Mater. Interfaces 9, 30850–30861 (2017). https://doi.org/10.1021/acsami.7b10067
Y. Qiu, Y. Lin, H. Yang, L. Wang, M. Wang et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption. Chem. Eng. J. 383, 123207 (2020). https://doi.org/10.1016/j.cej.2019.123207
X. Zhang, G. Ji, W. Liu, X. Zhang, Q. Gao et al., A novel Co/TiO2 nanocomposite derived from a metal–organic framework: Synthesis and efficient microwave absorption. J. Mater. Chem. C 4, 1860–1870 (2016). https://doi.org/10.1039/c6tc00248j
L. Wang, X. Yu, X. Li, J. Zhang, M. Wang et al., MOF-derived yolk–shell Ni@C@ZnO schottky contact structure for enhanced microwave absorption. Chem. Eng. J. 383, 123099 (2020). https://doi.org/10.1016/j.cej.2019.123099
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Highly cuboid-shaped heterobimetallic metal–organic frameworks derived from porous Co/ZnO/C microrods with improved electromagnetic wave absorption capabilities. ACS Appl. Mater. Interfaces 10, 29136–29144 (2018). https://doi.org/10.1021/acsami.8b09093
Q. Liao, M. He, Y. Zhou, S. Nie, Y. Wang et al., Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34, 15854–15863 (2018). https://doi.org/10.1021/acs.langmuir.8b03238
W. Liu, S. Tan, Z. Yang, G. Ji, Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material through modulating dielectric loss. Carbon 138, 143–153 (2018). https://doi.org/10.1016/j.carbon.2018.06.009
H. Xu, X. Yin, M. Zhu, M. Li, H. Zhang et al., Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full x band microwave absorption. Carbon 142, 346–353 (2019). https://doi.org/10.1016/j.carbon.2018.10.056
C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012). https://doi.org/10.1002/adma.201200674
J.-M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz et al., Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J. Phys. Chem. C 111, 11186–11192 (2007). https://doi.org/10.1021/jp0701690
H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7, 1801318 (2019). https://doi.org/10.1002/adom.201801318
Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang et al., Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures. Adv. Sci. 6, 1801057 (2019). https://doi.org/10.1002/advs.201801057
F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021). https://doi.org/10.1007/s40820-020-00568-1
M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of m-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004). https://doi.org/10.1016/j.jmmm.2003.09.045
Y. Wang, X. Li, X. Han, P. Xu, L. Cui et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption. Chem. Eng. J. 387, 124159 (2020). https://doi.org/10.1016/j.cej.2020.124159
Y. Naito, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristic. IEEE T. Microw. Theory Techn. 19, 65–72 (1971). https://doi.org/10.1109/TMTT.1971.1127446
S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim et al., Complex permeability and permittivity and microwave absorption of ferrite-rubber composite in X-band frequencies. IEEE T. Magn. 27, 5462–5464 (1991). https://doi.org/10.1109/20.278872
D. Blokhintzev, The propagation of sound in an inhomogeneous and moving medium I. J. Acoust. Soc. Am. 18, 322–328 (1946). https://doi.org/10.1121/1.1916368
C. Liang, C. Liu, H. Wang, L. Wu, Z. Jiang et al., SiC–Fe3O4 dielectric–magnetic hybrid nanowires: controllable fabrication, characterization and electromagnetic wave absorption. J. Mater. Chem. A 2, 16397–16402 (2014). https://doi.org/10.1039/c4ta02907k
Z. Ma, C.-T. Cao, Q.-F. Liu, J.-B. Wang, A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401 (2012). https://doi.org/10.1088/0256-307x/29/3/038401
Y.-Q. Huang, J. Yuan, W.-L. Song, B. Wen, X.-Y. Fang et al., Microwave absorbing materials: solutions for real functions under ideal conditions of microwave absorption. Chin. Phys. Lett. 27, 027702 (2010). https://doi.org/10.1088/0256-307x/27/2/027702
L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li et al., Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117, 19701–19711 (2013). https://doi.org/10.1021/jp4058498
