Laser Synthesis and Microfabrication of Micro/Nanostructured Materials Toward Energy Conversion and Storage
Corresponding Author: Weijia Zhou
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 49
Abstract
Nanomaterials are known to exhibit a number of interesting physical and chemical properties for various applications, including energy conversion and storage, nanoscale electronics, sensors and actuators, photonics devices and even for biomedical purposes. In the past decade, laser as a synthetic technique and laser as a microfabrication technique facilitated nanomaterial preparation and nanostructure construction, including the laser processing-induced carbon and non-carbon nanomaterials, hierarchical structure construction, patterning, heteroatom doping, sputtering etching, and so on. The laser-induced nanomaterials and nanostructures have extended broad applications in electronic devices, such as light–thermal conversion, batteries, supercapacitors, sensor devices, actuators and electrocatalytic electrodes. Here, the recent developments in the laser synthesis of carbon-based and non-carbon-based nanomaterials are comprehensively summarized. An extensive overview on laser-enabled electronic devices for various applications is depicted. With the rapid progress made in the research on nanomaterial preparation through laser synthesis and laser microfabrication technologies, laser synthesis and microfabrication toward energy conversion and storage will undergo fast development.
Highlights:
1 The current understanding and advances on laser synthesis of nanomaterials are summarized.
2 The laser microfabrication-enabled energy conversion and storage devices are reviewed.
3 The limitations and solutions for current laser processing of nanomaterials and other more potential development directions for laser processing are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wang, D. Tran, J. Qian, F. Ding, D. Losic, MoS2/graphene composites as promising materials for energy storage and conversion applications. Adv. Mater. Interface 6(20), 1900915 (2019). https://doi.org/10.1002/admi.201900915
- T.S. Kim, Y. Lee, W. Xu, Y.H. Kim, M. Kim et al., Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy 58, 437–446 (2019). https://doi.org/10.1016/j.nanoen.2019.01.052
- M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31(1), 1802084 (2019). https://doi.org/10.1002/adma.201802084
- W. Dong, H. Liu, J.K. Behera, L. Lu, R.J.H. Ng et al., Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 29(6), 1806181 (2019). https://doi.org/10.1002/adfm.201806181
- D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29(26), 1606586 (2017). https://doi.org/10.1002/adma.201606586
- J. Bian, L. Zhou, X. Wan, C. Zhu, B. Yang et al., Laser transfer, printing, and assembly techniques for flexible electronics. Adv. Electron. Mater. 5(7), 1800900 (2019). https://doi.org/10.1002/aelm.201800900
- H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30(14), 1705148 (2018). https://doi.org/10.1002/adma.201705148
- S. Hong, H. Lee, J. Yeo, S.H. Ko, Digital selective laser methods for nanomaterials: from synthesis to processing. Nano Today 11(5), 547–564 (2016). https://doi.org/10.1016/j.nantod.2016.08.007
- C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31(2), 1805705 (2019). https://doi.org/10.1002/adma.201805705
- N.V. Sapra, K.Y. Yang, D. Vercruysse, K.J. Leedle, D.S. Black et al., On-chip integrated laser-driven particle accelerator. Science 367(6473), 79 (2020). https://doi.org/10.1126/science.aay5734
- A.A. Sergeev, D.V. Pavlov, A.A. Kuchmizhak, M.V. Lapine, W.K. Yiu et al., Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light-Sci. Appl. 9(1), 16 (2020). https://doi.org/10.1038/s41377-020-0247-6
- K. Gao, B. Wang, L. Tao, B.V. Cunning, Z. Zhang et al., Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and co-doping. Adv. Mater. 31(13), 1805121 (2019). https://doi.org/10.1002/adma.201805121
- R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
- R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019). https://doi.org/10.1002/adma.201803621
- R.D. Rodriguez, A. Khalelov, P.S. Postnikov, A. Lipovka, E. Dorozhko et al., Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Mater. Horiz. 7, 1030 (2020). https://doi.org/10.1039/C9MH01950B
- R. You, Y.Q. Liu, Y.L. Hao, D.D. Han, Y.L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2019). https://doi.org/10.1002/adma.201901981
- B. Ye, M. Lee, B. Jeong, J. Kim, D.H. Lee et al., Partially reduced graphene oxide as a support of Mn–Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catal. Today 328, 300–306 (2019). https://doi.org/10.1016/j.cattod.2018.12.007
- K.K.H. De Silva, H.H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017). https://doi.org/10.1016/j.carbon.2017.04.025
- Z. Pan, T. Hisatomi, Q. Wang, S. Chen, A. Iwase et al., Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv. Funct. Mater. 26(38), 7011–7019 (2016). https://doi.org/10.1002/adfm.201602657
- R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav et al., Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications. Coord. Chem. Rev. 342, 34–79 (2017). https://doi.org/10.1016/j.ccr.2017.03.021
- A. Antonelou, L. Sygellou, K. Vrettos, V. Georgakilas, S.N. Yannopoulos, Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139, 492–499 (2018). https://doi.org/10.1016/j.carbon.2018.07.012
- B. Xie, Y. Wang, W. Lai, W. Lin, Z. Lin et al., Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy 26, 276–285 (2016). https://doi.org/10.1016/j.nanoen.2016.04.045
- H. Cheng, J. Liu, Y. Zhao, C. Hu, Z. Zhang et al., Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 52(40), 10482–10486 (2013). https://doi.org/10.1002/anie.201304358
- H. Cheng, M. Ye, F. Zhao, C. Hu, Y. Zhao et al., A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization. Adv. Mater. 28(17), 3305–3312 (2016). https://doi.org/10.1002/adma.201505431
- M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326 (2012). https://doi.org/10.1126/science.1216744
- M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4(1), 1475 (2013). https://doi.org/10.1038/ncomms2446
- S. Luo, Y. Wang, G. Wang, F. Liu, Y. Zhai et al., Hybrid spray-coating, laser-scribing and ink-dispensing of graphene sensors/arrays with tunable piezoresistivity for in situ monitoring of composites. Carbon 139, 437–444 (2018). https://doi.org/10.1016/j.carbon.2018.07.014
- T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang et al., High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light-Sci. Appl. 9(1), 69 (2020). https://doi.org/10.1038/s41377-020-0311-2
- D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang et al., Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13(2), 2579–2586 (2019). https://doi.org/10.1021/acsnano.8b09626
- M.G. Stanford, J.T. Li, Y. Chen, E.A. McHugh, A. Liopo et al., Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano 13(10), 11912–11920 (2019). https://doi.org/10.1021/acsnano.9b05983
- C. Thamaraiselvan, J. Wang, D.K. James, P. Narkhede, S.P. Singh et al., Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Mater. Today 34, 115–131 (2019). https://doi.org/10.1016/j.mattod.2019.08.014
- J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5(1), 5714 (2014). https://doi.org/10.1038/ncomms6714
- Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
- M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J.M. Tour, Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13(3), 3474–3482 (2019). https://doi.org/10.1021/acsnano.8b09622
- Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6), 5868–5875 (2015). https://doi.org/10.1021/acsnano.5b00436
- H. Wang, H. Wang, Y. Wang, X. Su, C. Wang et al., Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 14(3), 3219–3226 (2020). https://doi.org/10.1021/acsnano.9b08638
- D.X. Luong, A.K. Subramanian, G.A.L. Silva, J. Yoon, S. Cofer, Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 30(28), 1707416 (2018). https://doi.org/10.1002/adma.201707416
- J. Sha, Y. Li, R. Villegas Salvatierra, T. Wang, P. Dong et al., Three-dimensional printed graphene foams. ACS Nano 11(7), 6860–6867 (2017). https://doi.org/10.1021/acsnano.7b01987
- R. Ye, X. Han, D.V. Kosynkin, Y. Li, C. Zhang et al., Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 12(2), 1083–1088 (2018). https://doi.org/10.1021/acsnano.7b05877
- J. Nasser, L. Groo, L. Zhang, H. Sodano, Laser induced graphene fibers for multifunctional aramid fiber reinforced composite. Carbon 158, 146–156 (2020). https://doi.org/10.1016/j.carbon.2019.11.078
- Y. Wang, Y. Wang, P. Zhang, F. Liu, S. Luo, Laser-induced freestanding graphene papers: a new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 14(36), 1802350 (2018). https://doi.org/10.1002/smll.201802350
- W. Zhang, Y. Lei, Q. Jiang, F. Ming, P.M.F.J. Costa et al., 3D laser scribed graphene derived from carbon nanospheres: an ultrahigh-power electrode for supercapacitors. Small Methods 3(5), 1900005 (2019). https://doi.org/10.1002/smtd.201900005
- F. Raimondi, S. Abolhassani, R. Brütsch, F. Geiger, T. Lippert et al., Quantification of polyimide carbonization after laser ablation. J. Appl. Phys. 88(6), 3659–3666 (2000). https://doi.org/10.1063/1.1289516
- F. Wang, W. Duan, K. Wang, X. Dong, M. Gao et al., Graphitized hierarchically porous carbon nanosheets derived from bakelite induced by high-repetition picosecond laser. Appl. Surf. Sci. 450, 155–163 (2018). https://doi.org/10.1016/j.apsusc.2018.04.130
- L.M. Ji, H. Lee, C.H.J. Lim, V.M. Murukeshan, Y. Kim, In direct laser writing of graphene oxide patterns using femtosecond laser pulses with different repetition rates, 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 31 July–4 Aug. 2017.
