Hollow Nanocages of NixCo1−xSe for Efficient Zinc–Air Batteries and Overall Water Splitting
Corresponding Author: Wei Gao
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 28
Abstract
Developing Earth-abundant, highly efficient, and anti-corrosion electrocatalysts to boost the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) for the Zn–air battery (ZAB) and for overall water splitting is imperative. In this study, a novel process starting with Cu2O cubes was developed to fabricate hollow NixCo1−xSe nanocages as trifunctional electrocatalysts for the OER, ORR, and HER and a reasonable formation mechanism was proposed. The Ni0.2Co0.8Se nanocages exhibited higher OER activity than its counterparts with the low overpotential of 280 mV at 10 mA cm−2. It also outperformed the other samples in the HER test with a low overpotential of 73 mV at 10 mA cm−2. As an air–cathode of a self-assembled rechargeable ZAB, it exhibited good performance, such as an ultralong cycling lifetime of > 50 h, a high round-trip efficiency of 60.86%, and a high power density of 223.5 mW cm−2. For the application in self-made all-solid-state ZAB, it also demonstrated excellent performance with a power density of 41.03 mW cm−2 and an open-circuit voltage of 1.428 V. In addition, Ni0.2Co0.8Se nanocages had superior performance in a practical overall water splitting, in which only 1.592 V was needed to achieve a current density of 10 mA cm−2. These results show that hollow NixCo1−xSe nanocages with an optimized Ni-to-Co ratio are a promising cost-effective and high-efficiency electrocatalyst for ZABs and overall water splitting in alkaline solutions.
Highlights:
1 A facile strategy for fabricating NixCo1−xSe hollow nanocages was developed, and the formation mechanism was well explained.
2 Ni0.2Co0.8Se outperformed a Pt/C + RuO2 catalyst in rechargeable and all-solid-state Zn–air battery tests, as well as in overall water splitting.
3 The hydrogen adsorption onto NixCo1−xSe was simulated, and Gibbs free energies were calculated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
- J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
- X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
- Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117(15), 10121–10211 (2017). https://doi.org/10.1021/acs.chemrev.7b00051
- K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang et al., Overall water splitting with room-temperature synthesized nife oxyfluoride nanoporous films. ACS Catal. 7(12), 8406–8412 (2017). https://doi.org/10.1021/acscatal.7b02991
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3d hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2017). https://doi.org/10.1007/s40820-017-0160-6
- X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Ultrafine pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8(24), 1800935 (2018). https://doi.org/10.1002/aenm.201800935
- M. Liu, R. Zhang, W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014). https://doi.org/10.1021/cr400523y
- M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
- L. Wang, Z. Tang, W. Yan, Q. Wang, H. Yang, S. Chen, Co@pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power Sour. 343, 458–466 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.081
- D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
- J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/adma.201605838
- L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
- T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2(8), 1765–1772 (2012). https://doi.org/10.1021/cs3003098
- W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, Mesoporous n-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137(16), 5555–5562 (2015). https://doi.org/10.1021/jacs.5b02027
