Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries
Corresponding Author: Jiang Zhou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 69
Abstract
Zinc-ion batteries (ZIBs) is a promising electrical energy storage candidate due to its eco-friendliness, low cost, and intrinsic safety, but on the cathode the element dissolution and the formation of irreversible products, and on the anode the growth of dendrite as well as irreversible products hinder its practical application. Herein, we propose a new type of the inorganic highly concentrated colloidal electrolytes (HCCE) for ZIBs promoting simultaneous robust protection of both cathode/anode leading to an effective suppression of element dissolution, dendrite, and irreversible products growth. The new HCCE has high Zn2+ ion transference number (0.64) endowed by the limitation of SO42−, the competitive ion conductivity (1.1 × 10–2 S cm−1) and Zn2+ ion diffusion enabled by the uniform pore distribution (3.6 nm) and the limited free water. The Zn/HCCE/α-MnO2 cells exhibit high durability under both high and low current densities, which is almost 100% capacity retention at 200 mA g−1 after 400 cycles (290 mAh g−1) and 89% capacity retention under 500 mA g−1 after 1000 cycles (212 mAh g−1). Considering material sustainability and batteries’ high performances, the colloidal electrolyte may provide a feasible substitute beyond the liquid and all-solid-state electrolyte of ZIBs.
Highlights:
1 The Zn/MnO2 cell with inorganic colloidal electrolyte demonstrates unprecedented durability over 1000 cycles.
2 For the cathode, the presence of the protective film can inhibit the dissolution of manganese element and the formation of irreversible by-products.
3 For the anode, it can reduce the corrosion and de-solvation energy, inhibit the growth of dendrite and irreversible by-products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
- J. Zhou, L. Shan, B. Tang, S. Liang, Development and challenges of aqueous rechargeable zinc batteries. Sci. Bull. 65, 3562–3584 (2020). https://doi.org/10.1360/TB-2020-0352
- X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anode. Adv. Sci. 7(21), 2002173 (2020). https://doi.org/10.1002/advs.202002173
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- J. Huang, J. Zhou, S. Liang, Guest preintercalation strategy to boost the electrochemical performance of aqueous zinc ion battery cathoodes. Acta Phys. Chim. Sin. 37, 2005020 (2021). https://doi.org/10.3866/PKU.WHXB202005020
- Y. Liu, C. Li, J. Xu, M. Ou, C. Fang et al., Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery. Nano Energy 67, 104211 (2020). https://doi.org/10.1016/j.nanoen.2019.104211
- W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass loading cathode for aqueous zinc-ion battery based on graphene wrapped aluminium vanadate nanobelts. Nano-Micro Lett. 11(1), 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12(1), 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
- W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
- S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
- T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- J. Zhao, Y. Li, X. Peng, S. Dong, J. Ma et al., High-voltage Zn/LiMn0. 8Fe0. 2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochem. Commun. 69, 6–10 (2016). https://doi.org/10.1016/j.elecom.2016.05.014
- J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
- J. Shin, J. Lee, Y. Park, J.K. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11, 2028–2044 (2020). https://doi.org/10.1039/D0SC00022A
- M. He, K. Fic, E. Frackowiak, P. Novak, E.J. Berg, Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors. Energy Storage Mater. 5, 111–115 (2016). https://doi.org/10.1016/j.ensm.2016.06.001
- D. Shanbhag, K. Bindu, A.R. Aarathy, M. Ramesh, M. Sreejesh et al., Hydrothermally synthesized reduced graphene oxide and Sn doped manganese dioxide nanocomposites for supercapacitoes and dopamine sensors. Mater. Today Energy 4, 66–74 (2017). https://doi.org/10.1016/j.mtener.2017.03.006
- A.P.D. Balan, P. Pushpaletha, Metal supported and metal ion exchanged catalysts from palygorskite for acetylation reaction. Indian J. Chem. 57A, 649–654 (2018)