L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang et al., Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins. J. Phys. Chem. C 117, 2135–2146 (2013). https://doi.org/10.1021/jp309984p
Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto, T. Ohmi, High permeability and low loss Ni–Fe composite material for high-frequency applications. IEEE Trans. Magn. 44, 2100–2106 (2008). https://doi.org/10.1109/TMAG.2008.2001073
T. Inui, K. Konishi, Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites. IEEE Trans. Magn. 35, 3148–3150 (1999). https://doi.org/10.1109/20.801110
Z. Yu, N. Zhang, Z. Yao, X. Han, Z. Jiang, Synthesis of hierarchical dendritic micro–nano structure CoxFe1−x alloy with tunable electromagnetic absorption performance. J. Mater. Chem. A 1, 12462 (2013). https://doi.org/10.1039/c3ta12840g
X. Qi, Y. Yang, W. Zhong, C. Qin, Y. Deng et al., Simultaneous synthesis of carbon nanobelts and carbon/Fe–Cu hybrids for microwave absorption. Carbon 48, 3512–3522 (2010). https://doi.org/10.1016/j.carbon.2010.05.047
L. Olmedo, P. Hourquebie, F. Jousse, Microwave absorbing materials based on conducting polymers. Adv. Mater. 5, 373–377 (1993). https://doi.org/10.1002/adma.19930050509
P. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang et al., Core–shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces 11, 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525
L.J. Deng, M.G. Han, Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl. Phys. Lett. 91, 023119 (2007). https://doi.org/10.1063/1.4825378
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx mxene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15, 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou et al., Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 6332–6341 (2017). https://doi.org/10.1021/acsami.6b15826
F. Yan, S. Zhang, X. Zhang, C. Li, C. Zhu et al., Growth of CoFe2O4 hollow nanoparticles on graphene sheets for high-performance electromagnetic wave absorbers. J. Mater. Chem. C 6, 12781–12787 (2018). https://doi.org/10.1039/c8tc04222e
L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5, 2005–2014 (2017). https://doi.org/10.1039/c6tc05179k
Z. Xu, Y. Du, D. Liu, Y. Wang, W. Ma et al., Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 11, 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201
S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core–shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062
K.S. Cole, H.R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
M. Zhdanov, Generalized effective-medium theory of induced polarization. Geophysics 73, 197–211 (2008). https://doi.org/10.1190/1.2973462
C. Wang, X.J. Han, P. Xu, X.L. Zhang, Y.C. Du et al., The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98, 072906 (2011). https://doi.org/10.1063/1.3555436
S. Dong, J. Song, X. Zhang, P. Hu, B. Sun et al., Strong contribution of in situ grown nanowires to enhance the thermostabilities and microwave absorption properties of porous graphene foams under different atmospheres. J. Mater. Chem. C. 5, 11837–11846 (2017). https://doi.org/10.1039/c7tc04102k
J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13(1), 75 (2021). https://doi.org/10.1007/s40820-021-00606-6
B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu et al., Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 320, 1106–1111 (2008). https://doi.org/10.1016/j.jmmm.2007.10.030
D. Li, H. Liao, H. Kikuchi, T. Liu, Microporous Co@C nanoparticles prepared by dealloying CoAl@C precursors: Achieving strong wideband microwave absorption via controlling carbon shell thickness. ACS Appl. Mater. Interfaces 9, 44704–44714 (2017). https://doi.org/10.1021/acsami.7b13538
M.Z. Wu, Y.D. Zhang, S. Hui, T.D. Xiao, S. Ge et al., Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl. Phys. Lett. 80, 4404 (2002). https://doi.org/10.1063/1.1484248
J. Qiao, X. Zhang, C. Liu, L. Lyu, Z. Wang et al., Facile fabrication of Ni embedded TiO2/C core–shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. B Eng. 200, 108343 (2020). https://doi.org/10.1016/j.compositesb.2020.108343