- G. Wu, J. Wang, W. Ding, Y. Nie, L. Li, X. Qi, S. Chen, Z. Wei, A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem. Int. Ed. 55(4), 1340–1344 (2016). https://doi.org/10.1002/anie.201508809
- Z.J. Xu, From two-phase to three-phase: the new electrochemical interface by oxide electrocatalysts. Nano-Micro Lett. 10(1), 8 (2017). https://doi.org/10.1007/s40820-017-0161-5
- H. Wang, N. Yang, W. Li, W. Ding, K. Chen et al., Understanding the roles of nitrogen configurations in hydrogen evolution: trace atomic cobalt boosts the activity of planar nitrogen-doped graphene. ACS Energy Lett. 3(6), 1345–1352 (2018). https://doi.org/10.1021/acsenergylett.8b00522
- L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
- W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, Apically dominant mechanism for improving catalytic activities of n-doped carbon nanotube arrays in rechargeable zinc–air battery. Adv. Energy Mater. 8(20), 1800480 (2018). https://doi.org/10.1002/aenm.201800480
- C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., Fe-n4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8(26), 1801912 (2018). https://doi.org/10.1002/aenm.201801912
- D. Chen, M. Qiao, Y.-R. Lu, L. Hao, D. Liu, C.-L. Dong, Y. Li, S. Wang, Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 57(28), 8691–8696 (2018). https://doi.org/10.1002/anie.201805520
- Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In situ exfoliated, n-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 28(4), 1703363 (2018). https://doi.org/10.1002/adfm.201703363
- S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods (2018). https://doi.org/10.1002/smtd.201800211
- Z. Song, X. Han, Y. Deng, N. Zhao, W. Hu, C. Zhong, Clarifying the controversial catalytic performance of Co(OH)2 and Co3O4 for oxygen reduction/evolution reactions toward efficient Zn–air batteries. ACS Appl. Mater. Interfaces 9(27), 22694–22703 (2017). https://doi.org/10.1021/acsami.7b05395
- X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin co3o4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc–air battery integrated with flexible display. Adv. Energy Mater. 7(18), 1700779 (2017). https://doi.org/10.1002/aenm.201700779
- Z. Yang, J.-Y. Zhang, Z. Liu, Z. Li, L. Lv et al., “Cuju”-structured iron diselenide-derived oxide: a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces. 9(46), 40351–40359 (2017). https://doi.org/10.1021/acsami.7b14072
- J.-Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue et al., Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 57(26), 7649–7653 (2018). https://doi.org/10.1002/anie.201803543
- Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu et al., Atomically thin mesoporous Co3O4 layers strongly coupled with n-rgo nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv. Mater. 30(4), 1703657 (2018). https://doi.org/10.1002/adma.201703657
- Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014). https://doi.org/10.1021/ja5085157
- A. Sivanantham, S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B Environ. 203, 485–493 (2017). https://doi.org/10.1016/j.apcatb.2016.10.050
- Z.-Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28(19), 3777–3784 (2016). https://doi.org/10.1002/adma.201506197
- X. Zheng, X. Han, H. Liu, J. Chen, D. Fu, J. Wang, C. Zhong, Y. Deng, W. Hu, Controllable synthesis of nixse (0.5 ≤ x ≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS Appl. Mater. Interfaces. 10(16), 13675–13684 (2018). https://doi.org/10.1021/acsami.8b01651
- T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao, M. Cao, In situ coupling of Co0.85Se and n-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J. Mater. Chem. A 5(15), 7001–7014 (2017). https://doi.org/10.1039/C7TA01453H
- X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324
