V2O5 Nanospheres with Mixed Vanadium Valences as High Electrochemically Active Aqueous Zinc-Ion Battery Cathode
Corresponding Author: Shuquan Liang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 25
Abstract
A V4+-V2O5 cathode with mixed vanadium valences was prepared via a novel synthetic method using VOOH as the precursor, and its zinc-ion storage performance was evaluated. The products are hollow spheres consisting of nanoflakes. The V4+-V2O5 cathode exhibits a prominent cycling performance, with a specific capacity of 140 mAh g−1 after 1000 cycles at 10 A g−1, and an excellent rate capability. The good electrochemical performance is attributed to the presence of V4+, which leads to higher electrochemical activity, lower polarization, faster ion diffusion, and higher electrical conductivity than V2O5 without V4+. This engineering strategy of valence state manipulation may pave the way for designing high-performance cathodes for elucidating advanced battery chemistry.
Highlights:
1 Hollow V4+-V2O5 nanospheres are prepared by a novel and simple method using VOOH as the precursor.
2 V4+-V2O5 with mixed vanadium valences is firstly constructed as an electrochemically active cathode for aqueous zinc-ion batteries.
3 The V4+-V2O5 cathode exhibits a prominent cycling performance up to 1000 cycles and an excellent rate capability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). https://doi.org/10.1126/science.1122152
- J. Yao, Y. Li, R.C. Massé, E. Uchaker, G. Cao, Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 11, 205–259 (2018). https://doi.org/10.1016/j.ensm.2017.10.014
- Y. Li, C. Liu, Z. Xie, J. Yao, G. Cao, Superior sodium storage performance of additive-free V2O5 thin film electrodes. J. Mater. Chem. A 5(32), 16590–16594 (2017). https://doi.org/10.1039/C7TA05007K
- H. Gao, S. Xin, J.B. Goodenough, The origin of superior performance of Co(OH)2 in hybrid supercapacitors. Chem 3(1), 26–28 (2017). https://doi.org/10.1016/j.chempr.2017.06.008
- H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with nasicon-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10, 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
- H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
- S.-D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo et al., Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29(11), 4874–4884 (2017). https://doi.org/10.1021/acs.chemmater.7b00852
- B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang, S. Liang, Binder-free stainless steel@Mn3O4 nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 6(20), 9677–9683 (2018). https://doi.org/10.1039/C8TA01198B
- M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27(10), 3609–3620 (2015). https://doi.org/10.1021/cm504717p
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- Z. Jia, B. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mol. Cell. Proteom. 149–150, 601–606 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.014
- P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 aqueous hybrid-Ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces. 9(49), 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
- Q. Pang, C.L. Sun, Y.H. Yu, K.N. Zhao, Z.Y. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16.1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18(4), 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
- X. Guo, G. Fang, W. Zhang, J. Zhou, L. Shan et al., Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 8(27), 1801819 (2018). https://doi.org/10.1002/aenm.201801819
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7, 940–945 (2019). https://doi.org/10.1039/c8ta09338e
- F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10), 2602–2609 (2018). https://doi.org/10.1021/acsenergylett.8b01423
- J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, S. Liang, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/c8cc02250j
