A Bulk-Heterostructure Nanocomposite Electrolyte of Ce0.8Sm0.2O2-δ–SrTiO3 for Low-Temperature Solid Oxide Fuel Cells
Corresponding Author: Yizhong Huang
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 46
Abstract
Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3. In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm−1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.
Highlights:
1 Bulk-heterostructure electrolytes based on Ce0.8Sm0.2O2-δ and SrTiO3 are developed for solid oxide fuel cells
2 The interface characteristics are investigated to understand the fast ionic transport obtained in the heterostructure.
3 The Schottky junction effect is proposed by taking account of work functions and electronic affinities for the first time.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog. Mater. Sci. 57(4), 804–874 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.002
- E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6085), 935–939 (2011). https://doi.org/10.1126/science.1204090
- D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008). https://doi.org/10.1039/b612060c
- Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016). https://doi.org/10.1039/c5ee03858h
- J.W. Fergus, Electrolytes for solid oxide fuel cells. J. Power Sources 162(1), 30–40 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062
- J.B. Goodenough, Oxide-ion conductors by design. Nature 404(6780), 821–823 (2000). https://doi.org/10.1038/35009177
- H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito et al., High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154(1), B20 (2007). https://doi.org/10.1149/1.2372592
- K. Kerman, B.K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2(5), 656–661 (2012). https://doi.org/10.1002/aenm.201100751
- J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra et al., Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science 321(5889), 676–680 (2008). https://doi.org/10.1126/science.1156393
- S.M. Yang, S. Lee, J. Jian, W. Zhang, P. Lu et al., Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 8588 (2015). https://doi.org/10.1038/ncomms9588
- J.A. Kilner, Ionic conductors: feel the strain. Nat. Mater. 7, 838–839 (2008). https://doi.org/10.1038/nmat2314
- S. Sanna, V. Esposito, D. Pergolesi, A. Orsini, A. Tebano et al., Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv. Funct. Mater. 19(11), 1713–1719 (2009). https://doi.org/10.1002/adfm.200801768
- Y. Lin, S. Fang, D. Su, K.S. Brinkman, F. Chen, Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors. Nat. Commun. 6, 6824 (2015). https://doi.org/10.1038/ncomms7824
- X. Guo, Comment on “Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures.” Science 324(5926), 465 (2009). https://doi.org/10.1126/science.1168940
- Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam et al., Strongly correlated perovskite fuel cells. Nature 534(7606), 231–234 (2016). https://doi.org/10.1038/nature17653
- S.K. Saha, A. Guchhait, A.J. Pal, Cu2ZnSnS4 (CZTS) Nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. Phys. Chem. Chem. Phys. 14, 8090–8096 (2012). https://doi.org/10.1039/c2cp41062a
- B. Zhu, R. Raza, G. Abbas, M. Singh, An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21(13), 2465–2469 (2011). https://doi.org/10.1002/adfm.201002471
- B. Zhu, Y. Huang, L. Fan, Y. Ma, B. Wang et al., Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 5(8), 1401895 (2016). https://doi.org/10.1016/j.nanoen.2015.11.015
- B. Zhu, P.D. Lund, R. Raza, Y. Ma, L. Fan et al., Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv. Energy Mater. 5(8), 1401895 (2015). https://doi.org/10.1002/aenm.201401895
- B. Zhu, L. Fan, P. Lund, Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy 106, 163–175 (2013). https://doi.org/10.1016/j.apenergy.2013.01.014
- W.J. Wang, Y. Wang, Q. Xu, H.X. Ju, T. Wang et al., Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles. Chinese Chem. Lett. 106, 163–175 (2017). https://doi.org/10.1016/j.cclet.2017.04.012
- M. Piumetti, S. Bensaid, N. Russo, D. Fino, Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl. Catal. B Environ. 28(8), 1760–1766 (2015). https://doi.org/10.1016/j.apcatb.2014.10.062
- T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang et al., Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous Tin oxides. Chinese Chem. Lett. 32(12), 2274–2278 (2019). https://doi.org/10.1016/j.cclet.2019.07.028
- Z. Qiao, C. Xia, Y. Cai, M. Afzal, H. Wang et al., Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power Sources 392, 33–40 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.096
- S.H. Chan, K.A. Khor, Z.T. Xia, Complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93(1–2), 130–140 (2001). https://doi.org/10.1016/S0378-7753(00)00556-5