- L. Lv, Z. Li, Y. Ruan, Y. Chang, X. Ao, J.-G. Li, Z. Yang, C. Wang, Nickel–iron diselenide hollow nanoparticles with strongly hydrophilic surface for enhanced oxygen evolution reaction activity. Electrochim. Acta 286, 172–178 (2018). https://doi.org/10.1016/j.electacta.2018.08.039
- L. Lv, Z. Li, K.-H. Xue, Y. Ruan, X. Ao et al., Tailoring the electrocatalytic activity of bimetallic nickel–iron diselenide hollow nanochains for water oxidation. Nano Energy 47, 275–284 (2018). https://doi.org/10.1016/j.nanoen.2018.03.010
- J.-Y. Zhang, L. Lv, Y. Tian, Z. Li, X. Ao, Y. Lan, J. Jiang, C. Wang, Rational design of cobalt–iron selenides for highly efficient electrochemical water oxidation. ACS Appl. Mater. Interfaces 9(39), 33833–33840 (2017). https://doi.org/10.1021/acsami.7b08917
- L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma et al., Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28(13), 1705921 (2018). https://doi.org/10.1002/adfm.201705921
- J. Li, M. Wan, T. Li, H. Zhu, Z. Zhao, Z. Wang, W. Wu, M. Du, NiCoSe2−x/n-doped C mushroom-like core/shell nanorods on n-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim. Acta 272, 161–168 (2018). https://doi.org/10.1016/j.electacta.2018.04.032
- T. Chen, Y. Tan, Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. 11(3), 1331–1344 (2018). https://doi.org/10.1007/s12274-017-1748-3
- H. Zhu, R. Jiang, X. Chen, Y. Chen, L. Wang, 3D nickel–cobalt diselenide nanonetwork for highly efficient oxygen evolution. Sci. Bull. 62(20), 1373–1379 (2017). https://doi.org/10.1016/j.scib.2017.09.012
- B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv. Funct. Mater. 28(17), 1706008 (2018). https://doi.org/10.1002/adfm.201706008
- Z. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J.J. Cha, G. Yu, Dual tuning of Ni–Co–a (a = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 140(15), 5241–5247 (2018). https://doi.org/10.1021/jacs.8b01548
- T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, f-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
- Z.-W. Gao, J.-Y. Liu, X.-M. Chen, X.-L. Zheng, J. Mao et al., Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. (2019). https://doi.org/10.1002/adma.201804769
- X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
- J. Nai, S. Wang, Y. Bai, L. Guo, Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose. Small 9(18), 3147–3152 (2013). https://doi.org/10.1002/smll.201203076
- C.V.V. Muralee Gopi, A.E. Reddy, H.-J. Kim, Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods. J. Mater. Chem. A 6(17), 7439–7448 (2018). https://doi.org/10.1039/C8TA01141A
- J. Yin, Q. Fan, Y. Li, F. Cheng, P. Zhou, P. Xi, S. Sun, Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138(44), 14546–14549 (2016). https://doi.org/10.1021/jacs.6b09351
- Z. Ding, Z. Tang, L. Li, K. Wang, W. Wu, X. Chen, X. Wu, S. Chen, Ternary ptvco dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries. Inorg. Chem. Front. 5(10), 2425–2431 (2018). https://doi.org/10.1039/C8QI00623G
- M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 134(6), 2930–2933 (2012). https://doi.org/10.1021/ja211526y
- Z. Pu, Y. Luo, A.M. Asiri, X. Sun, Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 8(7), 4718–4723 (2016). https://doi.org/10.1021/acsami.5b12143
- L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang, Y. Wang, Tuning unique peapod-like Co(SxSe1−x)2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 27(24), 1701008 (2017). https://doi.org/10.1002/adfm.201701008
- C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54(32), 9351–9355 (2015). https://doi.org/10.1002/anie.201503407
- Z. Deng, Q. Yi, Y. Zhang, H. Nie, G. Li, L. Yu, X. Zhou, Carbon paper-supported NiCo/C–N catalysts synthesized by directly pyrolyzing NiCo-doped polyaniline for oxygen reduction reaction. NANO 13(1), 1850006 (2018). https://doi.org/10.1142/s1793292018500066