N. Zhou, Q. An, Z. Xiao, S. Zhai, Z. Shi, Rational design of superior microwave shielding composites employing synergy of encapsulating character of alginate hydrogels and task-specific components (Ni NPs, Fe3O4/CNTs). ACS Sustain. Chem. Eng. 5, 5394–5407 (2017). https://doi.org/10.1021/acssuschemeng.7b00711
C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73(2), 155–161 (1948). https://doi.org/10.1103/PhysRev.73.155
X. Jian, B. Wu, Y. Wei, S.X. Dou, X. Wang et al., Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl. Mater. Interfaces 8, 6101–6109 (2016). https://doi.org/10.1021/acsami.6b00388
X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang et al., Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115 (2006). https://doi.org/10.1063/1.2236965
H. Zhao, Y. Cheng, W. Liu, Z. Yang, B. Zhang et al., The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands. Nanotechnology 29, 295603 (2018). https://doi.org/10.1088/1361-6528/aac0de
Y. Zhao, L. Liu, J. Han, W. Wu, G. Tong, Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high snoek’s limit. J. Alloys Compd. 728, 100–111 (2017). https://doi.org/10.1016/j.jallcom.2017.08.238
G.G. Bush, Generalization of Snoek’s limit for modeling initial permeability of magnetic materials. J. Appl. Phys. 63, 3765–3767 (1988). https://doi.org/10.1063/1.340661
L. Huang, J. Li, Z. Wang, Y. Li, X. He et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane. Carbon 143, 507–516 (2019). https://doi.org/10.1016/j.carbon.2018.11.042
W. Xu, G.-S. Wang, P.-G. Yin, Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139, 759–767 (2018). https://doi.org/10.1016/j.carbon.2018.07.044
J. Feng, Y. Hou, Y. Wang, L. Li, Synthesis of hierarchical ZnFe2O4@SiO2@rGO core–shell microspheres for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 14103–14111 (2017). https://doi.org/10.1021/acsami.7b03330
N. Wu, C. Liu, D. Xu, J. Liu, W. Liu et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers. ACS Sustain. Chem. Eng. 6, 12471–12480 (2018). https://doi.org/10.1021/acssuschemeng.8b03097
H. Zhao, X. Xu, Y. Wang, D. Fan, D. Liu et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 16, 2003407 (2020). https://doi.org/10.1002/smll.202003407
J. Ma, W. Liu, X. Liang, B. Quan, Y. Cheng, Nanoporous TiO2/C composites synthesized from directly pyrolysis of a Ti-based MOFs MIL-125(Ti) for efficient microwave absorption. J. Alloys Compd. 728, 138–144 (2017). https://doi.org/10.1016/j.jallcom.2017.08.274
Q. Wu, H. Jin, W. Chen, S. Huo, X. Chen et al., Graphitized nitrogen-doped porous carbon composites derived from ZIF-8 as efficient microwave absorption materials. Mater. Res. Express 5, 065302 (2018). https://doi.org/10.1088/2053-1591/aac67e
L. Huang, S. Huang, Z. Yang, A. Zhao, C. Liu et al., In-situ conversion of ZnO/Ni3ZnC0.7/CNT composite from nizn bimetallic mof precursor with enhanced electromagnetic property. Nanomaterials 8, 600 (2018). https://doi.org/10.3390/nano8080600
X. Liang, B. Quan, G. Ji, W. Liu, H. Zhao et al., Tunable dielectric performance derived from the metal–organic framework/reduced graphene oxide hybrid with broadband absorption. ACS Sustain. Chem. Eng. 5, 10570–10579 (2017). https://doi.org/10.1021/acssuschemeng.7b02565
S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: A new exploration. Nanoscale 10, 6945–6953 (2018). https://doi.org/10.1039/c8nr01244j
B. Quan, X. Liang, H. Yi, Y. Chen, J. Xiang et al., Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response. J. Mater. Chem. C 6, 11659–11665 (2018). https://doi.org/10.1039/c8tc03628d
J. Yan, Y. Huang, X. Han, X. Gao, P. Liu, Metal organic framework (ZIF-67)-derived hollow CoS2/N-doped carbon nanotube composites for extraordinary electromagnetic wave absorption. Compos. B Eng. 163, 67–76 (2019). https://doi.org/10.1016/j.compositesb.2018.11.008
P. Liu, C. Zhu, S. Gao, C. Guan, Y. Huang et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 163, 348–359 (2020). https://doi.org/10.1016/j.carbon.2020.03.041
