Building Feedback-Regulation System Through Atomic Design for Highly Active SO2 Sensing
Corresponding Author: Jiaqiang Xu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 136
Abstract
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
Highlights:
1 Feedback-regulation system is established between single Pt sites and MoS2 supports
2 The Pt1-MoS2-def can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere.
3 The Pt1-MoS2-def sensors exhibit high SO2 responses and extremely low limit of detection (3.14% to 500 ppb SO2) at room temperature.
4 The Pt1-MoS2-def sensors array can realize real-time monitoring of SO2 for plant growth.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Kermani, S. Fallah Jokandan, M. Aghaei, F. Bahrami Asl, S. Karimzadeh et al., Estimation of the number of excess hospitalizations attributed to sulfur dioxide in six major cities of Iran. Health Scope 5, e38736 (2016). https://doi.org/10.17795/jhealthscope-38736
- Y. Wu, R. Li, L. Cui, Y. Meng, H. Cheng et al., The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere 241, 125031 (2020). https://doi.org/10.1016/j.chemosphere.2019.125031
- G. Goudarzi, S. Geravandi, E. Idani, S. Ahmad Hosseini, M.M. Baneshi et al., An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environ. Sci. Pollut. Res. Int. 23, 22001–22007 (2016). https://doi.org/10.1007/s11356-016-7447-x
- D.-D. Lee, D.-S. Lee, Environmental gas sensors. IEEE Sens. J. 1, 214–224 (2001). https://doi.org/10.1109/JSEN.2001.954834
- T. Shaymurat, Q. Tang, Y. Tong, L. Dong, Y. Liu, Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature. Adv. Mater. 25(2269–2273), 2376 (2013). https://doi.org/10.1002/adma.201204509
- Z. Zhai, X. Zhang, J. Wang, H. Li, Y. Sun et al., Washable and flexible gas sensor based on UiO-66-NH2 nanofibers membrane for highly detecting SO2. Chem. Eng. J. 428, 131720 (2022). https://doi.org/10.1016/j.cej.2021.131720
- M. Balaish, J.L.M. Rupp, Widening the range of trackable environmental and health pollutants for Li-garnet-based sensors. Adv. Mater. 33, e2100314 (2021). https://doi.org/10.1002/adma.202100314
- G. Lee, Q. Wei, Y. Zhu, Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31, 2106475 (2021). https://doi.org/10.1002/adfm.202106475
- A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
- P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7, 13293–13312 (2015). https://doi.org/10.1039/C5NR03633J
- R. Kumar, W. Zheng, X. Liu, J. Zhang, M. Kumar, MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 5, 1901062 (2020). https://doi.org/10.1002/admt.201901062
- D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017). https://doi.org/10.1039/C7TA07001B
- Z. Xue, M. Yan, X. Wang, Z. Wang, Y. Zhang et al., Tailoring unsymmetrical-coordinated atomic site in oxide-supported Pt catalysts for enhanced surface activity and stability. Small 17, e2101008 (2021). https://doi.org/10.1002/smll.202101008
- L. Liu, P. Zhou, X. Su, Y. Liu, Y. Sun et al., Synergistic Ni single atoms and oxygen vacancies on SnO2 nanorods toward promoting SO2 gas sensing. Sens. Actuat. B Chem. 351, 130983 (2022). https://doi.org/10.1016/j.snb.2021.130983
- Z. Li, E. Tian, S. Wang, M. Ye, S. Li et al., Single-atom catalysts: promotors of highly sensitive and selective sensors. Chem. Soc. Rev. 52, 5088–5134 (2023). https://doi.org/10.1039/d2cs00191h
- M. Yan, X. Gao, X. Han, D. Zhou, Y. Lin et al., Harvesting the gas molecules by bioinspired design of 1D/2D hybrids toward sensitive acetone detecting. Small Struct. 4, 2200248 (2023). https://doi.org/10.1002/sstr.202200248
- Z. Xue, M. Yan, X. Yu, Y. Tong, H. Zhou et al., One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 6, 3364–3373 (2020). https://doi.org/10.1016/j.chempr.2020.09.026
- N. Luo, H. Cai, B. Lu, Z. Xue, J. Xu, Pt-functionalized amorphous RuOx as excellent stability and high-activity catalysts for low temperature MEMS sensors. Small 19, e2300006 (2023). https://doi.org/10.1002/smll.202300006