- J.B. Park, W. Xiong, Y. Gao, M. Qian, Z.Q. Xie et al., Fast growth of graphene patterns by laser direct writing. Appl. Phys. Lett. 98(12), 123109 (2011). https://doi.org/10.1063/1.3569720
- J.B. Park, W. Xiong, Z.Q. Xie, Y. Gao, M. Qian et al., Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Appl. Phys. Lett. 99(5), 053103 (2011). https://doi.org/10.1063/1.3622660
- X. Ye, J. Long, Z. Lin, H. Zhang, H. Zhu et al., Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon 68, 784–790 (2014). https://doi.org/10.1016/j.carbon.2013.11.069
- S. Lee, M.F. Toney, W. Ko, J.C. Randel, H.J. Jung et al., Laser-synthesized epitaxial graphene. ACS Nano 4(12), 7524–7530 (2010). https://doi.org/10.1021/nn101796e
- I. Choi, H.Y. Jeong, D.Y. Jung, M. Byun, C.G. Choi et al., Laser-induced solid-phase doped graphene. ACS Nano 8(8), 7671–7677 (2014). https://doi.org/10.1021/nn5032214
- S.N. Yannopoulos, A. Siokou, N.K. Nasikas, V. Dracopoulos, F. Ravani et al., CO2-laser-induced growth of epitaxial graphene on 6H-SiC(0001). Adv. Funct. Mater. 22(1), 113–120 (2012). https://doi.org/10.1002/adfm.201101413
- F. Stock, F. Antoni, L. Diebold, C. Chowde Gowda et al., UV laser annealing of diamond-like carbon layers obtained by pulsed laser deposition for optical and photovoltaic applications. Appl. Surf. Sci. 464, 562–566 (2019). https://doi.org/10.1016/j.apsusc.2018.09.085
- L.S. Fan, L. Constantin, D.W. Li, L. Liu, K. Keramatnejad et al., Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films. Light-Sci. Appl. 7(4), 17177–17177 (2018). https://doi.org/10.1038/lsa.2017.177
- F. Zhang, E. Alhajji, Y. Lei, N. Kurra, H.N. Alshareef, Highly doped 3D graphene Na-Ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv. Energy Mater. 8(23), 1800353 (2018). https://doi.org/10.1002/aenm.201800353
- Y. Huang, L. Zeng, C. Liu, D. Zeng, Z. Liu et al., Laser direct writing of heteroatom (N and S)-doped graphene from a polybenzimidazole ink donor on polyethylene terephthalate polymer and glass substrates. Small 14(44), 1803143 (2018). https://doi.org/10.1002/smll.201803143
- R. Yuge, S. Bandow, M. Yudasaka, K. Toyama, S. Iijima et al., Boron- and nitrogen-doped single-walled carbon nanohorns with graphite-like thin sheets prepared by CO2 laser ablation method. Carbon 111, 675–680 (2017). https://doi.org/10.1016/j.carbon.2016.10.049
- W.H. Lee, J.W. Suk, H. Chou, J. Lee, Y. Hao et al., Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 12(5), 2374–2378 (2012). https://doi.org/10.1021/nl300346j
- L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu et al., Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 8(1), 15139 (2017). https://doi.org/10.1038/ncomms15139
- D. Gao, R. Liu, J. Biskupek, U. Kaiser, Y.F. Song et al., Modular design of Noble-Metal-Free mixed metal oxide electrocatalysts for complete water splitting. Angew. Chem. Int. Ed. 58(14), 4644–4648 (2019). https://doi.org/10.1002/anie.201900428
- X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen et al., Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10(2), 402–434 (2017). https://doi.org/10.1039/C6EE02265K
- R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach et al., Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340(6128), 60 (2013). https://doi.org/10.1126/science.1233638
- T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5(1), 3949 (2014). https://doi.org/10.1038/ncomms4949
- M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5(1), 4695 (2014). https://doi.org/10.1038/ncomms5695
- J. Qi, W. Zhang, R. Xiang, K. Liu, H.Y. Wang et al., Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2(10), 1500199 (2015). https://doi.org/10.1002/advs.201500199
- L. Wu, Q. Li, C.H. Wu, H. Zhu, A. Mendoza-Garcia et al., Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 137(22), 7071–7074 (2015). https://doi.org/10.1021/jacs.5b04142
- Z. Hu, S. Qiu, Y. You, Y. Guo, Y. Guo et al., Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Appl. Catal. B Environ. 225, 110–120 (2018). https://doi.org/10.1016/j.apcatb.2017.08.068
- K. Jiang, H. Wang, W.B. Cai, H. Wang, Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11(6), 6451–6458 (2017). https://doi.org/10.1021/acsnano.7b03029
- Y. Park, D. Yoon, K. Fukutani, R. Stania, J. Son, Steep-slope threshold switch enabled by pulsed-laser-induced phase transformation. ACS Appl. Mater. Interfaces 11(27), 24221–24229 (2019). https://doi.org/10.1021/acsami.9b04015
- G. Ou, P. Fan, H. Zhang, K. Huang, C. Yang et al., Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. Nano Energy 35, 207–214 (2017). https://doi.org/10.1016/j.nanoen.2017.03.049
- H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim et al., Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11(5), 1299–1306 (2018). https://doi.org/10.1039/C8EE00125A
- J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher et al., One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(12), 6637–6644 (2015). https://doi.org/10.1021/am5089742
- N. Mas, J.L. Hueso, G. Martinez, A. Madrid, R. Mallada et al., Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon 156, 453–462 (2020). https://doi.org/10.1016/j.carbon.2019.09.073
- K.Y. Wang, L. Feng, T.H. Yan, S. Wu, E. Joseph et al., Rapid generation of hierarchically porous metal–organic frameworks through laser photolysis. Angew. Chem. Int. Ed. 59(28), 11349–11354 (2020). https://doi.org/10.1002/anie.202003636
- L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao et al., Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29(6), 1603286 (2017). https://doi.org/10.1002/adma.201603286
- J. Zhang, J. Feng, L. Jia, H. Zhang, G. Zhang et al., Laser-induced selective metallization on polymer substrates using organocopper for portable electronics. ACS Appl. Mater. Interfaces 11(14), 13714–13723 (2019). https://doi.org/10.1021/acsami.9b01856
- A. Basu, K. Roy, N. Sharma, S. Nandi, R. Vaidhyanathan et al., CO2 laser direct written MOF-based metal-decorated and heteroatom-doped porous graphene for flexible all-solid-state microsupercapacitor with extremely high cycling stability. ACS Appl. Mater. Interfaces 8(46), 31841–31848 (2016). https://doi.org/10.1021/acsami.6b10193
- H. Jiang, S. Jin, C. Wang, R. Ma, Y. Song et al., Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 141(13), 5481–5489 (2019). https://doi.org/10.1021/jacs.9b00355
- Y. Wu, Z. Huang, H. Jiang, C. Wang, Y. Zhou et al., Facile synthesis of uniform metal carbide nanoparticles from metal–organic frameworks by laser metallurgy. ACS Appl. Mater. Interfaces 11(47), 44573–44581 (2019). https://doi.org/10.1021/acsami.9b13864
- R. Ye, Z. Peng, T. Wang, Y. Xu, J. Zhang et al., In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano 9(9), 9244–9251 (2015). https://doi.org/10.1021/acsnano.5b04138
- M. Ren, J. Zhang, J.M. Tour, Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon 139, 880–887 (2018). https://doi.org/10.1016/j.carbon.2018.07.051
- X. Zang, C. Shen, Y. Chu, B. Li, M. Wei et al., Laser-induced molybdenum carbide–graphene composites for 3D foldable paper electronics. Adv. Mater. 30(26), 1800062 (2018). https://doi.org/10.1002/adma.201800062
- X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10(1), 3112 (2019). https://doi.org/10.1038/s41467-019-10999-z
- T. Afaneh, P.K. Sahoo, I.A.P. Nobrega, Y. Xin, H.R. Gutiérrez, Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater. 28(37), 1802949 (2018). https://doi.org/10.1002/adfm.201802949
- A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012). https://doi.org/10.1021/nl301164v
- J. Lu, J.H. Lu, H. Liu, B. Liu, K.X. Chan et al., Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 8(6), 6334–6343 (2014). https://doi.org/10.1021/nn501821z
- J. Li, X. Yang, Y. Liu, B. Huang, R. Wu et al., General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579(7799), 368–374 (2020). https://doi.org/10.1038/s41586-020-2098-y
- K. Savva, B. Višić, R. Popovitz-Biro, E. Stratakis, R. Tenne, Short pulse laser synthesis of transition-metal dichalcogenide nanostructures under ambient conditions. ACS Omega 2(6), 2649–2656 (2017). https://doi.org/10.1021/acsomega.7b00409
- F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci et al., In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces 8(16), 10459–10465 (2016). https://doi.org/10.1021/acsami.6b00808
- L. Ge, Q. Hong, H. Li, C. Liu, F. Li, Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 29(38), 1904000 (2019). https://doi.org/10.1002/adfm.201904000
- Y.Z. Chen, H. Medina, T.Y. Su, J.G. Li, K.Y. Cheng et al., Ultrafast and low temperature synthesis of highly crystalline and patternable few-layers tungsten diselenide by laser irradiation assisted selenization process. ACS Nano 9(4), 4346–4353 (2015). https://doi.org/10.1021/acsnano.5b00866
- S. Rasekh, F.M. Costa, N.M. Ferreira, M.A. Torres, M.A. Madre et al., Use of laser technology to produce high thermoelectric performances in Bi2Sr2Co1.8Ox. Mater. Des. 75, 143–148 (2015). https://doi.org/10.1016/j.matdes.2015.03.005
- Y. Kinemuchi, M. Mikami, I. Terasaki, W. Shin, Rapid synthesis of thermoelectric compounds by laser melting. Mater. Des. 106, 30–36 (2016). https://doi.org/10.1016/j.matdes.2016.05.093
- C. Li, M. Liu, H. Ding, L. He, E. Wang et al., A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 8(34), 17527–17536 (2020). https://doi.org/10.1039/D0TA04586A
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
- W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376 (2017). https://doi.org/10.1126/science.aan2301
- Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie et al., Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10, 11337 (2016). https://doi.org/10.1021/acsnano.6b06580
- T. Jeon, H.M. Jin, S.H. Lee, J.M. Lee, H.I. Park et al., Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS Nano 10(8), 7907–7914 (2016). https://doi.org/10.1021/acsnano.6b03815
- P. You, G. Li, G. Tang, J. Cao, F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13, 1187–1196 (2020). https://doi.org/10.1039/C9EE02324K
- I.M. Pinatti, A.F. Gouveia, C. Doñate-Buendía, G. Mínguez-Vega, J. Andrés et al., Femtosecond-laser-irradiation-induced structural organization and crystallinity of Bi2WO6. Sci. Rep. 10(1), 4613 (2020). https://doi.org/10.1038/s41598-020-61524-y
- D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117(5), 3990–4103 (2017). https://doi.org/10.1021/acs.chemrev.6b00468
- S. Ibrahimkutty, P. Wagener, T.D.S. Rolo, D. Karpov, A. Menzel et al., A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid. Sci. Rep. 5(1), 16313 (2015). https://doi.org/10.1038/srep16313
- K.Y. Niu, L. Fang, R. Ye, D. Nordlund, M.M. Doeff et al., Tailoring transition-metal hydroxides and oxides by photon-induced reactions. Angew. Chem. Int. Ed. 128(46), 14484–14488 (2016). https://doi.org/10.1002/ange.201606775
- H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang et al., Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22(7), 1333–1353 (2012). https://doi.org/10.1002/adfm.201102295
- S. Hebié, Y. Holade, K. Maximova, M. Sentis, P. Delaporte et al., Advanced electrocatalysts on the basis of bare au nanomaterials for biofuel cell applications. ACS Catal. 5(11), 6489–6496 (2015). https://doi.org/10.1021/acscatal.5b01478
- V. Piotto, L. Litti, M. Meneghetti, Synthesis and shape manipulation of anisotropic gold nanoparticles by laser ablation in solution. J. Phys. Chem. C 124(8), 4820–4826 (2020). https://doi.org/10.1021/acs.jpcc.9b10793
- G. González-Rubio, T. Milagres de Oliveira, W. Albrecht, P. Díaz-Núñez, J.C. Castro-Palacio et al., Formation of hollow gold nanocrystals by nanosecond laser irradiation. J. Phys. Chem. Lett. 11(3), 670–677 (2020). https://doi.org/10.1021/acs.jpclett.9b03574
- I. Vassalini, L. Borgese, M. Mariz, S. Polizzi, G. Aquilanti et al., Enhanced electrocatalytic oxygen evolution in Au–Fe nanoalloys. Angew. Chem. Int. Ed. 56(23), 6589–6593 (2017). https://doi.org/10.1002/anie.201703387
- J. Zhang, G. Chen, D. Guay, M. Chaker, D. Ma, Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 6(4), 2125–2130 (2014). https://doi.org/10.1039/C3NR04715F