K. Wang, Y. Chen, R. Tian, H. Li, Y. Zhou et al., Porous Co-C core–shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces 10, 11333–11342 (2018). https://doi.org/10.1021/acsami.8b00965
L. Huang, X. Liu, R. Yu, An efficient Co/C microwave absorber with tunable Co nanoparticles derived from a ZnCo bimetallic zeolitic imidazolate framework. Part. Part. Syst. Char. 35, 1800107 (2018). https://doi.org/10.1002/ppsc.201800107
B.-Y. Zhu, P. Miao, J. Kong, X.-L. Zhang, G.-Y. Wang et al., Co/C composite derived from a newly constructed metal–organic framework for effective microwave absorption. Cryst. Growth Des. 19, 1518–1524 (2019). https://doi.org/10.1021/acs.cgd.9b00064
J. Li, P. Miao, K.-J. Chen, J.-W. Cao, J. Liang et al., Highly effective electromagnetic wave absorbing prismatic Co/C nanocomposites derived from cubic metal–organic framework. Compos. B Eng. 182, 107613 (2020). https://doi.org/10.1016/j.compositesb.2019.107613
X. Xiao, W. Zhu, Z. Tan, W. Tian, Y. Guo et al., Ultra-small Co/CNTs nanohybrid from metal organic framework with highly efficient microwave absorption. Compos. B Eng. 152, 316–323 (2018). https://doi.org/10.1016/j.compositesb.2018.08.109
Z. Li, X. Han, Y. Ma, D. Liu, Y. Wang et al., MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 6, 8904–8913 (2018). https://doi.org/10.1021/acssuschemeng.8b01270
H. Wang, L. Xiang, W. Wei, J. An, J. He et al., Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl. Mater. Interfaces 9, 42102–42110 (2017). https://doi.org/10.1021/acsami.7b13796
W. Liu, S. Tan, Z. Yang, G. Ji, Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 10, 31610–31622 (2018). https://doi.org/10.1021/acsami.8b10685
W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12, 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
N. Yang, Z.-X. Luo, G.-R. Zhu, S.-C. Chen, X.-L. Wang et al., Ultralight three-dimensional hierarchical cobalt nanocrystals/N-doped CNTs/carbon sponge composites with a hollow skeleton toward superior microwave absorption. ACS Appl. Mater. Interfaces 11, 35987–35998 (2019). https://doi.org/10.1021/acsami.9b11101
M.L. Yang, Y. Yuan, Y. Li, X.X. Sun, S.S. Wang et al., Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal–organic-framework. Carbon 161, 517–527 (2020). https://doi.org/10.1016/j.carbon.2020.01.073
L. Wang, X. Bai, B. Wen, Z. Du, Y. Lin, Honeycomb-like Co/C composites derived from hierarchically nanoporous ZIF-67 as a lightweight and highly efficient microwave absorber. Compos. B. Eng. 166, 464–471 (2019). https://doi.org/10.1016/j.compositesb.2019.02.054
X. Xu, F. Ran, Z. Fan, H. Lai, Z. Cheng et al., Cactus-inspired bimetallic metal–organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl. Mater. Interfaces 11, 13564–13573 (2019). https://doi.org/10.1021/acsami.9b00356
R. Shu, W. Li, Y. Wu, J. Zhang, G. Zhang, Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frameworks for electromagnetic wave absorption in the X-band. Chem. Eng. J. 362, 513–524 (2019). https://doi.org/10.1016/j.cej.2019.01.090
W. Feng, Y. Wang, J. Chen, B. Li, L. Guo et al., Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties. J. Mater. Chem. C 6, 10–18 (2018). https://doi.org/10.1039/c7tc03784h
N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu et al., Achieving superior electromagnetic wave absorbers through the novel metal–organic frameworks derived magnetic porous carbon nanorods. Carbon 145, 433–444 (2019). https://doi.org/10.1016/j.carbon.2019.01.028
P. Miao, R. Zhou, K. Chen, J. Liang, Q. Ban et al., Tunable electromagnetic wave absorption of supramolecular isomer-derived nanocomposites with different morphology. Adv. Mater. Interfaces 7, 1901820 (2020). https://doi.org/10.1002/admi.201901820
Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived Fe/carbon porous composite with low fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
W. Liu, Q. Shao, G. Ji, X. Liang, Y. Cheng et al., Metal–organic-frameworks derived porous carbon-wrapped Ni composites with optimized impedance matching as excellent lightweight electromagnetic wave absorber. Chem. Eng. J. 313, 734–744 (2017). https://doi.org/10.1016/j.cej.2016.12.117