- M. Rahmanipour, A. Pappacena, M. Boaro, A.A. Donazzi, Distributed charge transfer model for IT-SOFCs based on ceria electrolytes. J. Electrochem. Soc. 164, F1249 (2017). https://doi.org/10.1149/2.1911712jes
- X. Zhang, M. Robertson, C. Deĉes-Petit, W. Qu, O. Kesler et al., Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J. Power Sources 164(2), 668–677 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.087
- P. Li, B. Yu, J. Li, X. Yao, Y. Zhao et al., A single layer solid oxide fuel cell composed of La2NiO4 and doped ceria-carbonate with H2 and methanol as fuels. Int. J. Hydrogen Energy 41(21), 9059–9065 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.167
- B. Zhu, L. Fan, Y. Zhao, W. Tan, H. Wang et al., Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx for single-component fuel cell. RSC Adv. 4(20), 9920–9925 (2014). https://doi.org/10.1039/c3ra47783e
- I. Garbayo, D. Pla, A. Morata, L. Fonseca, N. Sabaté et al., Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures. Energy Environ. Sci. 7(11), 3617–3629 (2014). https://doi.org/10.1039/c4ee00748d
- N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001
- K. Prabhakaran, M.O. Beigh, J. Lakra, N.M. Gokhale, S.C. Sharma, Characteristics of 8 mol% yttria stabilized zirconia powder prepared by spray drying process. J. Mater. Process. Technol. 189(1–3), 178–181 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.019
- Y.P. Fu, S.B. Wen, C.H. Lu, Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J. Am. Ceram. Soc. 91(1), 127–131 (2008). https://doi.org/10.1111/j.1551-2916.2007.01923.x
- Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi et al., Proton shuttles in CeO2/CeO2−δ core-shell structure. ACS Energy Lett. 4(11), 2601–2607 (2019). https://doi.org/10.1021/acsenergylett.9b01829
- S. Shen, Y. Yang, L. Guo, H. Liu, A polarization model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. J. Power Sources 256, 43–51 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.041
- S. Shen, M. Ni, 2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. Int. J. Hydrog. Energy 40(15), 5160–5168 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.074
- J. Lutz, H. Schlangenotto, U. Scheuermann, R. De Doncker, Semiconductor power devices: physics, characteristics. Reliability (2011). https://doi.org/10.1007/978-3-642-11125-9
- B. Wang, Y. Cai, C. Xia, J.S. Kim, Y. Liu et al., Semiconductor-ionic membrane of LaSrCoFe-oxide-doped ceria solid oxide fuel cells. Electrochim. Acta 248, 496–504 (2017). https://doi.org/10.1016/j.electacta.2017.07.128
References
Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog. Mater. Sci. 57(4), 804–874 (2012). https://doi.org/10.1016/j.pmatsci.2011.08.002
E.D. Wachsman, K.T. Lee, Lowering the temperature of solid oxide fuel cells. Science 334(6085), 935–939 (2011). https://doi.org/10.1126/science.1204090
D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008). https://doi.org/10.1039/b612060c
Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016). https://doi.org/10.1039/c5ee03858h
J.W. Fergus, Electrolytes for solid oxide fuel cells. J. Power Sources 162(1), 30–40 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.062
J.B. Goodenough, Oxide-ion conductors by design. Nature 404(6780), 821–823 (2000). https://doi.org/10.1038/35009177
H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito et al., High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154(1), B20 (2007). https://doi.org/10.1149/1.2372592
K. Kerman, B.K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2(5), 656–661 (2012). https://doi.org/10.1002/aenm.201100751
J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra et al., Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures. Science 321(5889), 676–680 (2008). https://doi.org/10.1126/science.1156393
S.M. Yang, S. Lee, J. Jian, W. Zhang, P. Lu et al., Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 8588 (2015). https://doi.org/10.1038/ncomms9588
J.A. Kilner, Ionic conductors: feel the strain. Nat. Mater. 7, 838–839 (2008). https://doi.org/10.1038/nmat2314
S. Sanna, V. Esposito, D. Pergolesi, A. Orsini, A. Tebano et al., Fabrication and electrochemical properties of epitaxial samarium-doped ceria films on SrTiO3-buffered MgO substrates. Adv. Funct. Mater. 19(11), 1713–1719 (2009). https://doi.org/10.1002/adfm.200801768
Y. Lin, S. Fang, D. Su, K.S. Brinkman, F. Chen, Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors. Nat. Commun. 6, 6824 (2015). https://doi.org/10.1038/ncomms7824
X. Guo, Comment on “Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures.” Science 324(5926), 465 (2009). https://doi.org/10.1126/science.1168940