- H. Cai, N. Luo, X. Wang, M. Guo, X. Li et al., Kinetics-driven dual hydrogen spillover effects for ultrasensitive hydrogen sensing. Small 19, e2302652 (2023). https://doi.org/10.1002/smll.202302652
- W.-T. Koo, Y. Kim, S. Kim, B.L. Suh, S. Savagatrup et al., Hydrogen sensors from composites of ultra-small bimetallic nanops and porous ion-exchange polymers. Chem 6, 2746–2758 (2020). https://doi.org/10.1016/j.chempr.2020.07.015
- H. Zhang, X.F. Lu, Z.-P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288 (2020). https://doi.org/10.1021/acscentsci.0c00512
- Y. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Ensemble effect for single-atom, small cluster and nanop catalysts. Nat. Catal. 5, 766–776 (2022). https://doi.org/10.1038/s41929-022-00839-7
- H. Shin, W.-G. Jung, D.-H. Kim, J.-S. Jang, Y.H. Kim et al., Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping. ACS Nano 14, 11394 (2020). https://doi.org/10.1021/acsnano.0c03687
- J. Qiu, X. Hu, L. Shi, J. Fan, X. Min et al., Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sens. Actuators B Chem. 329, 129221 (2021). https://doi.org/10.1016/j.snb.2020.129221
- F. Gu, Y. Cui, D. Han, S. Hong, M. Flytzani-Stephanopoulos et al., Atomically dispersed Pt(II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 256, 117809 (2019). https://doi.org/10.1016/j.apcatb.2019.117809
- Z. Xue, C. Wang, Y. Tong, M. Yan, J. Zhang et al., Strain-assisted single Pt sites on high-curvature MoS2 surface for ultrasensitive H2S sensing. CCS Chem. 4, 3842 (2022)
- Z. Pei, H. Zhang, Z.-P. Wu, X.F. Lu, D. Luan et al., Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. Sci. Adv. 9, eadh1320 (2023). https://doi.org/10.1126/sciadv.adh1320
- S. Zhuo, Y. Xu, W. Zhao, J. Zhang, B. Zhang, Hierarchical nanosheet-based MoS2 nanotubes fabricated by an anion-exchange reaction of MoO3–amine hybrid nanowires. Angew. Chem. Int. Ed. 52, 8602 (2013). https://doi.org/10.1002/anie.201303480
- X. Bai, X. Wang, T. Jia, L. Guo, D. Hao et al., Efficient degradation of PPCPs by Mo1−xS2−y with S vacancy at phase-junction: promoted by innergenerate-H2O2. Appl. Catal. B Environ. 310, 121302 (2022). https://doi.org/10.1016/j.apcatb.2022.121302
- S. Liu, Y. Yin, M. Wu, K.S. Hui, K.N. Hui et al., Phosphorus-mediated MoS2 nanowires as a high-performance electrode material for quasi-solid-state sodium-ion intercalation supercapacitors. Small 15, 1803984 (2019). https://doi.org/10.1002/smll.201803984
- H. Xu, J. Li, P. Li, J. Shi, X. Gao et al., Highly efficient SO2 sensing by light-assisted Ag/PANI/SnO2 at room temperature and the sensing mechanism. ACS Appl. Mater. Interfaces 13, 49194 (2021). https://doi.org/10.1021/acsami.1c14548
- D. Kim, S. Chong, C. Park, J. Ahn, J. Jang et al., Oxide/ZIF-8 hybrid nanofiber yarns: heightened surface activity for exceptional chemiresistive sensing. Adv. Mater. 34, 2105869 (2022). https://doi.org/10.1002/adma.202105869
- Z. Shen, M. Cao, Y. Wen, J. Li, X. Zhang et al., Tuning the local coordination of CoP1-x Sx between NiAs- and MnP-type structures to catalyze lithium-sulfur batteries. ACS Nano 17, 3143 (2023). https://doi.org/10.1021/acsnano.2c12436
- Y. Men, X. Su, P. Li, Y. Tan, C. Ge et al., Oxygen-inserted top-surface layers of Ni for boosting alkaline hydrogen oxidation electrocatalysis. J. Am. Chem. Soc. 144, 12661 (2022). https://doi.org/10.1021/jacs.2c01448
- K. Chen, R. Dronskowski, First-principles study of divalent 3d transition-metal carbodiimides. J. Phys. Chem. A 123, 9328 (2019). https://doi.org/10.1021/acs.jpca.9b05799
- Z.-G. Li, X.-E. Li, H.-Y. Chen, Sulfur dioxide:an emerging signaling molecule in plants. Front. Plant Sci. 13, 891626 (2022). https://doi.org/10.3389/fpls.2022.891626
- H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33, 2007764 (2021). https://doi.org/10.1002/adma.202007764