- L. Timperman, A.S. Gago, N. Alonso-Vante, Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide–carbon composites. J. Power Sour. 196(9), 4290–4297 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.083
- C. Delacôte, A. Lewera, M. Pisarek, P.J. Kulesza, P. Zelenay, N. Alonso-Vante, The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction. Electrochim. Acta 55(26), 7575–7580 (2010). https://doi.org/10.1016/j.electacta.2010.01.029
- K. Wang, Z. Tang, W. Wu, P. Xi, D. Liu et al., Nanocomposites CoPt − x/diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: diatomite boosted the catalytic activity and durability. Electrochim. Acta 284, 119–127 (2018). https://doi.org/10.1016/j.electacta.2018.07.154
- X. Han, G. He, Y. He, J. Zhang, X. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10), 1702222 (2018). https://doi.org/10.1002/aenm.201702222
- I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel, F.O. Boakye, H. Zhang, S. Mu, Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
- Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn–air batteries. Sci. Bull. 63(9), 548–555 (2018). https://doi.org/10.1016/j.scib.2018.04.003
- C. Tang, B. Wang, H.-F. Wang, Q. Zhang, Defect engineering toward atomic Co–Nx–C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv. Mater. 29(37), 1703185 (2017). https://doi.org/10.1002/adma.201703185
- L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Zn–air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
- C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang et al., Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc–air batteries. Energy Storage Mater. 16, 243–250 (2019). https://doi.org/10.1016/j.ensm.2018.06.001
- D. Li, Z. Zong, Z. Tang, Z. Liu, S. Chen, Y. Tian, X. Wang, Total water splitting catalyzed by Co@Ir core–shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal–organic frameworks. ACS Sustain. Chem. Eng. 6(4), 5105–5114 (2018). https://doi.org/10.1021/acssuschemeng.7b04777
- Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.-Q. Zhao, D. Gao, F. Cheng, P. Xi, FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 14(26), 1801070 (2018). https://doi.org/10.1002/smll.201801070
References
Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
J. Yin, Y. Li, F. Lv, M. Lu, K. Sun, W. Wang et al., Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn–air batteries driven water splitting devices. Adv. Mater. 29(47), 1704681 (2017). https://doi.org/10.1002/adma.201704681
X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
Q. Zhao, Z. Yan, C. Chen, J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117(15), 10121–10211 (2017). https://doi.org/10.1021/acs.chemrev.7b00051
K. Liang, L. Guo, K. Marcus, S. Zhang, Z. Yang et al., Overall water splitting with room-temperature synthesized nife oxyfluoride nanoporous films. ACS Catal. 7(12), 8406–8412 (2017). https://doi.org/10.1021/acscatal.7b02991
J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3d hexagram-like cobalt–manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2017). https://doi.org/10.1007/s40820-017-0160-6
X. Han, X. Wu, Y. Deng, J. Liu, J. Lu, C. Zhong, W. Hu, Ultrafine pt nanoparticle-decorated pyrite-type CoS2 nanosheet arrays coated on carbon cloth as a bifunctional electrode for overall water splitting. Adv. Energy Mater. 8(24), 1800935 (2018). https://doi.org/10.1002/aenm.201800935
M. Liu, R. Zhang, W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem. Rev. 114(10), 5117–5160 (2014). https://doi.org/10.1021/cr400523y
M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
L. Wang, Z. Tang, W. Yan, Q. Wang, H. Yang, S. Chen, Co@pt core@shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media. J. Power Sour. 343, 458–466 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.081