J. Yan, Y. Huang, Y. Yan, L. Ding, P. Liu, High-performance electromagnetic wave absorbers based on two kinds of nickel-based MOF-derived Ni@C microspheres. ACS Appl. Mater. Interfaces 11, 40781–40792 (2019). https://doi.org/10.1021/acsami.9b12850
D. Liu, Y. Du, P. Xu, N. Liu, Y. Wang et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C 7(17), 5037–5046 (2019). https://doi.org/10.1039/c9tc00771g
L. Wang, B. Wen, H. Yang, Y. Qiu, N. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A Appl. Sci. Manuf. 135, 105958 (2020). https://doi.org/10.1016/j.compositesa.2020.105958
X. Zhang, G. Ji, W. Liu, B. Quan, X. Liang et al., Thermal conversion of an Fe3O4@metal–organic framework: A new method for an efficient Fe–Co/nanoporous carbon microwave absorbing material. Nanoscale 7, 12932–12942 (2015). https://doi.org/10.1039/c5nr03176a
S. Wang, Y. Xu, R. Fu, H. Zhu, Q. Jiao et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption. Nano-Micro Lett. 11, 76 (2019). https://doi.org/10.1007/s40820-019-0307-8
Y. Xiong, L. Xu, C. Yang, Q. Sun, X. Xu, Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 8, 18863–18871 (2020). https://doi.org/10.1039/d0ta05540a
Y. Wang, H. Wang, J. Ye, L. Shi, X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption. Chem. Eng. J. 383, 123096 (2020). https://doi.org/10.1016/j.cej.2019.123096
Y.-L. Wang, S.-H. Yang, H.-Y. Wang, G.-S. Wang, X.-B. Sun et al., Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 167, 485–494 (2020). https://doi.org/10.1016/j.carbon.2020.06.014
X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal–organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12, 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
L. Wang, M. Huang, X. Yu, W. You, J. Zhang et al., MOF-derived Ni1−xCox@carbon with tunable nano–microstructure as lightweight and highly efficient electromagnetic wave absorber. Nano-Micro Lett. 12, 150 (2020). https://doi.org/10.1007/s40820-020-00488-0
J. Xiong, Z. Xiang, J. Zhao, L. Yu, E. Cui et al., Layered nico alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 154, 391–401 (2019). https://doi.org/10.1016/j.carbon.2019.07.096
X. Xu, F. Ran, H. Lai, Z. Cheng, T. Lv et al., In situ confined bimetallic metal–organic framework derived nanostructure within 3D interconnected bamboo-like carbon nanotube networks for boosting electromagnetic wave absorbing performances. ACS Appl. Mater. Interfaces 11, 35999–36009 (2019). https://doi.org/10.1021/acsami.9b14754
J. Ouyang, Z. He, Y. Zhang, H. Yang, Q. Zhao, Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal–organic frameworks with superior electromagnetic wave absorption ability. ACS Appl. Mater. Interfaces 11, 39304–39314 (2019). https://doi.org/10.1021/acsami.9b11430
Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal–organic frameworks. Carbon 142, 20–31 (2019). https://doi.org/10.1016/j.carbon.2018.10.014
W. Liu, L. Liu, G. Ji, D. Li, Y. Zhang et al., Composition design and structural characterization of MOF-derived composites with controllable electromagnetic properties. ACS Sustain. Chem. Eng. 5, 7961–7971 (2017). https://doi.org/10.1021/acssuschemeng.7b01514
B. Deng, Z. Xiang, J. Xiong, Z. Liu, L. Yu et al., Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe-MOFs hybrids for electromagnetic absorption. Nano-Micro Lett. 12, 55 (2020). https://doi.org/10.1007/s40820-020-0398-2
C. Zhou, C. Wu, D. Liu, M. Yan, Metal–organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight and high-efficiency electromagnetic wave absorber. Chem. Eur. J. 25, 2234–2241 (2018). https://doi.org/10.1002/chem.201805565
X. Liang, B. Quan, G. Ji, W. Liu, Y. Cheng et al., Novel nanoporous carbon derived from metal–organic frameworks with tunable electromagnetic wave absorption capabilities. Inorg. Chem. Front. 3, 1516–1526 (2016). https://doi.org/10.1039/c6qi00359a
W. Feng, Y. Wang, Y. Zou, J. Chen, D. Jia et al., ZnO@N-doped porous carbon/Co3ZnC core–shell heterostructures with enhanced electromagnetic wave attenuation ability. Chem. Eng. J. 342, 364–371 (2018). https://doi.org/10.1016/j.cej.2018.02.078