- Z. Li, Y. Liu, O. Hossain, R. Paul, S. Yao et al., Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4, 2553 (2021). https://doi.org/10.1016/j.matt.2021.06.009
References
M. Kermani, S. Fallah Jokandan, M. Aghaei, F. Bahrami Asl, S. Karimzadeh et al., Estimation of the number of excess hospitalizations attributed to sulfur dioxide in six major cities of Iran. Health Scope 5, e38736 (2016). https://doi.org/10.17795/jhealthscope-38736
Y. Wu, R. Li, L. Cui, Y. Meng, H. Cheng et al., The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere 241, 125031 (2020). https://doi.org/10.1016/j.chemosphere.2019.125031
G. Goudarzi, S. Geravandi, E. Idani, S. Ahmad Hosseini, M.M. Baneshi et al., An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environ. Sci. Pollut. Res. Int. 23, 22001–22007 (2016). https://doi.org/10.1007/s11356-016-7447-x
D.-D. Lee, D.-S. Lee, Environmental gas sensors. IEEE Sens. J. 1, 214–224 (2001). https://doi.org/10.1109/JSEN.2001.954834
T. Shaymurat, Q. Tang, Y. Tong, L. Dong, Y. Liu, Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature. Adv. Mater. 25(2269–2273), 2376 (2013). https://doi.org/10.1002/adma.201204509
Z. Zhai, X. Zhang, J. Wang, H. Li, Y. Sun et al., Washable and flexible gas sensor based on UiO-66-NH2 nanofibers membrane for highly detecting SO2. Chem. Eng. J. 428, 131720 (2022). https://doi.org/10.1016/j.cej.2021.131720
M. Balaish, J.L.M. Rupp, Widening the range of trackable environmental and health pollutants for Li-garnet-based sensors. Adv. Mater. 33, e2100314 (2021). https://doi.org/10.1002/adma.202100314
G. Lee, Q. Wei, Y. Zhu, Emerging wearable sensors for plant health monitoring. Adv. Funct. Mater. 31, 2106475 (2021). https://doi.org/10.1002/adfm.202106475
A.V. Agrawal, N. Kumar, M. Kumar, Strategy and future prospects to develop room-temperature-recoverable NO2 gas sensor based on two-dimensional molybdenum disulfide. Nano-Micro Lett. 13, 38 (2021). https://doi.org/10.1007/s40820-020-00558-3
P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale 7, 13293–13312 (2015). https://doi.org/10.1039/C5NR03633J
R. Kumar, W. Zheng, X. Liu, J. Zhang, M. Kumar, MoS2-based nanomaterials for room-temperature gas sensors. Adv. Mater. Technol. 5, 1901062 (2020). https://doi.org/10.1002/admt.201901062
D. Zhang, J. Wu, P. Li, Y. Cao, Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–20677 (2017). https://doi.org/10.1039/C7TA07001B
Z. Xue, M. Yan, X. Wang, Z. Wang, Y. Zhang et al., Tailoring unsymmetrical-coordinated atomic site in oxide-supported Pt catalysts for enhanced surface activity and stability. Small 17, e2101008 (2021). https://doi.org/10.1002/smll.202101008
L. Liu, P. Zhou, X. Su, Y. Liu, Y. Sun et al., Synergistic Ni single atoms and oxygen vacancies on SnO2 nanorods toward promoting SO2 gas sensing. Sens. Actuat. B Chem. 351, 130983 (2022). https://doi.org/10.1016/j.snb.2021.130983
Z. Li, E. Tian, S. Wang, M. Ye, S. Li et al., Single-atom catalysts: promotors of highly sensitive and selective sensors. Chem. Soc. Rev. 52, 5088–5134 (2023). https://doi.org/10.1039/d2cs00191h
M. Yan, X. Gao, X. Han, D. Zhou, Y. Lin et al., Harvesting the gas molecules by bioinspired design of 1D/2D hybrids toward sensitive acetone detecting. Small Struct. 4, 2200248 (2023). https://doi.org/10.1002/sstr.202200248
Z. Xue, M. Yan, X. Yu, Y. Tong, H. Zhou et al., One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 6, 3364–3373 (2020). https://doi.org/10.1016/j.chempr.2020.09.026
N. Luo, H. Cai, B. Lu, Z. Xue, J. Xu, Pt-functionalized amorphous RuOx as excellent stability and high-activity catalysts for low temperature MEMS sensors. Small 19, e2300006 (2023). https://doi.org/10.1002/smll.202300006
H. Cai, N. Luo, X. Wang, M. Guo, X. Li et al., Kinetics-driven dual hydrogen spillover effects for ultrasensitive hydrogen sensing. Small 19, e2302652 (2023). https://doi.org/10.1002/smll.202302652