- W. Wang, A. Wang, 2-palygorskite nanomaterials: structure, properties, and functional applications. Nanomater. Clay Miner. (2019). https://doi.org/10.1016/B978-0-12-814533-3.00002-8
- S.C. Peng, C.H. Huang, T.H. Chen, Y.S. Yang, J.Q. Wang, The adsorption of Zn~(2+) on palygorskite and the optimization of the adsorption technological conditions. Acta Petrologica Et Mineralogica 23(3), 282–286 (2004). https://doi.org/10.1007/BF02873097
- M. Suárez, E. Garcia, FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl. Clay Sci. 31(1–2), 154–163 (2006). https://doi.org/10.1016/j.clay.2005.10.005
- H. Chen, A. Zhong, J. Wu, J. Zhao, H. Yan, Adsorption behaviors and mechanisms of methyl orange on heat-treated palygorskite clay. Ind. Eng. Chem. Res. 51(43), 14026–14036 (2012). https://doi.org/10.1021/ie300702j
- V. Bekiari, G. Panagopoulos, D. Papoulis, D. Panagiotaras, Use of halloysite nanotubes to reduce ammonium concentration in water and wastewaters. Mater. Res. Innov. 21, 313–319 (2017). https://doi.org/10.1080/14328917.2016.1215079
- C.V. Lazaratou, D. Panagiotaras, M. Georgios Panagopoulos, D. Papoulis. Pospisil, Ca treated palygorskite and halloysite clay minerals for ferrous iron (Fe2+) removal from water systems. Environ. Thchnol. Innov. 19, 100961 (2020). https://doi.org/10.1016/j.eti.2020.100961
- M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liuqid crystals. Nano Energy 47, 43–50 (2018). https://doi.org/10.1016/j.nanoen.2018.02.022
- B. Badu, A. Balducci, Self-discharge of lithium-ion capacitors. J. Power Sources Adv. 5, 100026 (2020). https://doi.org/10.1016/j.powera.2020.100026
- Z. Wang, X. Chu, Z. Xu, H. Su, C. Yan et al., Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer. J. Mater. Chem. A 7(14), 8633–8640 (2019). https://doi.org/10.1039/C9TA01028A
- K. Ragavendran, H. Xia, P. Mandal, A.K. Arof, Jahn-Teller effect in LiMn2O4: influence on charge ordering magnetoresistance and battery performance. Phys. Chem. Chem. Phys. 19(3), 2073–2077 (2017). https://doi.org/10.1039/c6cp07289e
- T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao et al., Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10(1), 4721 (2019). https://doi.org/10.1038/s41467-019-12626-3
- C. Zhan, J. Lu, A.J. Kropf, T. Wu, A.N. Jansen et al., Mn (II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nat. Commun. 4, 2437 (2013). https://doi.org/10.1038/ncomms3437
- C.F. Bischoff, O.S. Fitz, J. Burns, M. Bauer, H. Gentischer et al., Revealing the local pH value changes of acidic aqueous zinc ion batteries with a manganese dioxide electrode during cycling. J. Electrochem. Soc. 167(2), 020545 (2020). https://doi.org/10.1149/1945-7111/ab6c57
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151(8), A1120-1123 (2004). https://doi.org/10.1149/1.1763141
- C. Yan, H.R. Li, X. Chen, X.Q. Zhang, X.B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141(23), 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
- K. Xu, A. von Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
- D. Kundu, S.H. Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transference kinetics and interface stability for high-performance zinc metal anode. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion btteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- P. Oberholzer, E. Tervoort, A. Bouzid, A. Pasquarello, D. Kundu, Oxide versus nanoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl. Mater. Interfaces 11(1), 674–682 (2019). https://doi.org/10.1021/acsami.8b16284
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- Y. Wen, J. Cheng, L. Zhang, X. Yan, Y. Yang, The inhibition of the spongy electrocrystallization of zinc from doped flowing alkaline zincate solutions. J. Power Sources 193(2), 890–894 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.047
- C.J. Lan, C.Y. Lee, T.S. Chin, Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochim. Acta 52(17), 5407–5416 (2007). https://doi.org/10.1016/j.electacta.2007.02.063
- H. Inoue, M. Kurosaki, S. Nohara, Deposition of zinc in polymer hydrogel electrolyte. J. Electrochem. Soc. 4, 396 (2008). https://doi.org/10.1016/jelectacta.2007.02.063
- J. Xu, W. Wang, B. Mu, A. Wang, Effects of inorganic sulfates on the microstructure and properties of ion- exchange treated palygorskite clay. Colloids and Surfaces A: Physicochem. Eng. Aspects 405(5), 59–64 (2012). https://doi.org/10.1016/j.colsurfa.2012.04.037