W. Liu, L. Liu, Z. Yang, J. Xu, Y. Hou et al., A versatile route toward the electromagnetic functionalization of metal–organic framework-derived three-dimensional nanoporous carbon composites. ACS Appl. Mater. Interfaces 10, 8965–8975 (2018). https://doi.org/10.1021/acsami.8b00320
L. Huang, C. Chen, X. Huang, S. Ruan, Y.-J. Zeng, Enhanced electromagnetic absorbing performance of MOF-derived Ni/NiO/Cu@C composites. Compos. B Eng. 164, 583–589 (2019). https://doi.org/10.1016/j.compositesb.2019.01.081
X. Zhang, J. Qiao, J. Zhao, D. Xu, F. Wang et al., High-efficiency electromagnetic wave absorption of cobalt-decorated NH2-UiO-66-derived porous ZrO2/C. ACS Appl. Mater. Interfaces 11, 35959–35968 (2019). https://doi.org/10.1021/acsami.9b10168
R. Wang, M. He, Y. Zhou, S. Nie, Y. Wang et al., Metal−organic frameworks self-templated cubic hollow Co/N/C@MnO2 composites for electromagnetic wave absorption. Carbon 156, 378–388 (2020). https://doi.org/10.1016/j.carbon.2019.09.063
Y. Zhang, Z. Yang, M. Li, L. Yang, J. Liu et al., Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039
Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang, Metal–organic framework-based Pb@MoS2 core–shell microcubes with high efficiency and broad bandwidth for microwave absorption performance. ACS Sustain. Chem. Eng. 7, 7183–7192 (2019). https://doi.org/10.1021/acssuschemeng.9b00191
X. Liu, C. Hao, L. He, C. Yang, Y. Chen et al., Yolk–shell structured Co-C/void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 11, 4169–4182 (2018). https://doi.org/10.1007/s12274-018-2006-z
K. Zhang, F. Wu, A. Xie, M. Sun, W. Dong, In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces 9, 33041–33048 (2017). https://doi.org/10.1021/acsami.7b11592
H. Xu, X. Yin, M. Li, F. Ye, M. Han et al., Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 132, 343–351 (2018). https://doi.org/10.1016/j.carbon.2018.02.040
W. Feng, Y. Wang, J. Chen, L. Wang, L. Guo et al., Reduced graphene oxide decorated with in-situ growing zno nanocrystals: Facile synthesis and enhanced microwave absorption properties. Carbon 108, 52–60 (2016). https://doi.org/10.1016/j.carbon.2016.06.084
M.N. Lyulyukin, P.A. Kolinko, D.S. Selishchev, D.V. Kozlov, Hygienic aspects of TiO2-mediated photocatalytic oxidation of volatile organic compounds: Air purification analysis using a total hazard index. Appl. Catal. B Environ. 220, 386–396 (2018). https://doi.org/10.1016/j.apcatb.2017.08.020
N. Wu, H. Lv, J. Liu, Y. Liu, S. Wang et al., Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys. Chem. Chem. Phys. 18, 31542–31550 (2016). https://doi.org/10.1039/c6cp06066h
Z. Man, P. Li, D. Zhou, Y. Wang, X. Liang et al., Two birds with one stone: FeS2@C yolk–shell composite for high-performance sodium-ion energy storage and electromagnetic wave absorption. Nano Lett. 20, 3769–3777 (2020). https://doi.org/10.1021/acs.nanolett.0c00789
M. Mebarki, A. Layadi, A. Guittoum, A. Benabbas, B. Ghebouli et al., Structural and electrical properties of evaporated fe thin films. Appl. Surf. Sci. 257, 7025–7029 (2011). https://doi.org/10.1016/j.apsusc.2011.02.114
B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao et al., Yolk–shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 8, 28917–28925 (2016). https://doi.org/10.1021/acsami.6b10886
L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: As a lightweight and high-performance microwave absorber. ACS Appl. Mater. Interfaces 10, 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414
B. Zhao, X. Guo, W. Zhao, J. Deng, B. Fan et al., Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties. Nano Res. 10, 331–343 (2017). https://doi.org/10.1007/s12274-016-1295-3
W. Lv, Q. Mei, J. Xiao, M. Du, Q. Zheng, 3D multiscale superhydrophilic sponges with delicately designed pore size for ultrafast oil/water separation. Adv. Funct. Mater. 27, 1704293 (2017). https://doi.org/10.1002/adfm.201704293
L. Wang, Y. Guan, X. Qiu, H. Zhu, S. Pan et al., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem. Eng. J. 326, 945–955 (2017). https://doi.org/10.1016/j.cej.2017.06.006