D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29, 29–36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29(14), 1605838 (2017). https://doi.org/10.1002/adma.201605838
L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal. 2(8), 1765–1772 (2012). https://doi.org/10.1021/cs3003098
W. Niu, L. Li, X. Liu, N. Wang, J. Liu, W. Zhou, Z. Tang, S. Chen, Mesoporous n-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137(16), 5555–5562 (2015). https://doi.org/10.1021/jacs.5b02027
G. Wu, J. Wang, W. Ding, Y. Nie, L. Li, X. Qi, S. Chen, Z. Wei, A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem. Int. Ed. 55(4), 1340–1344 (2016). https://doi.org/10.1002/anie.201508809
Z.J. Xu, From two-phase to three-phase: the new electrochemical interface by oxide electrocatalysts. Nano-Micro Lett. 10(1), 8 (2017). https://doi.org/10.1007/s40820-017-0161-5
H. Wang, N. Yang, W. Li, W. Ding, K. Chen et al., Understanding the roles of nitrogen configurations in hydrogen evolution: trace atomic cobalt boosts the activity of planar nitrogen-doped graphene. ACS Energy Lett. 3(6), 1345–1352 (2018). https://doi.org/10.1021/acsenergylett.8b00522
L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang, L. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
W. Niu, S. Pakhira, K. Marcus, Z. Li, J.L. Mendoza-Cortes, Y. Yang, Apically dominant mechanism for improving catalytic activities of n-doped carbon nanotube arrays in rechargeable zinc–air battery. Adv. Energy Mater. 8(20), 1800480 (2018). https://doi.org/10.1002/aenm.201800480
C. Lei, H. Chen, J. Cao, J. Yang, M. Qiu et al., Fe-n4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8(26), 1801912 (2018). https://doi.org/10.1002/aenm.201801912
D. Chen, M. Qiao, Y.-R. Lu, L. Hao, D. Liu, C.-L. Dong, Y. Li, S. Wang, Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew. Chem. Int. Ed. 57(28), 8691–8696 (2018). https://doi.org/10.1002/anie.201805520
Y. Wang, C. Xie, Z. Zhang, D. Liu, R. Chen, S. Wang, In situ exfoliated, n-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 28(4), 1703363 (2018). https://doi.org/10.1002/adfm.201703363
S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods (2018). https://doi.org/10.1002/smtd.201800211
Z. Song, X. Han, Y. Deng, N. Zhao, W. Hu, C. Zhong, Clarifying the controversial catalytic performance of Co(OH)2 and Co3O4 for oxygen reduction/evolution reactions toward efficient Zn–air batteries. ACS Appl. Mater. Interfaces 9(27), 22694–22703 (2017). https://doi.org/10.1021/acsami.7b05395
X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin co3o4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc–air battery integrated with flexible display. Adv. Energy Mater. 7(18), 1700779 (2017). https://doi.org/10.1002/aenm.201700779
Z. Yang, J.-Y. Zhang, Z. Liu, Z. Li, L. Lv et al., “Cuju”-structured iron diselenide-derived oxide: a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces. 9(46), 40351–40359 (2017). https://doi.org/10.1021/acsami.7b14072
J.-Y. Zhang, H. Wang, Y. Tian, Y. Yan, Q. Xue et al., Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 57(26), 7649–7653 (2018). https://doi.org/10.1002/anie.201803543
Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu et al., Atomically thin mesoporous Co3O4 layers strongly coupled with n-rgo nanosheets as high-performance bifunctional catalysts for 1D knittable zinc–air batteries. Adv. Mater. 30(4), 1703657 (2018). https://doi.org/10.1002/adma.201703657
Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136(44), 15670–15675 (2014). https://doi.org/10.1021/ja5085157
A. Sivanantham, S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B Environ. 203, 485–493 (2017). https://doi.org/10.1016/j.apcatb.2016.10.050
Z.-Q. Liu, H. Cheng, N. Li, T.Y. Ma, Y.Z. Su, ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28(19), 3777–3784 (2016). https://doi.org/10.1002/adma.201506197