- H. Song, C. Liu, C. Zhang, G. Cao, Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy 22, 1–10 (2016). https://doi.org/10.1016/j.nanoen.2016.02.004
- D. Liu, Y. Liu, B.B. Garcia, Q. Zhang, A. Pan, Y.-H. Jeong, G. Cao, V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2 annealing. J. Mater. Chem. 19(46), 8789–8795 (2009). https://doi.org/10.1039/b914436f
- D. Liu, Y. Liu, A. Pan, K.P. Nagle, G.T. Seidler, Y.-H. Jeong, G. Cao, Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects. J. Phys. Chem. C 115(11), 4959–4965 (2011). https://doi.org/10.1021/jp111847s
- C. Wu, X. Zhang, B. Ning, J. Yang, Y. Xie, Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy. Inorg. Chem. 48(13), 6044–6054 (2009). https://doi.org/10.1021/ic900416v
- C.Z. Wu, Y. Xie, L.Y. Lei, S.Q. Hu, C.Z. OuYang, Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater. 18(13), 1727–1732 (2006). https://doi.org/10.1002/adma.200600065
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
- N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
- H. Li, T. Zhai, P. He, Y. Wang, E. Hosono, H. Zhou, Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. J. Mater. Chem. 21(6), 1780–1787 (2011). https://doi.org/10.1039/c0jm02788j
- G.A. Sawatzky, D. Post, X-ray photoelectron and auger spectroscopy study of some vanadium oxides. Phys. Rev. B 20(4), 1546–1555 (1979). https://doi.org/10.1103/PhysRevB.20.1546
- M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy. Mater. 7(23), 1700885 (2017). https://doi.org/10.1002/aenm.201700885
- Y. Liu, C. Liu, J. Li, Flexible free-standing hydrogen-treated titanium dioxide nanowire arrays as a high performance anode for lithium ion batteries. J. Mater. Chem. A 2(38), 15746–15751 (2014). https://doi.org/10.1039/c4ta03495c
- W. Ma, C. Zhang, C. Liu, X. Nan, H. Fu, G. Cao, Impacts of surface energy on lithium ion intercalation properties of V2O5. ACS Appl. Mater. Interfaces 8(30), 19542–19549 (2016). https://doi.org/10.1021/acsami.6b06359
- D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng et al., A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://doi.org/10.1002/adma.201400719
- D.T. Ngo, H.T.T. Le, C. Kim, J.-Y. Lee, J.G. Fisher, I.-D. Kim, C.-J. Park, Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 8(12), 3577–3588 (2015). https://doi.org/10.1039/c5ee02183a
- G. Fang, J. Zhou, Y. Hu, X. Cao, Y. Tang, S. Liang, Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. J. Power Sources 275, 694–701 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.052
- C. Liu, J. Yao, Z. Zou, Y. Li, G. Cao, Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Mater. Today Energy 11, 218–227 (2019). https://doi.org/10.1016/j.mtener.2018.12.003
- S. Liang, J. Zhou, G. Fang, C. Zhang, J. Wu, Y. Tang, A. Pan, Synthesis of mesoporous β-Na0.33V2O5 with enhanced electrochemical performance for lithium ion batteries. Electrochim. Acta 130, 119–126 (2014). https://doi.org/10.1016/j.electacta.2014.02.13
- S.-T. Myung, M. Kikuchi, C.S. Yoon, H. Yashiro, S.-J. Kim, Y.-K. Sun, B. Scrosati, Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6(9), 2609–2614 (2013). https://doi.org/10.1039/c3ee41960f
- Y. Sun, Z. Xie, Y. Li, Enhanced lithium storage performance of V2O5 with oxygen vacancy. RSC Adv. 8(69), 39371–39376 (2018). https://doi.org/10.1039/c8ra07326k
- V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
- G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
- P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017). https://doi.org/10.1002/smll.201702551
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energ. Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006). https://doi.org/10.1126/science.1122152
J. Yao, Y. Li, R.C. Massé, E. Uchaker, G. Cao, Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 11, 205–259 (2018). https://doi.org/10.1016/j.ensm.2017.10.014
Y. Li, C. Liu, Z. Xie, J. Yao, G. Cao, Superior sodium storage performance of additive-free V2O5 thin film electrodes. J. Mater. Chem. A 5(32), 16590–16594 (2017). https://doi.org/10.1039/C7TA05007K