- S. Hu, G. Goenaga, C. Melton, T.A. Zawodzinski, D. Mukherjee, PtCo/CoOx nanocomposites: bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B Environ. 182, 286–296 (2016). https://doi.org/10.1016/j.apcatb.2015.09.035
- H. Zhang, S. Wu, J. Liu, Y. Cai, C. Liang, Laser irradiation-induced Au–ZnO nanospheres with enhanced sensitivity and stability for ethanol sensing. Phys. Chem. Chem. Phys. 18(32), 22503–22508 (2016). https://doi.org/10.1039/C6CP03487J
- C.H. Chen, D. Wu, Z. Li, R. Zhang, C.G. Kuai et al., Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9(20), 1803913 (2019). https://doi.org/10.1002/aenm.201803913
- Z. Li, Y. Feng, Y.L. Liang, C.Q. Cheng, C.K. Dong et al., Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 32(25), 1908521 (2020). https://doi.org/10.1002/adma.201908521
- T. Zhang, Y. Bai, Y. Sun, L. Hang, X. Li et al., Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J. Mater. Chem. A 6(28), 13735–13742 (2018). https://doi.org/10.1039/C8TA04087G
- S. Pan, X. Zhang, W. Lu, S.F. Yu, Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. J. Mater. Chem. A 6(38), 18687–18693 (2018). https://doi.org/10.1039/C8TA06789A
- W. Zheng, Y. Zhang, K. Niu, T. Liu, K. Bustillo et al., Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chem. Commun. 54(97), 13726–13729 (2018). https://doi.org/10.1039/C8CC07725H
- L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9(1), 69–73 (2014). https://doi.org/10.1038/nnano.2013.272
- J.D. Blakemore, H.B. Gray, J.R. Winkler, A.M. Müller, Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3(11), 2497–2500 (2013). https://doi.org/10.1021/cs400639b
- B.M. Hunter, J.D. Blakemore, M. Deimund, H.B. Gray, J.R. Winkler et al., Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 136(38), 13118–13121 (2014). https://doi.org/10.1021/ja506087h
- X. Wang, Z. Li, D.Y. Wu, G.R. Shen, C. Zou et al., Porous cobalt–nickel hydroxide nanosheets with active cobalt ions for overall water splitting. Small 15(8), 1804832 (2019). https://doi.org/10.1002/smll.201804832
- H. Lee, D.A. Reddy, Y. Kim, S.Y. Chun, R. Ma et al., Drastic improvement of 1D-CdS solar-driven photocatalytic hydrogen evolution rate by integrating with nife layered double hydroxide nanosheets synthesized by liquid-phase pulsed-laser ablation. ACS Sustain. Chem. Eng. 6(12), 16734–16743 (2018). https://doi.org/10.1021/acssuschemeng.8b04000
- D.K. Lee, D. Lee, M.A. Lumley, K.S. Choi, Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 48(7), 2126–2157 (2019). https://doi.org/10.1039/C8CS00761F
- H. Liu, P. Jin, Y.M. Xue, C. Dong, X. Li et al., Photochemical synthesis of ultrafine cubic boron nitride nanoparticles under ambient conditions. Angew. Chem. Int. Ed. 54(24), 7051–7054 (2015). https://doi.org/10.1002/anie.201502023
- M. Rui, X. Li, L. Gan, T. Zhai, H. Zeng, Ternary oxide nanocrystals: universal laser-hydrothermal synthesis, optoelectronic and electrochemical applications. Adv. Funct. Mater. 26(28), 5051–5060 (2016). https://doi.org/10.1002/adfm.201600785
- Y. Dong, S. Wang, Y. Zou, S. Liu, Z. Zhu et al., Zinc stannate nanocrystal-based ultrarapid-response UV photodetectors. Adv. Mater. Technol. 3(6), 1800085 (2018). https://doi.org/10.1002/admt.201800085
- Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu et al., Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano 9(7), 7256–7265 (2015). https://doi.org/10.1021/acsnano.5b02077
- Z. Lin, W. Li, G. Yang, Hydrogen-interstitial CuWO4 nanomesh: a single-component full spectrum-active photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 227, 35–43 (2018). https://doi.org/10.1016/j.apcatb.2018.01.021
- J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu et al., Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 10(1), 2609 (2019). https://doi.org/10.1038/s41467-019-10543-z
- L. Zhou, H. Zhang, H. Bao, G. Liu, Y. Li et al., Onion-structured spherical MoS2 nanoparticles induced by laser ablation in water and liquid droplets’ radial solidification/oriented growth mechanism. J. Phys. Chem. C 121(41), 23233–23239 (2017). https://doi.org/10.1021/acs.jpcc.7b07784
- Z.W. Gao, M. Liu, W. Zheng, X. Zhang, L.Y.S. Lee, Surface engineering of MoS2 via laser-induced exfoliation in protic solvents. Small 15(44), 1903791 (2019). https://doi.org/10.1002/smll.201903791
- W. Gong, Q. Yuan, C. Chen, Y. Lv, Y. Lin et al., Liberating N-CNTs confined highly dispersed Co-Nx sites for selective hydrogenation of quinolines. Adv. Mater. 31(49), 1906051 (2019). https://doi.org/10.1002/adma.201906051
- H. Liu, X.H. Zhang, Y.X. Li, X. Li, C.K. Dong et al., Conductive boron nitride as promising catalyst support for the oxygen evolution reaction. Adv. Energy Mater. 10(25), 1902521 (2020). https://doi.org/10.1002/aenm.201902521
- B. Li, L. Jiang, X. Li, Z. Cheng, P. Ran et al., Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production. Adv. Funct. Mater. 29(1), 1806229 (2019). https://doi.org/10.1002/adfm.201806229
- X. Zhou, W. Guo, Y. Zhu, P. Peng, The laser writing of highly conductive and anti-oxidative copper structures in liquid. Nanoscale 12(2), 563–571 (2020). https://doi.org/10.1039/C9NR07248A
- S. Wu, J. Liu, D. Liang, H. Sun, Y. Ye et al., Photo-excited in situ loading of Pt clusters onto rGO immobilized SnO2 with excellent catalytic performance toward methanol oxidation. Nano Energy 26, 699–707 (2016). https://doi.org/10.1016/j.nanoen.2016.06.038
- Y. Peng, J. Cao, J. Yang, W. Yang, C. Zhang et al., Laser assisted solution synthesis of high performance graphene supported electrocatalysts. Adv. Funct. Mater. 30(32), 2001756 (2020). https://doi.org/10.1002/adfm.202001756
- J. Yeo, S. Hong, M. Wanit, H.W. Kang, D. Lee et al., Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv. Funct. Mater. 23(26), 3316–3323 (2013). https://doi.org/10.1002/adfm.201203863
- K. Kwon, J. Shim, J.O. Lee, K. Choi, K. Yu, Localized laser-based photohydrothermal synthesis of functionalized metal-oxides. Adv. Funct. Mater. 25(15), 2222–2229 (2015). https://doi.org/10.1002/adfm.201404215
- J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9(6), 6059–6068 (2015). https://doi.org/10.1021/acsnano.5b01125
- P. Guo, X. Yang, Q. Ye, J. Zhang, H. Wang et al., Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance. Adv. Energy Mater. 9(35), 1901341 (2019). https://doi.org/10.1002/aenm.201901341
- K.H. Ibrahim, M. Irannejad, M. Hajialamdari, A. Ramadhan, K.P. Musselman et al., A novel femtosecond laser-assisted method for the synthesis of reduced graphene oxide gels and thin films with tunable properties. Adv. Mater. Inter. 3(14), 1500864 (2016). https://doi.org/10.1002/admi.201500864
- D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017). https://doi.org/10.1021/acs.chemrev.6b00468
- Y. Zhou, C.K. Dong, L.L. Han, J. Yang, X.W. Du, Top-down preparation of active cobalt oxide catalyst. ACS Catal. 6(10), 6699–6703 (2016). https://doi.org/10.1021/acscatal.6b02416
- L. Li, L. Yu, Z. Lin, G. Yang, Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl. Mater. Interfaces 8(13), 8536–8545 (2016). https://doi.org/10.1021/acsami.6b00966
- K. Ibrahim, I. Novodchuk, K. Mistry, M. Singh, C. Ling et al., Laser-directed assembly of nanorods of 2D materials. Small 15(46), 1904415 (2019). https://doi.org/10.1002/smll.201904415
- Z. Li, J.Y. Fu, Y. Feng, C.K. Dong, H. Liu et al., A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2(12), 1107–1114 (2019). https://doi.org/10.1038/s41929-019-0365-9
- E.H. Penilla, L.F. Devia-Cruz, A.T. Wieg, P. Martinez-Torres, N. Cuando-Espitia et al., Ultrafast laser welding of ceramics. Science 365(6455), 803 (2019). https://doi.org/10.1126/science.aaw6699
- H. Luo, C. Wang, C. Linghu, K. Yu, C. Wang et al., Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric micro-structured stamp. Natl. Sci. Rev. 7(2), 296–304 (2019). https://doi.org/10.1093/nsr/nwz109
- C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
- M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
- G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets. Nano Energy 41, 269–284 (2017). https://doi.org/10.1016/j.nanoen.2017.09.005
- C.C. Chuang, H.C. Chu, S.B. Huang, W.S. Chang, H.Y. Tuan, Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor. Chem. Eng. J. 379, 122285 (2020). https://doi.org/10.1016/j.cej.2019.122285
- X. Yan, Z. Huang, S. Sett, J. Oh, H. Cha et al., Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces. ACS Nano 13(4), 4160–4173 (2019). https://doi.org/10.1021/acsnano.8b09106
- S.A. Jalil, B. Lai, M. ElKabbash, J. Zhang, E.M. Garcell et al., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light-Sci. Appl. 9(1), 14 (2020). https://doi.org/10.1038/s41377-020-0242-y
- P. Fan, B. Bai, J. Long, D. Jiang, G. Jin et al., Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface. Nano Lett. 15(9), 5988–5994 (2015). https://doi.org/10.1021/acs.nanolett.5b02141
- P. Fan, H. Wu, M. Zhong, H. Zhang, B. Bai et al., Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale 8(30), 14617–14624 (2016). https://doi.org/10.1039/C6NR03662G
- P. Fan, B. Bai, M. Zhong, H. Zhang, J. Long et al., General strategy toward dual-scale-controlled metallic micro–nano hybrid structures with ultralow reflectance. ACS Nano 11(7), 7401–7408 (2017). https://doi.org/10.1021/acsnano.7b03673
- P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang et al., Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 6(31), 15303–15309 (2018). https://doi.org/10.1039/C8TA05412F
- J. Li, Y. Liu, L. Lin, M. Wang, T. Jiang et al., Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nat. Commun. 10(1), 5672 (2019). https://doi.org/10.1038/s41467-019-13676-3
- Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589 (2016). https://doi.org/10.1021/acsenergylett.6b00247
- J. Liang, C. Jiang, W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11(15), 7041–7061 (2019). https://doi.org/10.1039/C8NR10301A
- L. Liu, Y. Feng, W. Wu, Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J. Power Sources 410–411, 69–77 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.012
- W. Wu, Stretchable electronics: functional materials, fabrication strategies and applications. Scie. Technol. Adv. Mater. 20(1), 187–224 (2019). https://doi.org/10.1080/14686996.2018.1549460
- W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6(8), 496–500 (2011). https://doi.org/10.1038/nnano.2011.110
- N. Kamboj, T. Purkait, M. Das, S. Sarkar, K.S. Hazra et al., Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ. Sci. 12(8), 2507–2517 (2019). https://doi.org/10.1039/C9EE01458F
- J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016). https://doi.org/10.1016/j.nanoen.2016.09.017
- W. He, R. Ma, D.J. Kang, High-performance, flexible planar microsupercapacitors based on crosslinked polyaniline using laser printing lithography. Carbon 161, 117–122 (2020). https://doi.org/10.1016/j.carbon.2020.01.047
- A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016). https://doi.org/10.1002/aenm.201600050
- J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30(27), 1801384 (2018). https://doi.org/10.1002/adma.201801384
- J. Gao, C. Shao, S. Shao, F. Wan, C. Gao et al., Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 14(37), 1801809 (2018). https://doi.org/10.1002/smll.201801809
- J. Lee, J.Y. Seok, S. Son, M. Yang, B. Kang, High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode. J. Mater. Chem. A 5(47), 24585–24593 (2017). https://doi.org/10.1039/C7TA07960E
- J.Y. Hwang, M.F. El-Kady, Y. Wang, L. Wang, Y. Shao et al., Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18, 57–70 (2015). https://doi.org/10.1016/j.nanoen.2015.09.009
- S. Yang, Y. Li, J. Sun, B. Cao, Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J. Power Sources 431, 220–225 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.016
- W. Wang, L. Lu, Y. Xie, W. Yuan, Z. Wan et al., A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv. Mater. Technol. 5(2), 1900903 (2020). https://doi.org/10.1002/admt.201900903