Y. Zhou, X. Guan, H. Zhou, K. Ramadoss, S. Adam et al., Strongly correlated perovskite fuel cells. Nature 534(7606), 231–234 (2016). https://doi.org/10.1038/nature17653
S.K. Saha, A. Guchhait, A.J. Pal, Cu2ZnSnS4 (CZTS) Nanoparticle based nontoxic and earth-abundant hybrid pn-junction solar cells. Phys. Chem. Chem. Phys. 14, 8090–8096 (2012). https://doi.org/10.1039/c2cp41062a
B. Zhu, R. Raza, G. Abbas, M. Singh, An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21(13), 2465–2469 (2011). https://doi.org/10.1002/adfm.201002471
B. Zhu, Y. Huang, L. Fan, Y. Ma, B. Wang et al., Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 5(8), 1401895 (2016). https://doi.org/10.1016/j.nanoen.2015.11.015
B. Zhu, P.D. Lund, R. Raza, Y. Ma, L. Fan et al., Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv. Energy Mater. 5(8), 1401895 (2015). https://doi.org/10.1002/aenm.201401895
B. Zhu, L. Fan, P. Lund, Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy 106, 163–175 (2013). https://doi.org/10.1016/j.apenergy.2013.01.014
W.J. Wang, Y. Wang, Q. Xu, H.X. Ju, T. Wang et al., Interaction of cobalt with ceria thin films and its influence on supported Au nanoparticles. Chinese Chem. Lett. 106, 163–175 (2017). https://doi.org/10.1016/j.cclet.2017.04.012
M. Piumetti, S. Bensaid, N. Russo, D. Fino, Nanostructured ceria-based catalysts for soot combustion: investigations on the surface sensitivity. Appl. Catal. B Environ. 28(8), 1760–1766 (2015). https://doi.org/10.1016/j.apcatb.2014.10.062
T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang et al., Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous Tin oxides. Chinese Chem. Lett. 32(12), 2274–2278 (2019). https://doi.org/10.1016/j.cclet.2019.07.028
Z. Qiao, C. Xia, Y. Cai, M. Afzal, H. Wang et al., Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power Sources 392, 33–40 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.096
S.H. Chan, K.A. Khor, Z.T. Xia, Complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93(1–2), 130–140 (2001). https://doi.org/10.1016/S0378-7753(00)00556-5
M. Rahmanipour, A. Pappacena, M. Boaro, A.A. Donazzi, Distributed charge transfer model for IT-SOFCs based on ceria electrolytes. J. Electrochem. Soc. 164, F1249 (2017). https://doi.org/10.1149/2.1911712jes
X. Zhang, M. Robertson, C. Deĉes-Petit, W. Qu, O. Kesler et al., Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J. Power Sources 164(2), 668–677 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.087
P. Li, B. Yu, J. Li, X. Yao, Y. Zhao et al., A single layer solid oxide fuel cell composed of La2NiO4 and doped ceria-carbonate with H2 and methanol as fuels. Int. J. Hydrogen Energy 41(21), 9059–9065 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.167
B. Zhu, L. Fan, Y. Zhao, W. Tan, H. Wang et al., Functional semiconductor-ionic composite GDC-KZnAl/LiNiCuZnOx for single-component fuel cell. RSC Adv. 4(20), 9920–9925 (2014). https://doi.org/10.1039/c3ra47783e
I. Garbayo, D. Pla, A. Morata, L. Fonseca, N. Sabaté et al., Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures. Energy Environ. Sci. 7(11), 3617–3629 (2014). https://doi.org/10.1039/c4ee00748d
N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci. 72, 141–337 (2015). https://doi.org/10.1016/j.pmatsci.2015.01.001
K. Prabhakaran, M.O. Beigh, J. Lakra, N.M. Gokhale, S.C. Sharma, Characteristics of 8 mol% yttria stabilized zirconia powder prepared by spray drying process. J. Mater. Process. Technol. 189(1–3), 178–181 (2007). https://doi.org/10.1016/j.jmatprotec.2007.01.019
Y.P. Fu, S.B. Wen, C.H. Lu, Preparation and characterization of samaria-doped ceria electrolyte materials for solid oxide fuel cells. J. Am. Ceram. Soc. 91(1), 127–131 (2008). https://doi.org/10.1111/j.1551-2916.2007.01923.x
Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi et al., Proton shuttles in CeO2/CeO2−δ core-shell structure. ACS Energy Lett. 4(11), 2601–2607 (2019). https://doi.org/10.1021/acsenergylett.9b01829
S. Shen, Y. Yang, L. Guo, H. Liu, A polarization model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. J. Power Sources 256, 43–51 (2014). https://doi.org/10.1016/j.jpowsour.2014.01.041
S. Shen, M. Ni, 2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. Int. J. Hydrog. Energy 40(15), 5160–5168 (2015). https://doi.org/10.1016/j.ijhydene.2015.02.074
J. Lutz, H. Schlangenotto, U. Scheuermann, R. De Doncker, Semiconductor power devices: physics, characteristics. Reliability (2011). https://doi.org/10.1007/978-3-642-11125-9
B. Wang, Y. Cai, C. Xia, J.S. Kim, Y. Liu et al., Semiconductor-ionic membrane of LaSrCoFe-oxide-doped ceria solid oxide fuel cells. Electrochim. Acta 248, 496–504 (2017). https://doi.org/10.1016/j.electacta.2017.07.128