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saruteted electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/ange.202001844
- R. Dong, Y. Liu, X. Wang, J. Huang, Adsorption of sulfate ions from aqueous solution by surfactant-modified palygorskite. J. Chem. Eng. Data 56(10), 3890–3896 (2011). https://doi.org/10.1021/je200544n
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 1–12 (2019). https://doi.org/10.1038/s41467-019-13436-3
References
N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng et al., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 49(13), 4203–4219 (2020). https://doi.org/10.1039/C9CS00349E
J. Zhou, L. Shan, B. Tang, S. Liang, Development and challenges of aqueous rechargeable zinc batteries. Sci. Bull. 65, 3562–3584 (2020). https://doi.org/10.1360/TB-2020-0352
X. Liu, F. Yang, W. Xu, Y. Zeng, J. He et al., Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anode. Adv. Sci. 7(21), 2002173 (2020). https://doi.org/10.1002/advs.202002173
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
J. Huang, J. Zhou, S. Liang, Guest preintercalation strategy to boost the electrochemical performance of aqueous zinc ion battery cathoodes. Acta Phys. Chim. Sin. 37, 2005020 (2021). https://doi.org/10.3866/PKU.WHXB202005020
Y. Liu, C. Li, J. Xu, M. Ou, C. Fang et al., Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery. Nano Energy 67, 104211 (2020). https://doi.org/10.1016/j.nanoen.2019.104211
W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass loading cathode for aqueous zinc-ion battery based on graphene wrapped aluminium vanadate nanobelts. Nano-Micro Lett. 11(1), 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12(1), 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30(32), 1803181 (2018). https://doi.org/10.1002/adma.201803181
W. Xu, Y. Wang, Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 11, 90 (2019). https://doi.org/10.1007/s40820-019-0322-9
S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan et al., Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci. 13, 4625–4665 (2020). https://doi.org/10.1039/D0EE02620D
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
J. Zhao, Y. Li, X. Peng, S. Dong, J. Ma et al., High-voltage Zn/LiMn0. 8Fe0. 2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochem. Commun. 69, 6–10 (2016). https://doi.org/10.1016/j.elecom.2016.05.014
J. Zhao, J. Zhang, W. Yang, B. Chen, Z. Zhao et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy 57, 625–634 (2019). https://doi.org/10.1016/j.nanoen.2018.12.086
J. Shin, J. Lee, Y. Park, J.K. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11, 2028–2044 (2020). https://doi.org/10.1039/D0SC00022A
M. He, K. Fic, E. Frackowiak, P. Novak, E.J. Berg, Influence of aqueous electrolyte concentration on parasitic reactions in high-voltage electrochemical capacitors. Energy Storage Mater. 5, 111–115 (2016). https://doi.org/10.1016/j.ensm.2016.06.001
D. Shanbhag, K. Bindu, A.R. Aarathy, M. Ramesh, M. Sreejesh et al., Hydrothermally synthesized reduced graphene oxide and Sn doped manganese dioxide nanocomposites for supercapacitoes and dopamine sensors. Mater. Today Energy 4, 66–74 (2017). https://doi.org/10.1016/j.mtener.2017.03.006
A.P.D. Balan, P. Pushpaletha, Metal supported and metal ion exchanged catalysts from palygorskite for acetylation reaction. Indian J. Chem. 57A, 649–654 (2018)
W. Wang, A. Wang, 2-palygorskite nanomaterials: structure, properties, and functional applications. Nanomater. Clay Miner. (2019). https://doi.org/10.1016/B978-0-12-814533-3.00002-8
S.C. Peng, C.H. Huang, T.H. Chen, Y.S. Yang, J.Q. Wang, The adsorption of Zn~(2+) on palygorskite and the optimization of the adsorption technological conditions. Acta Petrologica Et Mineralogica 23(3), 282–286 (2004). https://doi.org/10.1007/BF02873097
M. Suárez, E. Garcia, FTIR spectroscopic study of palygorskite: influence of the composition of the octahedral sheet. Appl. Clay Sci. 31(1–2), 154–163 (2006). https://doi.org/10.1016/j.clay.2005.10.005
H. Chen, A. Zhong, J. Wu, J. Zhao, H. Yan, Adsorption behaviors and mechanisms of methyl orange on heat-treated palygorskite clay. Ind. Eng. Chem. Res. 51(43), 14026–14036 (2012). https://doi.org/10.1021/ie300702j