- L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016). https://doi.org/10.1002/adma.201503333
- H. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi et al., Conductive metal–organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. Adv. Energy Mater. 9(21), 1900482 (2019). https://doi.org/10.1002/aenm.201900482
- H.C. Huang, C.J. Chung, C.T. Hsieh, P.L. Kuo, H. Teng, Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy 21, 90–105 (2016). https://doi.org/10.1016/j.nanoen.2015.12.012
- Q. Li, Q. Wang, L. Li, L. Yang, Y. Wang et al., Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy Mater. 10(24), 2000470 (2020). https://doi.org/10.1002/aenm.202000470
- M. Ren, J. Zhang, C. Zhang, M.G. Stanford, Y. Chyan et al., Quasi-solid-state Li–O2 batteries with laser-induced graphene cathode catalysts. ACS Appl. Energy Mater. 3(2), 1702–1709 (2020). https://doi.org/10.1021/acsaem.9b02182
- Z. Veliscek, L.S. Perse, R. Dominko, E. Kelder, M. Gaberscek, Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using laser assisted chemical vapour pyrolysis. J. Power Sources 273, 380–388 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.111
- D. Munaò, M. Valvo, J. van Erven, E.M. Kelder, J. Hassoun et al., Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 22(4), 1556–1561 (2012). https://doi.org/10.1039/C1JM13565A
- C. Zhou, K. Zhang, M. Hong, Y. Yang, N. Hu et al., Laser-induced MnO/Mn3O4/N-doped-graphene hybrid as binder-free anodes for lithium ion batteries. Chem. Eng. J. 385, 123720 (2020). https://doi.org/10.1016/j.cej.2019.123720
- B. Zhang, M. Deschamps, M.R. Ammar, E. Raymundo-Piñero, L. Hennet et al., Laser synthesis of hard carbon for anodes in Na-ion battery. Adv. Mater. Technol. 2(3), 1600227 (2017). https://doi.org/10.1002/admt.201600227
- T. Han, A. Nag, N. Afsarimanesh, S.C. Mukhopadhyay, S. Kundu et al., Laser-assisted printed flexible sensors: a review. Sensors 19(6), 1462 (2019). https://doi.org/10.3390/s19061462
- X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
- R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015). https://doi.org/10.1021/am509087u
- L.Q. Tao, H. Tian, Y. Liu, Z.Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8(1), 14579 (2017). https://doi.org/10.1038/ncomms14579
- B.K.B. Deka, A. Hazarika, J. Kim, H.E. Jeong, Y.B. Park et al., Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon 152, 376–387 (2019). https://doi.org/10.1016/j.carbon.2019.06.015
- O.A. Araromi, S. Rosset, H.R. Shea, High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 7(32), 18046–18053 (2015). https://doi.org/10.1021/acsami.5b04975
- A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuat. A-Phys. 251, 148–155 (2016). https://doi.org/10.1016/j.sna.2016.10.023
- A. Nag, S.C. Mukhopadhyay, J. Kosel, Tactile sensing from laser-ablated metallized PET films. IEEE Sens. J. 17(1), 7–13 (2016). https://doi.org/10.1109/JSEN.2016.2617878
- S. Son, J.E. Park, J. Lee, M. Yang, B. Kang, Laser-assisted fabrication of single-layer flexible touch sensor. Sci. Rep. 6(1), 34629 (2016). https://doi.org/10.1038/srep34629
- S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma et al., Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
- S.Y. Yu, G. Schrodj, K. Mougin, J. Dentzer, J.P. Malval et al., Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties. Adv. Mater. 30(51), 1805093 (2018). https://doi.org/10.1002/adma.201805093
- G. Dubourg, M. Radović, Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room-temperature ethanol sensor. ACS Appl. Mater. Interfaces 11(6), 6257–6266 (2019). https://doi.org/10.1021/acsami.8b19976
- D. Wu, Q. Peng, S. Wu, G. Wang, L. Deng et al., A simple graphene NH3 gas sensor via laser direct writing. Sensors 18(12), 4405 (2018). https://doi.org/10.3390/s18124405
- R. Park, H. Kim, S. Lone, S. Jeon, W.Y. Kwon et al., One-step laser patterned highly uniform reduced graphene oxide thin films for circuit-enabled tattoo and flexible humidity sensor application. Sensors 18(6), 1857 (2018). https://doi.org/10.3390/s18061857
- Q.A. Drmosh, Z.H. Yamani, A.H. Hendi, M.A. Gondal, R.A. Moqbel et al., A novel approach to fabricating a ternary rGO/ZnO/Pt system for high-performance hydrogen sensor at low operating temperatures. Appl. Surf. Sci. 464, 616–626 (2019). https://doi.org/10.1016/j.apsusc.2018.09.128
- T.L. Chang, C.Y. Chou, C.P. Wang, T.C. Teng, H.C. Han, Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits. Microelectron. Eng. 210, 19–26 (2019). https://doi.org/10.1016/j.mee.2019.03.003
- B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30(50), 1804327 (2018). https://doi.org/10.1002/adma.201804327
- M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6), 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
- J. Huang, X. Fu, G. Liu, S. Xu, X. Li et al., Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62, 638–644 (2019). https://doi.org/10.1016/j.nanoen.2019.05.081
- Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang et al., A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156, 506–513 (2020). https://doi.org/10.1016/j.carbon.2019.10.006
- D. Yin, J. Feng, R. Ma, Y.F. Liu, Y.L. Zhang et al., Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7(1), 11573 (2016). https://doi.org/10.1038/ncomms11573
- H. Jeon, S. Koo, W.M. Reese, P. Loskill, C.P. Grigoropoulos et al., Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 14(9), 918–923 (2015). https://doi.org/10.1038/nmat4342
- S.Y. Seo, J. Park, J. Park, K. Song, S. Cha et al., Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1(9), 512–517 (2018). https://doi.org/10.1038/s41928-018-0129-6
- L. Lin, J. Li, W. Li, M.N. Yogeesh, J. Shi et al., Optothermoplasmonic nanolithography for on-demand patterning of 2D materials. Adv. Funct. Mater. 28(41), 1803990 (2018). https://doi.org/10.1002/adfm.201803990
- P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan et al., Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat. Commun. 9(1), 381 (2018). https://doi.org/10.1038/s41467-017-02429-9
- J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
- S. Zhuo, Y. Shi, L. Liu, R. Li, L. Shi et al., Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nat. Commun. 9(1), 3132 (2018). https://doi.org/10.1038/s41467-018-05474-0
- X. Mo, K.C. Chan, E.C.M. Tse, A scalable laser-assisted method to produce active and robust graphene-supported nanoparticle electrocatalysts. Chem. Mater. 31(19), 8230–8238 (2019). https://doi.org/10.1021/acs.chemmater.9b03669
- T. Rauscher, C.I. Müller, A. Gabler, T. Gimpel, M. Köhring et al., Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution. Electrochim. Acta 247, 1130–1139 (2017). https://doi.org/10.1016/j.electacta.2017.07.074
- A. Gabler, C.I. Müller, T. Rauscher, M. Köhring, B. Kieback et al., Ultrashort pulse laser-structured nickel surfaces as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy 42(16), 10826–10833 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.006
- A. Gabler, C.I. Müller, T. Rauscher, T. Gimpel, R. Hahn et al., Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy 43(15), 7216–7226 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.130
- T.F. Hung, Z.W. Yin, S.B. Betzler, W. Zheng, J. Yang et al., Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019). https://doi.org/10.1016/j.cej.2019.02.136
- D.N. Nguyen, L.N. Nguyen, P.D. Nguyen, T.V. Thu, A.D. Nguyen et al., Crystallization of amorphous molybdenum sulfide induced by electron or laser beam and its effect on H2-evolving activities. J. Phys. Chem. C 120(50), 28789–28794 (2016). https://doi.org/10.1021/acs.jpcc.6b08817
- G. Ou, P. Fan, X. Ke, Y. Xu, K. Huang et al., Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 11(2), 751–761 (2018). https://doi.org/10.1007/s12274-017-1684-2
- H. Deng, C. Zhang, Y. Xie, T. Tumlin, L. Giri et al., Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts. J. Mater. Chem. A 4(18), 6824–6830 (2016). https://doi.org/10.1039/C5TA09322H
- P. Zuo, L. Jiang, X. Li, B. Li, P. Ran et al., Metal (Ag, Pt)–MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER. ACS Sustain. Chem. Eng. 6(6), 7704–7714 (2018). https://doi.org/10.1021/acssuschemeng.8b00579
- G.O.S. Santos, L.R.A. Silva, Y.G.S. Alves, R.S. Silva, K.I.B. Eguiluz et al., Enhanced stability and electrocatalytic properties of Ti/RuxIr1−xO2 anodes produced by a new laser process. Chem. Eng. J. 355, 439–447 (2019). https://doi.org/10.1016/j.cej.2018.08.145
- M. Cai, R. Pan, W. Liu, X. Luo, C. Chen et al., Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction. Chemsuschem 12(15), 3562–3570 (2019). https://doi.org/10.1002/cssc.201901020
- T. Nishi, Y. Hayasaka, T.M. Suzuki, S. Sato, N. Isomura et al., Electrochemical water oxidation catalysed by CoO–Co2O3–Co(OH)2 multiphase-nanoparticles prepared by femtosecond laser ablation in water. ChemistrySelect 3(17), 4979–4984 (2018). https://doi.org/10.1002/slct.201800943
- Z.W. Gao, T. Ma, X.M. Chen, H. Liu, L. Cui et al., Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation. Small 14(17), 1800195 (2018). https://doi.org/10.1002/smll.201800195
- C. Meng, M. Lin, X. Sun, X. Chen, X. Chen et al., Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution. Chem. Commun. 55(20), 2904–2907 (2019). https://doi.org/10.1039/C8CC08951E
- J. Zhang, M. Ren, L. Wang, Y. Li, B.I. Yakobson et al., Oxidized laser-induced graphene for efficient oxygen electrocatalysis. Adv. Mater. 30(21), 1707319 (2018). https://doi.org/10.1002/adma.201707319
- J. Zhang, M. Ren, Y. Li, J.M. Tour, In situ synthesis of efficient water oxidation catalysts in laser-induced graphene. ACS Energy Lett. 3(3), 677–683 (2018). https://doi.org/10.1021/acsenergylett.8b00042
- J. Zhang, C. Zhang, J. Sha, H. Fei, Y. Li et al., Efficient water-splitting electrodes based on laser-induced graphene. ACS Appl. Mater. Interfaces 9(32), 26840–26847 (2017). https://doi.org/10.1021/acsami.7b06727
- R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
- J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu et al., Ultrathin N-Doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11(12), 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607
- Y. Liu, P. Liu, W. Qin, X. Wu, G. Yang, Laser modification-induced NiCo2O4-δ with high exterior Ni3+/Ni2+ ratio and substantial oxygen vacancies for electrocatalysis. Electrochim. Acta 297, 623–632 (2019). https://doi.org/10.1016/j.electacta.2018.11.111
- X. Ye, Z. Lin, H. Zhang, H. Zhu, Z. Liu et al., Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon 94, 326–334 (2015). https://doi.org/10.1016/j.carbon.2015.06.080
- E. Kostal, S. Stroj, S. Kasemann, V. Matylitsky, M. Domke, Fabrication of biomimetic fog-collecting superhydrophilic–superhydrophobic surface micropatterns using femtosecond lasers. Langmuir 34(9), 2933–2941 (2018). https://doi.org/10.1021/acs.langmuir.7b03699
- X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong et al., Superhydrophobicity-memory surfaces prepared by a femtosecond laser. Chem. Eng. J. 383, 123143 (2020). https://doi.org/10.1016/j.cej.2019.123143
- Y. Li, D.X. Luong, J. Zhang, Y.R. Tarkunde, C. Kittrell et al., Laser-Induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 29(27), 1700496 (2017). https://doi.org/10.1002/adma.201700496
- B.N. Shivananju, L. Zhou, Y. Yin, W. Yu, B. Shabbir et al., Probing the dynamic structural changes of DNA using ultrafast laser pulse in graphene-based optofluidic device. InfoMat 1–11, 1 (2020). https://doi.org/10.1002/inf2.12114
- Y. Wang, Q. Zhang, Z. Zhu, F. Lin, J. Deng et al., Laser streaming: Turning a laser beam into a flow of liquid. Sci. Adv. 3(9), e1700555 (2017). https://doi.org/10.1126/sciadv.1700555
- S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong et al., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc. Natl. Acad. Sci. 116(14), 6580 (2019). https://doi.org/10.1073/pnas.1818911116
References