W.-T. Koo, Y. Kim, S. Kim, B.L. Suh, S. Savagatrup et al., Hydrogen sensors from composites of ultra-small bimetallic nanops and porous ion-exchange polymers. Chem 6, 2746–2758 (2020). https://doi.org/10.1016/j.chempr.2020.07.015
H. Zhang, X.F. Lu, Z.-P. Wu, X.W.D. Lou, Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288 (2020). https://doi.org/10.1021/acscentsci.0c00512
Y. Guo, M. Wang, Q. Zhu, D. Xiao, D. Ma, Ensemble effect for single-atom, small cluster and nanop catalysts. Nat. Catal. 5, 766–776 (2022). https://doi.org/10.1038/s41929-022-00839-7
H. Shin, W.-G. Jung, D.-H. Kim, J.-S. Jang, Y.H. Kim et al., Single-atom Pt stabilized on one-dimensional nanostructure support via carbon nitride/SnO2 heterojunction trapping. ACS Nano 14, 11394 (2020). https://doi.org/10.1021/acsnano.0c03687
J. Qiu, X. Hu, L. Shi, J. Fan, X. Min et al., Enabling selective, room-temperature gas detection using atomically dispersed Zn. Sens. Actuators B Chem. 329, 129221 (2021). https://doi.org/10.1016/j.snb.2020.129221
F. Gu, Y. Cui, D. Han, S. Hong, M. Flytzani-Stephanopoulos et al., Atomically dispersed Pt(II) on WO3 for highly selective sensing and catalytic oxidation of triethylamine. Appl. Catal. B Environ. 256, 117809 (2019). https://doi.org/10.1016/j.apcatb.2019.117809
Z. Xue, C. Wang, Y. Tong, M. Yan, J. Zhang et al., Strain-assisted single Pt sites on high-curvature MoS2 surface for ultrasensitive H2S sensing. CCS Chem. 4, 3842 (2022)
Z. Pei, H. Zhang, Z.-P. Wu, X.F. Lu, D. Luan et al., Atomically dispersed Ni activates adjacent Ce sites for enhanced electrocatalytic oxygen evolution activity. Sci. Adv. 9, eadh1320 (2023). https://doi.org/10.1126/sciadv.adh1320
S. Zhuo, Y. Xu, W. Zhao, J. Zhang, B. Zhang, Hierarchical nanosheet-based MoS2 nanotubes fabricated by an anion-exchange reaction of MoO3–amine hybrid nanowires. Angew. Chem. Int. Ed. 52, 8602 (2013). https://doi.org/10.1002/anie.201303480
X. Bai, X. Wang, T. Jia, L. Guo, D. Hao et al., Efficient degradation of PPCPs by Mo1−xS2−y with S vacancy at phase-junction: promoted by innergenerate-H2O2. Appl. Catal. B Environ. 310, 121302 (2022). https://doi.org/10.1016/j.apcatb.2022.121302
S. Liu, Y. Yin, M. Wu, K.S. Hui, K.N. Hui et al., Phosphorus-mediated MoS2 nanowires as a high-performance electrode material for quasi-solid-state sodium-ion intercalation supercapacitors. Small 15, 1803984 (2019). https://doi.org/10.1002/smll.201803984
H. Xu, J. Li, P. Li, J. Shi, X. Gao et al., Highly efficient SO2 sensing by light-assisted Ag/PANI/SnO2 at room temperature and the sensing mechanism. ACS Appl. Mater. Interfaces 13, 49194 (2021). https://doi.org/10.1021/acsami.1c14548
D. Kim, S. Chong, C. Park, J. Ahn, J. Jang et al., Oxide/ZIF-8 hybrid nanofiber yarns: heightened surface activity for exceptional chemiresistive sensing. Adv. Mater. 34, 2105869 (2022). https://doi.org/10.1002/adma.202105869
Z. Shen, M. Cao, Y. Wen, J. Li, X. Zhang et al., Tuning the local coordination of CoP1-x Sx between NiAs- and MnP-type structures to catalyze lithium-sulfur batteries. ACS Nano 17, 3143 (2023). https://doi.org/10.1021/acsnano.2c12436
Y. Men, X. Su, P. Li, Y. Tan, C. Ge et al., Oxygen-inserted top-surface layers of Ni for boosting alkaline hydrogen oxidation electrocatalysis. J. Am. Chem. Soc. 144, 12661 (2022). https://doi.org/10.1021/jacs.2c01448
K. Chen, R. Dronskowski, First-principles study of divalent 3d transition-metal carbodiimides. J. Phys. Chem. A 123, 9328 (2019). https://doi.org/10.1021/acs.jpca.9b05799
Z.-G. Li, X.-E. Li, H.-Y. Chen, Sulfur dioxide:an emerging signaling molecule in plants. Front. Plant Sci. 13, 891626 (2022). https://doi.org/10.3389/fpls.2022.891626
H. Yin, Y. Cao, B. Marelli, X. Zeng, A.J. Mason et al., Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 33, 2007764 (2021). https://doi.org/10.1002/adma.202007764
Z. Li, Y. Liu, O. Hossain, R. Paul, S. Yao et al., Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a wearable sensor. Matter 4, 2553 (2021). https://doi.org/10.1016/j.matt.2021.06.009