H. Gao, S. Xin, J.B. Goodenough, The origin of superior performance of Co(OH)2 in hybrid supercapacitors. Chem 3(1), 26–28 (2017). https://doi.org/10.1016/j.chempr.2017.06.008
H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with nasicon-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3(10), 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
H. Xia, Q. Xu, J. Zhang, Recent progress on two-dimensional nanoflake ensembles for energy storage applications. Nano-Micro Lett. 10, 66 (2018). https://doi.org/10.1007/s40820-018-0219-z
H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1(5), 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1(10), 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17(6), 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. Chen, Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51(4), 933–935 (2012). https://doi.org/10.1002/anie.201106307
S.-D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo et al., Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29(11), 4874–4884 (2017). https://doi.org/10.1021/acs.chemmater.7b00852
B. Jiang, C. Xu, C. Wu, L. Dong, J. Li, F. Kang, Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
C. Zhu, G. Fang, J. Zhou, J. Guo, Z. Wang, C. Wang, J. Li, Y. Tang, S. Liang, Binder-free stainless steel@Mn3O4 nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J. Mater. Chem. A 6(20), 9677–9683 (2018). https://doi.org/10.1039/C8TA01198B
M.H. Alfaruqi, V. Mathew, J. Gim, S. Kim, J. Song, J.P. Baboo, S.H. Choi, J. Kim, Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27(10), 3609–3620 (2015). https://doi.org/10.1021/cm504717p
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
Z. Jia, B. Wang, Y. Wang, Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries. Mol. Cell. Proteom. 149–150, 601–606 (2015). https://doi.org/10.1016/j.matchemphys.2014.11.014
P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei et al., Zn/V2O5 aqueous hybrid-Ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces. 9(49), 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
Q. Pang, C.L. Sun, Y.H. Yu, K.N. Zhao, Z.Y. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9(1), 1656 (2018). https://doi.org/10.1038/s41467-018-04060-8
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei et al., Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy 51, 579–587 (2018). https://doi.org/10.1016/j.nanoen.2018.07.014
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16.1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18(4), 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
X. Guo, G. Fang, W. Zhang, J. Zhou, L. Shan et al., Mechanistic insights of Zn2+ storage in sodium vanadates. Adv. Energy Mater. 8(27), 1801819 (2018). https://doi.org/10.1002/aenm.201801819
P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
B. Tang, J. Zhou, G. Fang, F. Liu, C. Zhu, C. Wang, A. Pan, S. Liang, Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J. Mater. Chem. A 7, 940–945 (2019). https://doi.org/10.1039/c8ta09338e
F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. Alshareef, Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 3(10), 2602–2609 (2018). https://doi.org/10.1021/acsenergylett.8b01423
J. Zhou, L. Shan, Z. Wu, X. Guo, G. Fang, S. Liang, Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem. Commun. 54(35), 4457–4460 (2018). https://doi.org/10.1039/c8cc02250j
H. Song, C. Liu, C. Zhang, G. Cao, Self-doped V4+–V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance. Nano Energy 22, 1–10 (2016). https://doi.org/10.1016/j.nanoen.2016.02.004
D. Liu, Y. Liu, B.B. Garcia, Q. Zhang, A. Pan, Y.-H. Jeong, G. Cao, V2O5 xerogel electrodes with much enhanced lithium-ion intercalation properties with N2 annealing. J. Mater. Chem. 19(46), 8789–8795 (2009). https://doi.org/10.1039/b914436f
D. Liu, Y. Liu, A. Pan, K.P. Nagle, G.T. Seidler, Y.-H. Jeong, G. Cao, Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects. J. Phys. Chem. C 115(11), 4959–4965 (2011). https://doi.org/10.1021/jp111847s