H. Wang, D. Tran, J. Qian, F. Ding, D. Losic, MoS2/graphene composites as promising materials for energy storage and conversion applications. Adv. Mater. Interface 6(20), 1900915 (2019). https://doi.org/10.1002/admi.201900915
T.S. Kim, Y. Lee, W. Xu, Y.H. Kim, M. Kim et al., Direct-printed nanoscale metal-oxide-wire electronics. Nano Energy 58, 437–446 (2019). https://doi.org/10.1016/j.nanoen.2019.01.052
M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody et al., Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 31(1), 1802084 (2019). https://doi.org/10.1002/adma.201802084
W. Dong, H. Liu, J.K. Behera, L. Lu, R.J.H. Ng et al., Wide bandgap phase change material tuned visible photonics. Adv. Funct. Mater. 29(6), 1806181 (2019). https://doi.org/10.1002/adfm.201806181
D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser–material interactions for flexible applications. Adv. Mater. 29(26), 1606586 (2017). https://doi.org/10.1002/adma.201606586
J. Bian, L. Zhou, X. Wan, C. Zhu, B. Yang et al., Laser transfer, printing, and assembly techniques for flexible electronics. Adv. Electron. Mater. 5(7), 1800900 (2019). https://doi.org/10.1002/aelm.201800900
H. Palneedi, J.H. Park, D. Maurya, M. Peddigari, G.T. Hwang et al., Laser irradiation of metal oxide films and nanostructures: applications and advances. Adv. Mater. 30(14), 1705148 (2018). https://doi.org/10.1002/adma.201705148
S. Hong, H. Lee, J. Yeo, S.H. Ko, Digital selective laser methods for nanomaterials: from synthesis to processing. Nano Today 11(5), 547–564 (2016). https://doi.org/10.1016/j.nantod.2016.08.007
C. Yang, Y. Huang, H. Cheng, L. Jiang, L. Qu, Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31(2), 1805705 (2019). https://doi.org/10.1002/adma.201805705
N.V. Sapra, K.Y. Yang, D. Vercruysse, K.J. Leedle, D.S. Black et al., On-chip integrated laser-driven particle accelerator. Science 367(6473), 79 (2020). https://doi.org/10.1126/science.aay5734
A.A. Sergeev, D.V. Pavlov, A.A. Kuchmizhak, M.V. Lapine, W.K. Yiu et al., Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays. Light-Sci. Appl. 9(1), 16 (2020). https://doi.org/10.1038/s41377-020-0247-6
K. Gao, B. Wang, L. Tao, B.V. Cunning, Z. Zhang et al., Efficient metal-free electrocatalysts from N-doped carbon nanomaterials: mono-doping and co-doping. Adv. Mater. 31(13), 1805121 (2019). https://doi.org/10.1002/adma.201805121
R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019). https://doi.org/10.1002/adma.201803621
R.D. Rodriguez, A. Khalelov, P.S. Postnikov, A. Lipovka, E. Dorozhko et al., Beyond graphene oxide: laser engineering functionalized graphene for flexible electronics. Mater. Horiz. 7, 1030 (2020). https://doi.org/10.1039/C9MH01950B
R. You, Y.Q. Liu, Y.L. Hao, D.D. Han, Y.L. Zhang et al., Laser fabrication of graphene-based flexible electronics. Adv. Mater. 32, 1901981 (2019). https://doi.org/10.1002/adma.201901981
B. Ye, M. Lee, B. Jeong, J. Kim, D.H. Lee et al., Partially reduced graphene oxide as a support of Mn–Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catal. Today 328, 300–306 (2019). https://doi.org/10.1016/j.cattod.2018.12.007
K.K.H. De Silva, H.H. Huang, R.K. Joshi, M. Yoshimura, Chemical reduction of graphene oxide using green reductants. Carbon 119, 190–199 (2017). https://doi.org/10.1016/j.carbon.2017.04.025
Z. Pan, T. Hisatomi, Q. Wang, S. Chen, A. Iwase et al., Photoreduced graphene oxide as a conductive binder to improve the water splitting activity of photocatalyst sheets. Adv. Funct. Mater. 26(38), 7011–7019 (2016). https://doi.org/10.1002/adfm.201602657
R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav et al., Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications. Coord. Chem. Rev. 342, 34–79 (2017). https://doi.org/10.1016/j.ccr.2017.03.021
A. Antonelou, L. Sygellou, K. Vrettos, V. Georgakilas, S.N. Yannopoulos, Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139, 492–499 (2018). https://doi.org/10.1016/j.carbon.2018.07.012
B. Xie, Y. Wang, W. Lai, W. Lin, Z. Lin et al., Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components. Nano Energy 26, 276–285 (2016). https://doi.org/10.1016/j.nanoen.2016.04.045
H. Cheng, J. Liu, Y. Zhao, C. Hu, Z. Zhang et al., Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 52(40), 10482–10486 (2013). https://doi.org/10.1002/anie.201304358
H. Cheng, M. Ye, F. Zhao, C. Hu, Y. Zhao et al., A general and extremely simple remote approach toward graphene bulks with in situ multifunctionalization. Adv. Mater. 28(17), 3305–3312 (2016). https://doi.org/10.1002/adma.201505431
M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074), 1326 (2012). https://doi.org/10.1126/science.1216744
M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4(1), 1475 (2013). https://doi.org/10.1038/ncomms2446
S. Luo, Y. Wang, G. Wang, F. Liu, Y. Zhai et al., Hybrid spray-coating, laser-scribing and ink-dispensing of graphene sensors/arrays with tunable piezoresistivity for in situ monitoring of composites. Carbon 139, 437–444 (2018). https://doi.org/10.1016/j.carbon.2018.07.014
T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang et al., High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light-Sci. Appl. 9(1), 69 (2020). https://doi.org/10.1038/s41377-020-0311-2
D.X. Luong, K. Yang, J. Yoon, S.P. Singh, T. Wang et al., Laser-induced graphene composites as multifunctional surfaces. ACS Nano 13(2), 2579–2586 (2019). https://doi.org/10.1021/acsnano.8b09626
M.G. Stanford, J.T. Li, Y. Chen, E.A. McHugh, A. Liopo et al., Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano 13(10), 11912–11920 (2019). https://doi.org/10.1021/acsnano.9b05983
C. Thamaraiselvan, J. Wang, D.K. James, P. Narkhede, S.P. Singh et al., Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Mater. Today 34, 115–131 (2019). https://doi.org/10.1016/j.mattod.2019.08.014
J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye et al., Laser-induced porous graphene films from commercial polymers. Nat. Commun. 5(1), 5714 (2014). https://doi.org/10.1038/ncomms6714
Y. Chyan, R. Ye, Y. Li, S.P. Singh, C.J. Arnusch et al., Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12(3), 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539
M.G. Stanford, K. Yang, Y. Chyan, C. Kittrell, J.M. Tour, Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 13(3), 3474–3482 (2019). https://doi.org/10.1021/acsnano.8b09622
Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6), 5868–5875 (2015). https://doi.org/10.1021/acsnano.5b00436
H. Wang, H. Wang, Y. Wang, X. Su, C. Wang et al., Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano 14(3), 3219–3226 (2020). https://doi.org/10.1021/acsnano.9b08638
D.X. Luong, A.K. Subramanian, G.A.L. Silva, J. Yoon, S. Cofer, Laminated object manufacturing of 3D-printed laser-induced graphene foams. Adv. Mater. 30(28), 1707416 (2018). https://doi.org/10.1002/adma.201707416
J. Sha, Y. Li, R. Villegas Salvatierra, T. Wang, P. Dong et al., Three-dimensional printed graphene foams. ACS Nano 11(7), 6860–6867 (2017). https://doi.org/10.1021/acsnano.7b01987
R. Ye, X. Han, D.V. Kosynkin, Y. Li, C. Zhang et al., Laser-induced conversion of teflon into fluorinated nanodiamonds or fluorinated graphene. ACS Nano 12(2), 1083–1088 (2018). https://doi.org/10.1021/acsnano.7b05877
J. Nasser, L. Groo, L. Zhang, H. Sodano, Laser induced graphene fibers for multifunctional aramid fiber reinforced composite. Carbon 158, 146–156 (2020). https://doi.org/10.1016/j.carbon.2019.11.078
Y. Wang, Y. Wang, P. Zhang, F. Liu, S. Luo, Laser-induced freestanding graphene papers: a new route of scalable fabrication with tunable morphologies and properties for multifunctional devices and structures. Small 14(36), 1802350 (2018). https://doi.org/10.1002/smll.201802350
W. Zhang, Y. Lei, Q. Jiang, F. Ming, P.M.F.J. Costa et al., 3D laser scribed graphene derived from carbon nanospheres: an ultrahigh-power electrode for supercapacitors. Small Methods 3(5), 1900005 (2019). https://doi.org/10.1002/smtd.201900005
F. Raimondi, S. Abolhassani, R. Brütsch, F. Geiger, T. Lippert et al., Quantification of polyimide carbonization after laser ablation. J. Appl. Phys. 88(6), 3659–3666 (2000). https://doi.org/10.1063/1.1289516
F. Wang, W. Duan, K. Wang, X. Dong, M. Gao et al., Graphitized hierarchically porous carbon nanosheets derived from bakelite induced by high-repetition picosecond laser. Appl. Surf. Sci. 450, 155–163 (2018). https://doi.org/10.1016/j.apsusc.2018.04.130
L.M. Ji, H. Lee, C.H.J. Lim, V.M. Murukeshan, Y. Kim, In direct laser writing of graphene oxide patterns using femtosecond laser pulses with different repetition rates, 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 31 July–4 Aug. 2017.
J.B. Park, W. Xiong, Y. Gao, M. Qian, Z.Q. Xie et al., Fast growth of graphene patterns by laser direct writing. Appl. Phys. Lett. 98(12), 123109 (2011). https://doi.org/10.1063/1.3569720
J.B. Park, W. Xiong, Z.Q. Xie, Y. Gao, M. Qian et al., Transparent interconnections formed by rapid single-step fabrication of graphene patterns. Appl. Phys. Lett. 99(5), 053103 (2011). https://doi.org/10.1063/1.3622660
X. Ye, J. Long, Z. Lin, H. Zhang, H. Zhu et al., Direct laser fabrication of large-area and patterned graphene at room temperature. Carbon 68, 784–790 (2014). https://doi.org/10.1016/j.carbon.2013.11.069
S. Lee, M.F. Toney, W. Ko, J.C. Randel, H.J. Jung et al., Laser-synthesized epitaxial graphene. ACS Nano 4(12), 7524–7530 (2010). https://doi.org/10.1021/nn101796e
I. Choi, H.Y. Jeong, D.Y. Jung, M. Byun, C.G. Choi et al., Laser-induced solid-phase doped graphene. ACS Nano 8(8), 7671–7677 (2014). https://doi.org/10.1021/nn5032214
S.N. Yannopoulos, A. Siokou, N.K. Nasikas, V. Dracopoulos, F. Ravani et al., CO2-laser-induced growth of epitaxial graphene on 6H-SiC(0001). Adv. Funct. Mater. 22(1), 113–120 (2012). https://doi.org/10.1002/adfm.201101413
F. Stock, F. Antoni, L. Diebold, C. Chowde Gowda et al., UV laser annealing of diamond-like carbon layers obtained by pulsed laser deposition for optical and photovoltaic applications. Appl. Surf. Sci. 464, 562–566 (2019). https://doi.org/10.1016/j.apsusc.2018.09.085
L.S. Fan, L. Constantin, D.W. Li, L. Liu, K. Keramatnejad et al., Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films. Light-Sci. Appl. 7(4), 17177–17177 (2018). https://doi.org/10.1038/lsa.2017.177
F. Zhang, E. Alhajji, Y. Lei, N. Kurra, H.N. Alshareef, Highly doped 3D graphene Na-Ion battery anode by laser scribing polyimide films in nitrogen ambient. Adv. Energy Mater. 8(23), 1800353 (2018). https://doi.org/10.1002/aenm.201800353
Y. Huang, L. Zeng, C. Liu, D. Zeng, Z. Liu et al., Laser direct writing of heteroatom (N and S)-doped graphene from a polybenzimidazole ink donor on polyethylene terephthalate polymer and glass substrates. Small 14(44), 1803143 (2018). https://doi.org/10.1002/smll.201803143
R. Yuge, S. Bandow, M. Yudasaka, K. Toyama, S. Iijima et al., Boron- and nitrogen-doped single-walled carbon nanohorns with graphite-like thin sheets prepared by CO2 laser ablation method. Carbon 111, 675–680 (2017). https://doi.org/10.1016/j.carbon.2016.10.049
W.H. Lee, J.W. Suk, H. Chou, J. Lee, Y. Hao et al., Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 12(5), 2374–2378 (2012). https://doi.org/10.1021/nl300346j
L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu et al., Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat. Commun. 8(1), 15139 (2017). https://doi.org/10.1038/ncomms15139
D. Gao, R. Liu, J. Biskupek, U. Kaiser, Y.F. Song et al., Modular design of Noble-Metal-Free mixed metal oxide electrocatalysts for complete water splitting. Angew. Chem. Int. Ed. 58(14), 4644–4648 (2019). https://doi.org/10.1002/anie.201900428
X. Liu, J. Iocozzia, Y. Wang, X. Cui, Y. Chen et al., Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10(2), 402–434 (2017). https://doi.org/10.1039/C6EE02265K
R.D.L. Smith, M.S. Prévot, R.D. Fagan, Z. Zhang, P.A. Sedach et al., Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340(6128), 60 (2013). https://doi.org/10.1126/science.1233638