X. Zheng, X. Han, H. Liu, J. Chen, D. Fu, J. Wang, C. Zhong, Y. Deng, W. Hu, Controllable synthesis of nixse (0.5 ≤ x ≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS Appl. Mater. Interfaces. 10(16), 13675–13684 (2018). https://doi.org/10.1021/acsami.8b01651
T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao, M. Cao, In situ coupling of Co0.85Se and n-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. J. Mater. Chem. A 5(15), 7001–7014 (2017). https://doi.org/10.1039/C7TA01453H
X. Xu, F. Song, X. Hu, A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016). https://doi.org/10.1038/ncomms12324
L. Lv, Z. Li, Y. Ruan, Y. Chang, X. Ao, J.-G. Li, Z. Yang, C. Wang, Nickel–iron diselenide hollow nanoparticles with strongly hydrophilic surface for enhanced oxygen evolution reaction activity. Electrochim. Acta 286, 172–178 (2018). https://doi.org/10.1016/j.electacta.2018.08.039
L. Lv, Z. Li, K.-H. Xue, Y. Ruan, X. Ao et al., Tailoring the electrocatalytic activity of bimetallic nickel–iron diselenide hollow nanochains for water oxidation. Nano Energy 47, 275–284 (2018). https://doi.org/10.1016/j.nanoen.2018.03.010
J.-Y. Zhang, L. Lv, Y. Tian, Z. Li, X. Ao, Y. Lan, J. Jiang, C. Wang, Rational design of cobalt–iron selenides for highly efficient electrochemical water oxidation. ACS Appl. Mater. Interfaces 9(39), 33833–33840 (2017). https://doi.org/10.1021/acsami.7b08917
L. Hou, Y. Shi, C. Wu, Y. Zhang, Y. Ma et al., Monodisperse metallic NiCoSe2 hollow sub-microspheres: formation process, intrinsic charge-storage mechanism, and appealing pseudocapacitance as highly conductive electrode for electrochemical supercapacitors. Adv. Funct. Mater. 28(13), 1705921 (2018). https://doi.org/10.1002/adfm.201705921
J. Li, M. Wan, T. Li, H. Zhu, Z. Zhao, Z. Wang, W. Wu, M. Du, NiCoSe2−x/n-doped C mushroom-like core/shell nanorods on n-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochim. Acta 272, 161–168 (2018). https://doi.org/10.1016/j.electacta.2018.04.032
T. Chen, Y. Tan, Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res. 11(3), 1331–1344 (2018). https://doi.org/10.1007/s12274-017-1748-3
H. Zhu, R. Jiang, X. Chen, Y. Chen, L. Wang, 3D nickel–cobalt diselenide nanonetwork for highly efficient oxygen evolution. Sci. Bull. 62(20), 1373–1379 (2017). https://doi.org/10.1016/j.scib.2017.09.012
B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis. Adv. Funct. Mater. 28(17), 1706008 (2018). https://doi.org/10.1002/adfm.201706008
Z. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J.J. Cha, G. Yu, Dual tuning of Ni–Co–a (a = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc. 140(15), 5241–5247 (2018). https://doi.org/10.1021/jacs.8b01548
T. Gong, R. Qi, X. Liu, H. Li, Y. Zhang, N, f-codoped microporous carbon nanofibers as efficient metal-free electrocatalysts for ORR. Nano-Micro Lett. 11(1), 9 (2019). https://doi.org/10.1007/s40820-019-0240-x
Z.-W. Gao, J.-Y. Liu, X.-M. Chen, X.-L. Zheng, J. Mao et al., Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. (2019). https://doi.org/10.1002/adma.201804769
X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
J. Nai, S. Wang, Y. Bai, L. Guo, Amorphous Ni(OH)2 nanoboxes: fast fabrication and enhanced sensing for glucose. Small 9(18), 3147–3152 (2013). https://doi.org/10.1002/smll.201203076
C.V.V. Muralee Gopi, A.E. Reddy, H.-J. Kim, Wearable superhigh energy density supercapacitors using a hierarchical ternary metal selenide composite of CoNiSe2 microspheres decorated with CoFe2Se4 nanorods. J. Mater. Chem. A 6(17), 7439–7448 (2018). https://doi.org/10.1039/C8TA01141A
J. Yin, Q. Fan, Y. Li, F. Cheng, P. Zhou, P. Xi, S. Sun, Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138(44), 14546–14549 (2016). https://doi.org/10.1021/jacs.6b09351