C. Wu, X. Zhang, B. Ning, J. Yang, Y. Xie, Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy. Inorg. Chem. 48(13), 6044–6054 (2009). https://doi.org/10.1021/ic900416v
C.Z. Wu, Y. Xie, L.Y. Lei, S.Q. Hu, C.Z. OuYang, Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater. 18(13), 1727–1732 (2006). https://doi.org/10.1002/adma.200600065
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 30(1), 1703725 (2018). https://doi.org/10.1002/adma.201703725
N. Zhang, Y. Dong, M. Jia, X. Bian, Y. Wang, M. Qiu, J. Xu, Y. Liu, L. Jiao, F. Cheng, Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 3(6), 1366–1372 (2018). https://doi.org/10.1021/acsenergylett.8b00565
H. Li, T. Zhai, P. He, Y. Wang, E. Hosono, H. Zhou, Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries. J. Mater. Chem. 21(6), 1780–1787 (2011). https://doi.org/10.1039/c0jm02788j
G.A. Sawatzky, D. Post, X-ray photoelectron and auger spectroscopy study of some vanadium oxides. Phys. Rev. B 20(4), 1546–1555 (1979). https://doi.org/10.1103/PhysRevB.20.1546
M. Liu, B. Su, Y. Tang, X. Jiang, A. Yu, Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy. Mater. 7(23), 1700885 (2017). https://doi.org/10.1002/aenm.201700885
Y. Liu, C. Liu, J. Li, Flexible free-standing hydrogen-treated titanium dioxide nanowire arrays as a high performance anode for lithium ion batteries. J. Mater. Chem. A 2(38), 15746–15751 (2014). https://doi.org/10.1039/c4ta03495c
W. Ma, C. Zhang, C. Liu, X. Nan, H. Fu, G. Cao, Impacts of surface energy on lithium ion intercalation properties of V2O5. ACS Appl. Mater. Interfaces 8(30), 19542–19549 (2016). https://doi.org/10.1021/acsami.6b06359
D. Chao, X. Xia, J. Liu, Z. Fan, C.F. Ng et al., A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: a high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 26(33), 5794–5800 (2014). https://doi.org/10.1002/adma.201400719
D.T. Ngo, H.T.T. Le, C. Kim, J.-Y. Lee, J.G. Fisher, I.-D. Kim, C.-J. Park, Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ. Sci. 8(12), 3577–3588 (2015). https://doi.org/10.1039/c5ee02183a
G. Fang, J. Zhou, Y. Hu, X. Cao, Y. Tang, S. Liang, Facile synthesis of potassium vanadate cathode material with superior cycling stability for lithium ion batteries. J. Power Sources 275, 694–701 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.052
C. Liu, J. Yao, Z. Zou, Y. Li, G. Cao, Boosting the cycling stability of hydrated vanadium pentoxide by Y3+ pillaring for sodium-ion batteries. Mater. Today Energy 11, 218–227 (2019). https://doi.org/10.1016/j.mtener.2018.12.003
S. Liang, J. Zhou, G. Fang, C. Zhang, J. Wu, Y. Tang, A. Pan, Synthesis of mesoporous β-Na0.33V2O5 with enhanced electrochemical performance for lithium ion batteries. Electrochim. Acta 130, 119–126 (2014). https://doi.org/10.1016/j.electacta.2014.02.13
S.-T. Myung, M. Kikuchi, C.S. Yoon, H. Yashiro, S.-J. Kim, Y.-K. Sun, B. Scrosati, Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy Environ. Sci. 6(9), 2609–2614 (2013). https://doi.org/10.1039/c3ee41960f
Y. Sun, Z. Xie, Y. Li, Enhanced lithium storage performance of V2O5 with oxygen vacancy. RSC Adv. 8(69), 39371–39376 (2018). https://doi.org/10.1039/c8ra07326k
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruna, P. Simon, B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). https://doi.org/10.1038/nmat3601
G. Fang, Z. Wu, J. Zhou, C. Zhu, X. Cao et al., Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 8(19), 1703155 (2018). https://doi.org/10.1002/aenm.201703155
P. He, Y. Quan, X. Xu, M. Yan, W. Yang, Q. An, L. He, L. Mai, High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 13(47), 1702551 (2017). https://doi.org/10.1002/smll.201702551
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo et al., Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energ. Environ. Sci. 11, 3157–3162 (2018). https://doi.org/10.1039/c8ee01651h