T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5(1), 3949 (2014). https://doi.org/10.1038/ncomms4949
M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5(1), 4695 (2014). https://doi.org/10.1038/ncomms5695
J. Qi, W. Zhang, R. Xiang, K. Liu, H.Y. Wang et al., Porous nickel–iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2(10), 1500199 (2015). https://doi.org/10.1002/advs.201500199
L. Wu, Q. Li, C.H. Wu, H. Zhu, A. Mendoza-Garcia et al., Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 137(22), 7071–7074 (2015). https://doi.org/10.1021/jacs.5b04142
Z. Hu, S. Qiu, Y. You, Y. Guo, Y. Guo et al., Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Appl. Catal. B Environ. 225, 110–120 (2018). https://doi.org/10.1016/j.apcatb.2017.08.068
K. Jiang, H. Wang, W.B. Cai, H. Wang, Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 11(6), 6451–6458 (2017). https://doi.org/10.1021/acsnano.7b03029
Y. Park, D. Yoon, K. Fukutani, R. Stania, J. Son, Steep-slope threshold switch enabled by pulsed-laser-induced phase transformation. ACS Appl. Mater. Interfaces 11(27), 24221–24229 (2019). https://doi.org/10.1021/acsami.9b04015
G. Ou, P. Fan, H. Zhang, K. Huang, C. Yang et al., Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. Nano Energy 35, 207–214 (2017). https://doi.org/10.1016/j.nanoen.2017.03.049
H.S. Han, S. Shin, D.H. Kim, I.J. Park, J.S. Kim et al., Boosting the solar water oxidation performance of a BiVO4 photoanode by crystallographic orientation control. Energy Environ. Sci. 11(5), 1299–1306 (2018). https://doi.org/10.1039/C8EE00125A
J. Sourice, A. Quinsac, Y. Leconte, O. Sublemontier, W. Porcher et al., One-step synthesis of Si@C nanoparticles by laser pyrolysis: High-capacity anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(12), 6637–6644 (2015). https://doi.org/10.1021/am5089742
N. Mas, J.L. Hueso, G. Martinez, A. Madrid, R. Mallada et al., Laser-driven direct synthesis of carbon nanodots and application as sensitizers for visible-light photocatalysis. Carbon 156, 453–462 (2020). https://doi.org/10.1016/j.carbon.2019.09.073
K.Y. Wang, L. Feng, T.H. Yan, S. Wu, E. Joseph et al., Rapid generation of hierarchically porous metal–organic frameworks through laser photolysis. Angew. Chem. Int. Ed. 59(28), 11349–11354 (2020). https://doi.org/10.1002/anie.202003636
L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao et al., Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29(6), 1603286 (2017). https://doi.org/10.1002/adma.201603286
J. Zhang, J. Feng, L. Jia, H. Zhang, G. Zhang et al., Laser-induced selective metallization on polymer substrates using organocopper for portable electronics. ACS Appl. Mater. Interfaces 11(14), 13714–13723 (2019). https://doi.org/10.1021/acsami.9b01856
A. Basu, K. Roy, N. Sharma, S. Nandi, R. Vaidhyanathan et al., CO2 laser direct written MOF-based metal-decorated and heteroatom-doped porous graphene for flexible all-solid-state microsupercapacitor with extremely high cycling stability. ACS Appl. Mater. Interfaces 8(46), 31841–31848 (2016). https://doi.org/10.1021/acsami.6b10193
H. Jiang, S. Jin, C. Wang, R. Ma, Y. Song et al., Nanoscale laser metallurgy and patterning in air using MOFs. J. Am. Chem. Soc. 141(13), 5481–5489 (2019). https://doi.org/10.1021/jacs.9b00355
Y. Wu, Z. Huang, H. Jiang, C. Wang, Y. Zhou et al., Facile synthesis of uniform metal carbide nanoparticles from metal–organic frameworks by laser metallurgy. ACS Appl. Mater. Interfaces 11(47), 44573–44581 (2019). https://doi.org/10.1021/acsami.9b13864
R. Ye, Z. Peng, T. Wang, Y. Xu, J. Zhang et al., In situ formation of metal oxide nanocrystals embedded in laser-induced graphene. ACS Nano 9(9), 9244–9251 (2015). https://doi.org/10.1021/acsnano.5b04138
M. Ren, J. Zhang, J.M. Tour, Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon 139, 880–887 (2018). https://doi.org/10.1016/j.carbon.2018.07.051
X. Zang, C. Shen, Y. Chu, B. Li, M. Wei et al., Laser-induced molybdenum carbide–graphene composites for 3D foldable paper electronics. Adv. Mater. 30(26), 1800062 (2018). https://doi.org/10.1002/adma.201800062
X. Zang, C. Jian, T. Zhu, Z. Fan, W. Wang et al., Laser-sculptured ultrathin transition metal carbide layers for energy storage and energy harvesting applications. Nat. Commun. 10(1), 3112 (2019). https://doi.org/10.1038/s41467-019-10999-z
T. Afaneh, P.K. Sahoo, I.A.P. Nobrega, Y. Xin, H.R. Gutiérrez, Laser-assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater. 28(37), 1802949 (2018). https://doi.org/10.1002/adfm.201802949
A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant et al., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett. 12(6), 3187–3192 (2012). https://doi.org/10.1021/nl301164v
J. Lu, J.H. Lu, H. Liu, B. Liu, K.X. Chan et al., Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 8(6), 6334–6343 (2014). https://doi.org/10.1021/nn501821z
J. Li, X. Yang, Y. Liu, B. Huang, R. Wu et al., General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579(7799), 368–374 (2020). https://doi.org/10.1038/s41586-020-2098-y
K. Savva, B. Višić, R. Popovitz-Biro, E. Stratakis, R. Tenne, Short pulse laser synthesis of transition-metal dichalcogenide nanostructures under ambient conditions. ACS Omega 2(6), 2649–2656 (2017). https://doi.org/10.1021/acsomega.7b00409
F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci et al., In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces 8(16), 10459–10465 (2016). https://doi.org/10.1021/acsami.6b00808
L. Ge, Q. Hong, H. Li, C. Liu, F. Li, Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv. Funct. Mater. 29(38), 1904000 (2019). https://doi.org/10.1002/adfm.201904000
Y.Z. Chen, H. Medina, T.Y. Su, J.G. Li, K.Y. Cheng et al., Ultrafast and low temperature synthesis of highly crystalline and patternable few-layers tungsten diselenide by laser irradiation assisted selenization process. ACS Nano 9(4), 4346–4353 (2015). https://doi.org/10.1021/acsnano.5b00866
S. Rasekh, F.M. Costa, N.M. Ferreira, M.A. Torres, M.A. Madre et al., Use of laser technology to produce high thermoelectric performances in Bi2Sr2Co1.8Ox. Mater. Des. 75, 143–148 (2015). https://doi.org/10.1016/j.matdes.2015.03.005
Y. Kinemuchi, M. Mikami, I. Terasaki, W. Shin, Rapid synthesis of thermoelectric compounds by laser melting. Mater. Des. 106, 30–36 (2016). https://doi.org/10.1016/j.matdes.2016.05.093
C. Li, M. Liu, H. Ding, L. He, E. Wang et al., A lightly Fe-doped (NiS2/MoS2)/carbon nanotube hybrid electrocatalyst film with laser-drilled micropores for stabilized overall water splitting and pH-universal hydrogen evolution reaction. J. Mater. Chem. A 8(34), 17527–17536 (2020). https://doi.org/10.1039/D0TA04586A
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376 (2017). https://doi.org/10.1126/science.aan2301
Y. Huang, Q. Gong, X. Song, K. Feng, K. Nie et al., Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano 10, 11337 (2016). https://doi.org/10.1021/acsnano.6b06580
T. Jeon, H.M. Jin, S.H. Lee, J.M. Lee, H.I. Park et al., Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS Nano 10(8), 7907–7914 (2016). https://doi.org/10.1021/acsnano.6b03815
P. You, G. Li, G. Tang, J. Cao, F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy Environ. Sci. 13, 1187–1196 (2020). https://doi.org/10.1039/C9EE02324K
I.M. Pinatti, A.F. Gouveia, C. Doñate-Buendía, G. Mínguez-Vega, J. Andrés et al., Femtosecond-laser-irradiation-induced structural organization and crystallinity of Bi2WO6. Sci. Rep. 10(1), 4613 (2020). https://doi.org/10.1038/s41598-020-61524-y
D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117(5), 3990–4103 (2017). https://doi.org/10.1021/acs.chemrev.6b00468
S. Ibrahimkutty, P. Wagener, T.D.S. Rolo, D. Karpov, A. Menzel et al., A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid. Sci. Rep. 5(1), 16313 (2015). https://doi.org/10.1038/srep16313
K.Y. Niu, L. Fang, R. Ye, D. Nordlund, M.M. Doeff et al., Tailoring transition-metal hydroxides and oxides by photon-induced reactions. Angew. Chem. Int. Ed. 128(46), 14484–14488 (2016). https://doi.org/10.1002/ange.201606775
H. Zeng, X.-W. Du, S.C. Singh, S.A. Kulinich, S. Yang et al., Nanomaterials via laser ablation/irradiation in liquid: a review. Adv. Funct. Mater. 22(7), 1333–1353 (2012). https://doi.org/10.1002/adfm.201102295
S. Hebié, Y. Holade, K. Maximova, M. Sentis, P. Delaporte et al., Advanced electrocatalysts on the basis of bare au nanomaterials for biofuel cell applications. ACS Catal. 5(11), 6489–6496 (2015). https://doi.org/10.1021/acscatal.5b01478
V. Piotto, L. Litti, M. Meneghetti, Synthesis and shape manipulation of anisotropic gold nanoparticles by laser ablation in solution. J. Phys. Chem. C 124(8), 4820–4826 (2020). https://doi.org/10.1021/acs.jpcc.9b10793
G. González-Rubio, T. Milagres de Oliveira, W. Albrecht, P. Díaz-Núñez, J.C. Castro-Palacio et al., Formation of hollow gold nanocrystals by nanosecond laser irradiation. J. Phys. Chem. Lett. 11(3), 670–677 (2020). https://doi.org/10.1021/acs.jpclett.9b03574
I. Vassalini, L. Borgese, M. Mariz, S. Polizzi, G. Aquilanti et al., Enhanced electrocatalytic oxygen evolution in Au–Fe nanoalloys. Angew. Chem. Int. Ed. 56(23), 6589–6593 (2017). https://doi.org/10.1002/anie.201703387
J. Zhang, G. Chen, D. Guay, M. Chaker, D. Ma, Highly active PtAu alloy nanoparticle catalysts for the reduction of 4-nitrophenol. Nanoscale 6(4), 2125–2130 (2014). https://doi.org/10.1039/C3NR04715F
S. Hu, G. Goenaga, C. Melton, T.A. Zawodzinski, D. Mukherjee, PtCo/CoOx nanocomposites: bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Appl. Catal. B Environ. 182, 286–296 (2016). https://doi.org/10.1016/j.apcatb.2015.09.035
H. Zhang, S. Wu, J. Liu, Y. Cai, C. Liang, Laser irradiation-induced Au–ZnO nanospheres with enhanced sensitivity and stability for ethanol sensing. Phys. Chem. Chem. Phys. 18(32), 22503–22508 (2016). https://doi.org/10.1039/C6CP03487J
C.H. Chen, D. Wu, Z. Li, R. Zhang, C.G. Kuai et al., Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 9(20), 1803913 (2019). https://doi.org/10.1002/aenm.201803913
Z. Li, Y. Feng, Y.L. Liang, C.Q. Cheng, C.K. Dong et al., Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 32(25), 1908521 (2020). https://doi.org/10.1002/adma.201908521
T. Zhang, Y. Bai, Y. Sun, L. Hang, X. Li et al., Laser-irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high-index facets, rich grain boundaries and subtle lattice distortion for enhanced electrocatalytic activity. J. Mater. Chem. A 6(28), 13735–13742 (2018). https://doi.org/10.1039/C8TA04087G
S. Pan, X. Zhang, W. Lu, S.F. Yu, Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. J. Mater. Chem. A 6(38), 18687–18693 (2018). https://doi.org/10.1039/C8TA06789A
W. Zheng, Y. Zhang, K. Niu, T. Liu, K. Bustillo et al., Selective nitrogen doping of graphene oxide by laser irradiation for enhanced hydrogen evolution activity. Chem. Commun. 54(97), 13726–13729 (2018). https://doi.org/10.1039/C8CC07725H
L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang et al., Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9(1), 69–73 (2014). https://doi.org/10.1038/nnano.2013.272
J.D. Blakemore, H.B. Gray, J.R. Winkler, A.M. Müller, Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3(11), 2497–2500 (2013). https://doi.org/10.1021/cs400639b
B.M. Hunter, J.D. Blakemore, M. Deimund, H.B. Gray, J.R. Winkler et al., Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids. J. Am. Chem. Soc. 136(38), 13118–13121 (2014). https://doi.org/10.1021/ja506087h
X. Wang, Z. Li, D.Y. Wu, G.R. Shen, C. Zou et al., Porous cobalt–nickel hydroxide nanosheets with active cobalt ions for overall water splitting. Small 15(8), 1804832 (2019). https://doi.org/10.1002/smll.201804832
H. Lee, D.A. Reddy, Y. Kim, S.Y. Chun, R. Ma et al., Drastic improvement of 1D-CdS solar-driven photocatalytic hydrogen evolution rate by integrating with nife layered double hydroxide nanosheets synthesized by liquid-phase pulsed-laser ablation. ACS Sustain. Chem. Eng. 6(12), 16734–16743 (2018). https://doi.org/10.1021/acssuschemeng.8b04000