Z. Ding, Z. Tang, L. Li, K. Wang, W. Wu, X. Chen, X. Wu, S. Chen, Ternary ptvco dendrites for the hydrogen evolution reaction, oxygen evolution reaction, overall water splitting and rechargeable Zn–air batteries. Inorg. Chem. Front. 5(10), 2425–2431 (2018). https://doi.org/10.1039/C8QI00623G
M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, S.-H. Yu, Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J. Am. Chem. Soc. 134(6), 2930–2933 (2012). https://doi.org/10.1021/ja211526y
Z. Pu, Y. Luo, A.M. Asiri, X. Sun, Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film. ACS Appl. Mater. Interfaces 8(7), 4718–4723 (2016). https://doi.org/10.1021/acsami.5b12143
L. Fang, W. Li, Y. Guan, Y. Feng, H. Zhang, S. Wang, Y. Wang, Tuning unique peapod-like Co(SxSe1−x)2 nanoparticles for efficient overall water splitting. Adv. Funct. Mater. 27(24), 1701008 (2017). https://doi.org/10.1002/adfm.201701008
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54(32), 9351–9355 (2015). https://doi.org/10.1002/anie.201503407
Z. Deng, Q. Yi, Y. Zhang, H. Nie, G. Li, L. Yu, X. Zhou, Carbon paper-supported NiCo/C–N catalysts synthesized by directly pyrolyzing NiCo-doped polyaniline for oxygen reduction reaction. NANO 13(1), 1850006 (2018). https://doi.org/10.1142/s1793292018500066
L. Timperman, A.S. Gago, N. Alonso-Vante, Oxygen reduction reaction increased tolerance and fuel cell performance of Pt and RuxSey onto oxide–carbon composites. J. Power Sour. 196(9), 4290–4297 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.083
C. Delacôte, A. Lewera, M. Pisarek, P.J. Kulesza, P. Zelenay, N. Alonso-Vante, The effect of diluting ruthenium by iron in RuxSey catalyst for oxygen reduction. Electrochim. Acta 55(26), 7575–7580 (2010). https://doi.org/10.1016/j.electacta.2010.01.029
K. Wang, Z. Tang, W. Wu, P. Xi, D. Liu et al., Nanocomposites CoPt − x/diatomite-C as oxygen reversible electrocatalysts for zinc-air batteries: diatomite boosted the catalytic activity and durability. Electrochim. Acta 284, 119–127 (2018). https://doi.org/10.1016/j.electacta.2018.07.154
X. Han, G. He, Y. He, J. Zhang, X. Zheng et al., Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 8(10), 1702222 (2018). https://doi.org/10.1002/aenm.201702222
I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel, F.O. Boakye, H. Zhang, S. Mu, Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–air batteries. Adv. Funct. Mater. 27(44), 1702300 (2017). https://doi.org/10.1002/adfm.201702300
Z. Chen, Q. Wang, X. Zhang, Y. Lei, W. Hu, Y. Luo, Y. Wang, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn–air batteries. Sci. Bull. 63(9), 548–555 (2018). https://doi.org/10.1016/j.scib.2018.04.003
C. Tang, B. Wang, H.-F. Wang, Q. Zhang, Defect engineering toward atomic Co–Nx–C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv. Mater. 29(37), 1703185 (2017). https://doi.org/10.1002/adma.201703185
L. Yang, L. Shi, D. Wang, Y. Lv, D. Cao, Single-atom cobalt electrocatalysts for foldable solid-state Zn–air battery. Nano Energy 50, 691–698 (2018). https://doi.org/10.1016/j.nanoen.2018.06.023
C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang et al., Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc–air batteries. Energy Storage Mater. 16, 243–250 (2019). https://doi.org/10.1016/j.ensm.2018.06.001
D. Li, Z. Zong, Z. Tang, Z. Liu, S. Chen, Y. Tian, X. Wang, Total water splitting catalyzed by Co@Ir core–shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal–organic frameworks. ACS Sustain. Chem. Eng. 6(4), 5105–5114 (2018). https://doi.org/10.1021/acssuschemeng.7b04777
Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.-Q. Zhao, D. Gao, F. Cheng, P. Xi, FeS2/CoS2 interface nanosheets as efficient bifunctional electrocatalyst for overall water splitting. Small 14(26), 1801070 (2018). https://doi.org/10.1002/smll.201801070