V. Bekiari, G. Panagopoulos, D. Papoulis, D. Panagiotaras, Use of halloysite nanotubes to reduce ammonium concentration in water and wastewaters. Mater. Res. Innov. 21, 313–319 (2017). https://doi.org/10.1080/14328917.2016.1215079
C.V. Lazaratou, D. Panagiotaras, M. Georgios Panagopoulos, D. Papoulis. Pospisil, Ca treated palygorskite and halloysite clay minerals for ferrous iron (Fe2+) removal from water systems. Environ. Thchnol. Innov. 19, 100961 (2020). https://doi.org/10.1016/j.eti.2020.100961
M. Xia, J. Nie, Z. Zhang, X. Lu, Z.L. Wang, Suppressing self-discharge of supercapacitors via electrorheological effect of liuqid crystals. Nano Energy 47, 43–50 (2018). https://doi.org/10.1016/j.nanoen.2018.02.022
B. Badu, A. Balducci, Self-discharge of lithium-ion capacitors. J. Power Sources Adv. 5, 100026 (2020). https://doi.org/10.1016/j.powera.2020.100026
Z. Wang, X. Chu, Z. Xu, H. Su, C. Yan et al., Extremely low self-discharge solid-state supercapacitors via the confinement effect of ion transfer. J. Mater. Chem. A 7(14), 8633–8640 (2019). https://doi.org/10.1039/C9TA01028A
K. Ragavendran, H. Xia, P. Mandal, A.K. Arof, Jahn-Teller effect in LiMn2O4: influence on charge ordering magnetoresistance and battery performance. Phys. Chem. Chem. Phys. 19(3), 2073–2077 (2017). https://doi.org/10.1039/c6cp07289e
T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao et al., Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat. Commun. 10(1), 4721 (2019). https://doi.org/10.1038/s41467-019-12626-3
C. Zhan, J. Lu, A.J. Kropf, T. Wu, A.N. Jansen et al., Mn (II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nat. Commun. 4, 2437 (2013). https://doi.org/10.1038/ncomms3437
C.F. Bischoff, O.S. Fitz, J. Burns, M. Bauer, H. Gentischer et al., Revealing the local pH value changes of acidic aqueous zinc ion batteries with a manganese dioxide electrode during cycling. J. Electrochem. Soc. 167(2), 020545 (2020). https://doi.org/10.1149/1945-7111/ab6c57
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151(8), A1120-1123 (2004). https://doi.org/10.1149/1.1763141
C. Yan, H.R. Li, X. Chen, X.Q. Zhang, X.B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141(23), 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
K. Xu, A. von Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
D. Kundu, S.H. Vajargah, L. Wan, B. Adams, D. Prendergast et al., Aqueous vs nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/C8EE00378E
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transference kinetics and interface stability for high-performance zinc metal anode. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion btteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
P. Oberholzer, E. Tervoort, A. Bouzid, A. Pasquarello, D. Kundu, Oxide versus nanoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS Appl. Mater. Interfaces 11(1), 674–682 (2019). https://doi.org/10.1021/acsami.8b16284
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
Y. Wen, J. Cheng, L. Zhang, X. Yan, Y. Yang, The inhibition of the spongy electrocrystallization of zinc from doped flowing alkaline zincate solutions. J. Power Sources 193(2), 890–894 (2009). https://doi.org/10.1016/j.jpowsour.2009.04.047
C.J. Lan, C.Y. Lee, T.S. Chin, Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries. Electrochim. Acta 52(17), 5407–5416 (2007). https://doi.org/10.1016/j.electacta.2007.02.063
H. Inoue, M. Kurosaki, S. Nohara, Deposition of zinc in polymer hydrogel electrolyte. J. Electrochem. Soc. 4, 396 (2008). https://doi.org/10.1016/jelectacta.2007.02.063
J. Xu, W. Wang, B. Mu, A. Wang, Effects of inorganic sulfates on the microstructure and properties of ion- exchange treated palygorskite clay. Colloids and Surfaces A: Physicochem. Eng. Aspects 405(5), 59–64 (2012). https://doi.org/10.1016/j.colsurfa.2012.04.037
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saruteted electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/ange.202001844
R. Dong, Y. Liu, X. Wang, J. Huang, Adsorption of sulfate ions from aqueous solution by surfactant-modified palygorskite. J. Chem. Eng. Data 56(10), 3890–3896 (2011). https://doi.org/10.1021/je200544n
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 1–12 (2019). https://doi.org/10.1038/s41467-019-13436-3