D.K. Lee, D. Lee, M.A. Lumley, K.S. Choi, Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chem. Soc. Rev. 48(7), 2126–2157 (2019). https://doi.org/10.1039/C8CS00761F
H. Liu, P. Jin, Y.M. Xue, C. Dong, X. Li et al., Photochemical synthesis of ultrafine cubic boron nitride nanoparticles under ambient conditions. Angew. Chem. Int. Ed. 54(24), 7051–7054 (2015). https://doi.org/10.1002/anie.201502023
M. Rui, X. Li, L. Gan, T. Zhai, H. Zeng, Ternary oxide nanocrystals: universal laser-hydrothermal synthesis, optoelectronic and electrochemical applications. Adv. Funct. Mater. 26(28), 5051–5060 (2016). https://doi.org/10.1002/adfm.201600785
Y. Dong, S. Wang, Y. Zou, S. Liu, Z. Zhu et al., Zinc stannate nanocrystal-based ultrarapid-response UV photodetectors. Adv. Mater. Technol. 3(6), 1800085 (2018). https://doi.org/10.1002/admt.201800085
Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu et al., Electronic reconstruction of α-Ag2WO4 nanorods for visible-light photocatalysis. ACS Nano 9(7), 7256–7265 (2015). https://doi.org/10.1021/acsnano.5b02077
Z. Lin, W. Li, G. Yang, Hydrogen-interstitial CuWO4 nanomesh: a single-component full spectrum-active photocatalyst for hydrogen evolution. Appl. Catal. B Environ. 227, 35–43 (2018). https://doi.org/10.1016/j.apcatb.2018.01.021
J. Jian, Y. Xu, X. Yang, W. Liu, M. Fu et al., Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting. Nat. Commun. 10(1), 2609 (2019). https://doi.org/10.1038/s41467-019-10543-z
L. Zhou, H. Zhang, H. Bao, G. Liu, Y. Li et al., Onion-structured spherical MoS2 nanoparticles induced by laser ablation in water and liquid droplets’ radial solidification/oriented growth mechanism. J. Phys. Chem. C 121(41), 23233–23239 (2017). https://doi.org/10.1021/acs.jpcc.7b07784
Z.W. Gao, M. Liu, W. Zheng, X. Zhang, L.Y.S. Lee, Surface engineering of MoS2 via laser-induced exfoliation in protic solvents. Small 15(44), 1903791 (2019). https://doi.org/10.1002/smll.201903791
W. Gong, Q. Yuan, C. Chen, Y. Lv, Y. Lin et al., Liberating N-CNTs confined highly dispersed Co-Nx sites for selective hydrogenation of quinolines. Adv. Mater. 31(49), 1906051 (2019). https://doi.org/10.1002/adma.201906051
H. Liu, X.H. Zhang, Y.X. Li, X. Li, C.K. Dong et al., Conductive boron nitride as promising catalyst support for the oxygen evolution reaction. Adv. Energy Mater. 10(25), 1902521 (2020). https://doi.org/10.1002/aenm.201902521
B. Li, L. Jiang, X. Li, Z. Cheng, P. Ran et al., Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production. Adv. Funct. Mater. 29(1), 1806229 (2019). https://doi.org/10.1002/adfm.201806229
X. Zhou, W. Guo, Y. Zhu, P. Peng, The laser writing of highly conductive and anti-oxidative copper structures in liquid. Nanoscale 12(2), 563–571 (2020). https://doi.org/10.1039/C9NR07248A
S. Wu, J. Liu, D. Liang, H. Sun, Y. Ye et al., Photo-excited in situ loading of Pt clusters onto rGO immobilized SnO2 with excellent catalytic performance toward methanol oxidation. Nano Energy 26, 699–707 (2016). https://doi.org/10.1016/j.nanoen.2016.06.038
Y. Peng, J. Cao, J. Yang, W. Yang, C. Zhang et al., Laser assisted solution synthesis of high performance graphene supported electrocatalysts. Adv. Funct. Mater. 30(32), 2001756 (2020). https://doi.org/10.1002/adfm.202001756
J. Yeo, S. Hong, M. Wanit, H.W. Kang, D. Lee et al., Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Adv. Funct. Mater. 23(26), 3316–3323 (2013). https://doi.org/10.1002/adfm.201203863
K. Kwon, J. Shim, J.O. Lee, K. Choi, K. Yu, Localized laser-based photohydrothermal synthesis of functionalized metal-oxides. Adv. Funct. Mater. 25(15), 2222–2229 (2015). https://doi.org/10.1002/adfm.201404215
J. Yeo, S. Hong, G. Kim, H. Lee, Y.D. Suh et al., Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9(6), 6059–6068 (2015). https://doi.org/10.1021/acsnano.5b01125
P. Guo, X. Yang, Q. Ye, J. Zhang, H. Wang et al., Laser-generated nanocrystals in perovskite: universal embedding of ligand-free and sub-10 nm nanocrystals in solution-processed metal halide perovskite films for effectively modulated optoelectronic performance. Adv. Energy Mater. 9(35), 1901341 (2019). https://doi.org/10.1002/aenm.201901341
K.H. Ibrahim, M. Irannejad, M. Hajialamdari, A. Ramadhan, K.P. Musselman et al., A novel femtosecond laser-assisted method for the synthesis of reduced graphene oxide gels and thin films with tunable properties. Adv. Mater. Inter. 3(14), 1500864 (2016). https://doi.org/10.1002/admi.201500864
D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017). https://doi.org/10.1021/acs.chemrev.6b00468
Y. Zhou, C.K. Dong, L.L. Han, J. Yang, X.W. Du, Top-down preparation of active cobalt oxide catalyst. ACS Catal. 6(10), 6699–6703 (2016). https://doi.org/10.1021/acscatal.6b02416
L. Li, L. Yu, Z. Lin, G. Yang, Reduced TiO2-graphene oxide heterostructure as broad spectrum-driven efficient water-splitting photocatalysts. ACS Appl. Mater. Interfaces 8(13), 8536–8545 (2016). https://doi.org/10.1021/acsami.6b00966
K. Ibrahim, I. Novodchuk, K. Mistry, M. Singh, C. Ling et al., Laser-directed assembly of nanorods of 2D materials. Small 15(46), 1904415 (2019). https://doi.org/10.1002/smll.201904415
Z. Li, J.Y. Fu, Y. Feng, C.K. Dong, H. Liu et al., A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2(12), 1107–1114 (2019). https://doi.org/10.1038/s41929-019-0365-9
E.H. Penilla, L.F. Devia-Cruz, A.T. Wieg, P. Martinez-Torres, N. Cuando-Espitia et al., Ultrafast laser welding of ceramics. Science 365(6455), 803 (2019). https://doi.org/10.1126/science.aaw6699
H. Luo, C. Wang, C. Linghu, K. Yu, C. Wang et al., Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric micro-structured stamp. Natl. Sci. Rev. 7(2), 296–304 (2019). https://doi.org/10.1093/nsr/nwz109
C. Chen, Y. Kuang, L. Hu, Challenges and opportunities for solar evaporation. Joule 3(3), 683–718 (2019). https://doi.org/10.1016/j.joule.2018.12.023
M. Gao, L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12(3), 841–864 (2019). https://doi.org/10.1039/C8EE01146J
G. Liu, J. Xu, K. Wang, Solar water evaporation by black photothermal sheets. Nano Energy 41, 269–284 (2017). https://doi.org/10.1016/j.nanoen.2017.09.005
C.C. Chuang, H.C. Chu, S.B. Huang, W.S. Chang, H.Y. Tuan, Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor. Chem. Eng. J. 379, 122285 (2020). https://doi.org/10.1016/j.cej.2019.122285
X. Yan, Z. Huang, S. Sett, J. Oh, H. Cha et al., Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces. ACS Nano 13(4), 4160–4173 (2019). https://doi.org/10.1021/acsnano.8b09106
S.A. Jalil, B. Lai, M. ElKabbash, J. Zhang, E.M. Garcell et al., Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light-Sci. Appl. 9(1), 14 (2020). https://doi.org/10.1038/s41377-020-0242-y
P. Fan, B. Bai, J. Long, D. Jiang, G. Jin et al., Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface. Nano Lett. 15(9), 5988–5994 (2015). https://doi.org/10.1021/acs.nanolett.5b02141
P. Fan, H. Wu, M. Zhong, H. Zhang, B. Bai et al., Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale 8(30), 14617–14624 (2016). https://doi.org/10.1039/C6NR03662G
P. Fan, B. Bai, M. Zhong, H. Zhang, J. Long et al., General strategy toward dual-scale-controlled metallic micro–nano hybrid structures with ultralow reflectance. ACS Nano 11(7), 7401–7408 (2017). https://doi.org/10.1021/acsnano.7b03673
P. Zhang, Q. Liao, H. Yao, H. Cheng, Y. Huang et al., Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 6(31), 15303–15309 (2018). https://doi.org/10.1039/C8TA05412F
J. Li, Y. Liu, L. Lin, M. Wang, T. Jiang et al., Optical nanomanipulation on solid substrates via optothermally-gated photon nudging. Nat. Commun. 10(1), 5672 (2019). https://doi.org/10.1038/s41467-019-13676-3
Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589 (2016). https://doi.org/10.1021/acsenergylett.6b00247
J. Liang, C. Jiang, W. Wu, Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs. Nanoscale 11(15), 7041–7061 (2019). https://doi.org/10.1039/C8NR10301A
L. Liu, Y. Feng, W. Wu, Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J. Power Sources 410–411, 69–77 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.012
W. Wu, Stretchable electronics: functional materials, fabrication strategies and applications. Scie. Technol. Adv. Mater. 20(1), 187–224 (2019). https://doi.org/10.1080/14686996.2018.1549460
W. Gao, N. Singh, L. Song, Z. Liu, A.L.M. Reddy et al., Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 6(8), 496–500 (2011). https://doi.org/10.1038/nnano.2011.110
N. Kamboj, T. Purkait, M. Das, S. Sarkar, K.S. Hazra et al., Ultralong cycle life and outstanding capacitive performance of a 10.8 V metal free micro-supercapacitor with highly conducting and robust laser-irradiated graphene for an integrated storage device. Energy Environ. Sci. 12(8), 2507–2517 (2019). https://doi.org/10.1039/C9EE01458F
J. Cai, C. Lv, A. Watanabe, Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system. Nano Energy 30, 790–800 (2016). https://doi.org/10.1016/j.nanoen.2016.09.017
W. He, R. Ma, D.J. Kang, High-performance, flexible planar microsupercapacitors based on crosslinked polyaniline using laser printing lithography. Carbon 161, 117–122 (2020). https://doi.org/10.1016/j.carbon.2020.01.047
A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016). https://doi.org/10.1002/aenm.201600050
J. Ye, H. Tan, S. Wu, K. Ni, F. Pan et al., Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output. Adv. Mater. 30(27), 1801384 (2018). https://doi.org/10.1002/adma.201801384
J. Gao, C. Shao, S. Shao, F. Wan, C. Gao et al., Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 14(37), 1801809 (2018). https://doi.org/10.1002/smll.201801809
J. Lee, J.Y. Seok, S. Son, M. Yang, B. Kang, High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode. J. Mater. Chem. A 5(47), 24585–24593 (2017). https://doi.org/10.1039/C7TA07960E
J.Y. Hwang, M.F. El-Kady, Y. Wang, L. Wang, Y. Shao et al., Direct preparation and processing of graphene/RuO2 nanocomposite electrodes for high-performance capacitive energy storage. Nano Energy 18, 57–70 (2015). https://doi.org/10.1016/j.nanoen.2015.09.009
S. Yang, Y. Li, J. Sun, B. Cao, Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J. Power Sources 431, 220–225 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.016
W. Wang, L. Lu, Y. Xie, W. Yuan, Z. Wan et al., A highly stretchable microsupercapacitor using laser-induced graphene/NiO/Co3O4 electrodes on a biodegradable waterborne polyurethane substrate. Adv. Mater. Technol. 5(2), 1900903 (2020). https://doi.org/10.1002/admt.201900903
L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao et al., High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016). https://doi.org/10.1002/adma.201503333
H. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi et al., Conductive metal–organic frameworks selectively grown on laser-scribed graphene for electrochemical microsupercapacitors. Adv. Energy Mater. 9(21), 1900482 (2019). https://doi.org/10.1002/aenm.201900482
H.C. Huang, C.J. Chung, C.T. Hsieh, P.L. Kuo, H. Teng, Laser fabrication of all-solid-state microsupercapacitors with ultrahigh energy and power based on hierarchical pore carbon. Nano Energy 21, 90–105 (2016). https://doi.org/10.1016/j.nanoen.2015.12.012
Q. Li, Q. Wang, L. Li, L. Yang, Y. Wang et al., Femtosecond laser-etched MXene microsupercapacitors with double-side configuration via arbitrary on- and through-substrate connections. Adv. Energy Mater. 10(24), 2000470 (2020). https://doi.org/10.1002/aenm.202000470
M. Ren, J. Zhang, C. Zhang, M.G. Stanford, Y. Chyan et al., Quasi-solid-state Li–O2 batteries with laser-induced graphene cathode catalysts. ACS Appl. Energy Mater. 3(2), 1702–1709 (2020). https://doi.org/10.1021/acsaem.9b02182
Z. Veliscek, L.S. Perse, R. Dominko, E. Kelder, M. Gaberscek, Preparation, characterisation and optimisation of lithium battery anodes consisting of silicon synthesised using laser assisted chemical vapour pyrolysis. J. Power Sources 273, 380–388 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.111
D. Munaò, M. Valvo, J. van Erven, E.M. Kelder, J. Hassoun et al., Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 22(4), 1556–1561 (2012). https://doi.org/10.1039/C1JM13565A
C. Zhou, K. Zhang, M. Hong, Y. Yang, N. Hu et al., Laser-induced MnO/Mn3O4/N-doped-graphene hybrid as binder-free anodes for lithium ion batteries. Chem. Eng. J. 385, 123720 (2020). https://doi.org/10.1016/j.cej.2019.123720
B. Zhang, M. Deschamps, M.R. Ammar, E. Raymundo-Piñero, L. Hennet et al., Laser synthesis of hard carbon for anodes in Na-ion battery. Adv. Mater. Technol. 2(3), 1600227 (2017). https://doi.org/10.1002/admt.201600227
T. Han, A. Nag, N. Afsarimanesh, S.C. Mukhopadhyay, S. Kundu et al., Laser-assisted printed flexible sensors: a review. Sensors 19(6), 1462 (2019). https://doi.org/10.3390/s19061462
X. Wang, Z. Liu, T. Zhang, Flexible sensing electronics for wearable/attachable health monitoring. Small 13(25), 1602790 (2017). https://doi.org/10.1002/smll.201602790
R. Rahimi, M. Ochoa, W. Yu, B. Ziaie, Highly stretchable and sensitive unidirectional strain sensor via laser carbonization. ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015). https://doi.org/10.1021/am509087u
L.Q. Tao, H. Tian, Y. Liu, Z.Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8(1), 14579 (2017). https://doi.org/10.1038/ncomms14579
B.K.B. Deka, A. Hazarika, J. Kim, H.E. Jeong, Y.B. Park et al., Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon 152, 376–387 (2019). https://doi.org/10.1016/j.carbon.2019.06.015
O.A. Araromi, S. Rosset, H.R. Shea, High-resolution, large-area fabrication of compliant electrodes via laser ablation for robust, stretchable dielectric elastomer actuators and sensors. ACS Appl. Mater. Interfaces 7(32), 18046–18053 (2015). https://doi.org/10.1021/acsami.5b04975
A. Nag, S.C. Mukhopadhyay, J. Kosel, Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sens. Actuat. A-Phys. 251, 148–155 (2016). https://doi.org/10.1016/j.sna.2016.10.023
A. Nag, S.C. Mukhopadhyay, J. Kosel, Tactile sensing from laser-ablated metallized PET films. IEEE Sens. J. 17(1), 7–13 (2016). https://doi.org/10.1109/JSEN.2016.2617878
S. Son, J.E. Park, J. Lee, M. Yang, B. Kang, Laser-assisted fabrication of single-layer flexible touch sensor. Sci. Rep. 6(1), 34629 (2016). https://doi.org/10.1038/srep34629
S. Bai, S. Zhang, W. Zhou, D. Ma, Y. Ma et al., Laser-assisted reduction of highly conductive circuits based on copper nitrate for flexible printed sensors. Nano-Micro Lett. 9(4), 42 (2017). https://doi.org/10.1007/s40820-017-0139-3
S.Y. Yu, G. Schrodj, K. Mougin, J. Dentzer, J.P. Malval et al., Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties. Adv. Mater. 30(51), 1805093 (2018). https://doi.org/10.1002/adma.201805093
G. Dubourg, M. Radović, Multifunctional screen-printed TiO2 nanoparticles tuned by laser irradiation for a flexible and scalable UV detector and room-temperature ethanol sensor. ACS Appl. Mater. Interfaces 11(6), 6257–6266 (2019). https://doi.org/10.1021/acsami.8b19976
D. Wu, Q. Peng, S. Wu, G. Wang, L. Deng et al., A simple graphene NH3 gas sensor via laser direct writing. Sensors 18(12), 4405 (2018). https://doi.org/10.3390/s18124405
R. Park, H. Kim, S. Lone, S. Jeon, W.Y. Kwon et al., One-step laser patterned highly uniform reduced graphene oxide thin films for circuit-enabled tattoo and flexible humidity sensor application. Sensors 18(6), 1857 (2018). https://doi.org/10.3390/s18061857
Q.A. Drmosh, Z.H. Yamani, A.H. Hendi, M.A. Gondal, R.A. Moqbel et al., A novel approach to fabricating a ternary rGO/ZnO/Pt system for high-performance hydrogen sensor at low operating temperatures. Appl. Surf. Sci. 464, 616–626 (2019). https://doi.org/10.1016/j.apsusc.2018.09.128
T.L. Chang, C.Y. Chou, C.P. Wang, T.C. Teng, H.C. Han, Picosecond laser-direct fabrication of graphene-based electrodes for a gas sensor module with wireless circuits. Microelectron. Eng. 210, 19–26 (2019). https://doi.org/10.1016/j.mee.2019.03.003
B. Sun, R.N. McCay, S. Goswami, Y. Xu, C. Zhang et al., Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 30(50), 1804327 (2018). https://doi.org/10.1002/adma.201804327
M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13(6), 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
J. Huang, X. Fu, G. Liu, S. Xu, X. Li et al., Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing. Nano Energy 62, 638–644 (2019). https://doi.org/10.1016/j.nanoen.2019.05.081
Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang et al., A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156, 506–513 (2020). https://doi.org/10.1016/j.carbon.2019.10.006
D. Yin, J. Feng, R. Ma, Y.F. Liu, Y.L. Zhang et al., Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nat. Commun. 7(1), 11573 (2016). https://doi.org/10.1038/ncomms11573
H. Jeon, S. Koo, W.M. Reese, P. Loskill, C.P. Grigoropoulos et al., Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat. Mater. 14(9), 918–923 (2015). https://doi.org/10.1038/nmat4342
S.Y. Seo, J. Park, J. Park, K. Song, S. Cha et al., Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1(9), 512–517 (2018). https://doi.org/10.1038/s41928-018-0129-6
L. Lin, J. Li, W. Li, M.N. Yogeesh, J. Shi et al., Optothermoplasmonic nanolithography for on-demand patterning of 2D materials. Adv. Funct. Mater. 28(41), 1803990 (2018). https://doi.org/10.1002/adfm.201803990
P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan et al., Dendritic core-shell nickel-iron-copper metal/metal oxide electrode for efficient electrocatalytic water oxidation. Nat. Commun. 9(1), 381 (2018). https://doi.org/10.1038/s41467-017-02429-9
J. Zhang, T. Wang, P. Liu, Z. Liao, S. Liu et al., Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 8, 15437 (2017). https://doi.org/10.1038/ncomms15437
S. Zhuo, Y. Shi, L. Liu, R. Li, L. Shi et al., Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne. Nat. Commun. 9(1), 3132 (2018). https://doi.org/10.1038/s41467-018-05474-0
X. Mo, K.C. Chan, E.C.M. Tse, A scalable laser-assisted method to produce active and robust graphene-supported nanoparticle electrocatalysts. Chem. Mater. 31(19), 8230–8238 (2019). https://doi.org/10.1021/acs.chemmater.9b03669
T. Rauscher, C.I. Müller, A. Gabler, T. Gimpel, M. Köhring et al., Femtosecond-laser structuring of Ni electrodes for highly active hydrogen evolution. Electrochim. Acta 247, 1130–1139 (2017). https://doi.org/10.1016/j.electacta.2017.07.074
A. Gabler, C.I. Müller, T. Rauscher, M. Köhring, B. Kieback et al., Ultrashort pulse laser-structured nickel surfaces as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy 42(16), 10826–10833 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.006
A. Gabler, C.I. Müller, T. Rauscher, T. Gimpel, R. Hahn et al., Ultrashort-pulse laser structured titanium surfaces with sputter-coated platinum catalyst as hydrogen evolution electrodes for alkaline water electrolysis. Int. J. Hydrogen Energy 43(15), 7216–7226 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.130
T.F. Hung, Z.W. Yin, S.B. Betzler, W. Zheng, J. Yang et al., Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 367, 115–122 (2019). https://doi.org/10.1016/j.cej.2019.02.136
D.N. Nguyen, L.N. Nguyen, P.D. Nguyen, T.V. Thu, A.D. Nguyen et al., Crystallization of amorphous molybdenum sulfide induced by electron or laser beam and its effect on H2-evolving activities. J. Phys. Chem. C 120(50), 28789–28794 (2016). https://doi.org/10.1021/acs.jpcc.6b08817
G. Ou, P. Fan, X. Ke, Y. Xu, K. Huang et al., Defective molybdenum sulfide quantum dots as highly active hydrogen evolution electrocatalysts. Nano Res. 11(2), 751–761 (2018). https://doi.org/10.1007/s12274-017-1684-2
H. Deng, C. Zhang, Y. Xie, T. Tumlin, L. Giri et al., Laser induced MoS2/carbon hybrids for hydrogen evolution reaction catalysts. J. Mater. Chem. A 4(18), 6824–6830 (2016). https://doi.org/10.1039/C5TA09322H
P. Zuo, L. Jiang, X. Li, B. Li, P. Ran et al., Metal (Ag, Pt)–MoS2 hybrids greenly prepared through photochemical reduction of femtosecond laser pulses for SERS and HER. ACS Sustain. Chem. Eng. 6(6), 7704–7714 (2018). https://doi.org/10.1021/acssuschemeng.8b00579
G.O.S. Santos, L.R.A. Silva, Y.G.S. Alves, R.S. Silva, K.I.B. Eguiluz et al., Enhanced stability and electrocatalytic properties of Ti/RuxIr1−xO2 anodes produced by a new laser process. Chem. Eng. J. 355, 439–447 (2019). https://doi.org/10.1016/j.cej.2018.08.145
M. Cai, R. Pan, W. Liu, X. Luo, C. Chen et al., Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction. Chemsuschem 12(15), 3562–3570 (2019). https://doi.org/10.1002/cssc.201901020
T. Nishi, Y. Hayasaka, T.M. Suzuki, S. Sato, N. Isomura et al., Electrochemical water oxidation catalysed by CoO–Co2O3–Co(OH)2 multiphase-nanoparticles prepared by femtosecond laser ablation in water. ChemistrySelect 3(17), 4979–4984 (2018). https://doi.org/10.1002/slct.201800943
Z.W. Gao, T. Ma, X.M. Chen, H. Liu, L. Cui et al., Strongly coupled CoO nanoclusters/CoFe LDHs hybrid as a synergistic catalyst for electrochemical water oxidation. Small 14(17), 1800195 (2018). https://doi.org/10.1002/smll.201800195
C. Meng, M. Lin, X. Sun, X. Chen, X. Chen et al., Laser synthesis of oxygen vacancy-modified CoOOH for highly efficient oxygen evolution. Chem. Commun. 55(20), 2904–2907 (2019). https://doi.org/10.1039/C8CC08951E
J. Zhang, M. Ren, L. Wang, Y. Li, B.I. Yakobson et al., Oxidized laser-induced graphene for efficient oxygen electrocatalysis. Adv. Mater. 30(21), 1707319 (2018). https://doi.org/10.1002/adma.201707319
J. Zhang, M. Ren, Y. Li, J.M. Tour, In situ synthesis of efficient water oxidation catalysts in laser-induced graphene. ACS Energy Lett. 3(3), 677–683 (2018). https://doi.org/10.1021/acsenergylett.8b00042
J. Zhang, C. Zhang, J. Sha, H. Fei, Y. Li et al., Efficient water-splitting electrodes based on laser-induced graphene. ACS Appl. Mater. Interfaces 9(32), 26840–26847 (2017). https://doi.org/10.1021/acsami.7b06727
R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han et al., Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017). https://doi.org/10.1002/adma.201702211
J. Jia, T. Xiong, L. Zhao, F. Wang, H. Liu et al., Ultrathin N-Doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 11(12), 12509–12518 (2017). https://doi.org/10.1021/acsnano.7b06607
Y. Liu, P. Liu, W. Qin, X. Wu, G. Yang, Laser modification-induced NiCo2O4-δ with high exterior Ni3+/Ni2+ ratio and substantial oxygen vacancies for electrocatalysis. Electrochim. Acta 297, 623–632 (2019). https://doi.org/10.1016/j.electacta.2018.11.111
X. Ye, Z. Lin, H. Zhang, H. Zhu, Z. Liu et al., Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon 94, 326–334 (2015). https://doi.org/10.1016/j.carbon.2015.06.080
E. Kostal, S. Stroj, S. Kasemann, V. Matylitsky, M. Domke, Fabrication of biomimetic fog-collecting superhydrophilic–superhydrophobic surface micropatterns using femtosecond lasers. Langmuir 34(9), 2933–2941 (2018). https://doi.org/10.1021/acs.langmuir.7b03699
X. Bai, Q. Yang, Y. Fang, J. Zhang, J. Yong et al., Superhydrophobicity-memory surfaces prepared by a femtosecond laser. Chem. Eng. J. 383, 123143 (2020). https://doi.org/10.1016/j.cej.2019.123143
Y. Li, D.X. Luong, J. Zhang, Y.R. Tarkunde, C. Kittrell et al., Laser-Induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 29(27), 1700496 (2017). https://doi.org/10.1002/adma.201700496
B.N. Shivananju, L. Zhou, Y. Yin, W. Yu, B. Shabbir et al., Probing the dynamic structural changes of DNA using ultrafast laser pulse in graphene-based optofluidic device. InfoMat 1–11, 1 (2020). https://doi.org/10.1002/inf2.12114
Y. Wang, Q. Zhang, Z. Zhu, F. Lin, J. Deng et al., Laser streaming: Turning a laser beam into a flow of liquid. Sci. Adv. 3(9), e1700555 (2017). https://doi.org/10.1126/sciadv.1700555
S. Yue, F. Lin, Q. Zhang, N. Epie, S. Dong et al., Gold-implanted plasmonic quartz plate as a launch pad for laser-driven photoacoustic microfluidic pumps. Proc. Natl. Acad. Sci. 116(14), 6580 (2019). https://doi.org/10.1073/pnas.1818911116