Alternative Strategy for Development of Dielectric Calcium Copper Titanate-Based Electrolytes for Low-Temperature Solid Oxide Fuel Cells
Corresponding Author: Bin Zhu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 13
Abstract
The development of low-temperature solid oxide fuel cells (LT-SOFCs) is of significant importance for realizing the widespread application of SOFCs. This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs. In this context, for the first time, a dielectric material, CaCu3Ti4O12 (CCTO) is designed for LT-SOFCs electrolyte application in this study. Both individual CCTO and its heterostructure materials with a p-type Ni0.8Co0.15Al0.05LiO2−δ (NCAL) semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450–550 °C. The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm−2 and an open-circuit voltage (OCV) of 0.95 V at 550 °C, while the cell with the CCTO–NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm−2 along with a higher OCV over 1.0 V, which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk. It is found that these promising outcomes are due to the interplay of the dielectric material, its structure, and overall properties that led to improve electrochemical mechanism in CCTO–NCAL. Furthermore, density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO–NCAL. Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs.
Highlights:
1 Dielectric CaCu3Ti4O12 (CCTO) was used as electrolyte in low-temperature solid oxide fuel cells for the first time.
2 A new heterostructure electrolyte was designed based on CCTO and Ni0.8Co0.15Al0.05LiO2−δ (NCAL). Promising ionic conductivity and high fuel cell performance were achieved
3 CCTO–NCAL realized an electrolyte function due to its good dielectric property and a heterojunction effect.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003). https://doi.org/10.1039/b105764m
- L. Fan, B. Zhu, P.-C. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018). https://doi.org/10.1016/j.nanoen.2017.12.044
- O. Yamamoto, Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ion. 79, 137–142 (1995). https://doi.org/10.1016/0167-2738(95)00044-7
- K.A. Khor, L.-G. Yu, S.H. Chan, X.J. Chen, Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). J. Eur. Ceram. Soc. 23, 1855–1863 (2003). https://doi.org/10.1016/s0955-2219(02)00421-1
- J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra et al., Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680 (2008). https://doi.org/10.1126/science.1156393
- H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito et al., High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, B20 (2007). https://doi.org/10.1149/1.2372592
- D. Pergolesi, E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, A. Tebano et al., High proton conduction in grain-boundary-free yttrium-doped Barium zirconate films grown by pulsed laser deposition. Nat. Mater. 9, 846–852 (2010). https://doi.org/10.1038/nmat2837
- K. Kerman, B.-K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2, 656–661 (2012). https://doi.org/10.1002/aenm.201100751
- M. Tsuchiya, B.-K. Lai, S. Ramanathan, Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nanotechnol. 6, 282–286 (2011). https://doi.org/10.1038/nnano.2011.43
- P.C. Su, C.C. Chao, J.H. Shim, R. Fasching, F.B. Prinz, Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 8, 2289–2292 (2008). https://doi.org/10.1021/nl800977z
- B. Zhu, R. Raza, G. Abbas, M. Singh, An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21, 2465–2469 (2011). https://doi.org/10.1002/adfm.201002471
- B. Zhu, R. Raza, L. Fan, C. Sun, Solid oxide fuel cells: from electrolyte-based to electrolyte-free devices (John Wiley & Sons, Hoboken, 2020), pp.1–218
- M. Afzal, M. Saleemi, B. Wang, C. Xia, W. Zhang et al., Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9) and schottky barrier. J. Power. Sources 328, 136–142 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.093
- P. Simon, Y. Gogotsi, Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific. ed. by (Macmillan Publishers, UK, 2010, pp 320–329
- V. Dusastre, Materials for sustainable energy: a collection of peer-reviewed research and review s from nature publishing group (World Scientific, Singapore, 2011), pp.1–327
- B. Wang, B. Zhu, S. Yun, W. Zhang, C. Xia et al., Fast ionic conduction in semiconductor CeO2−δ electrolyte fuel cells. npg Asia Mater. 11, 51 (2019). https://doi.org/10.1038/s41427-019-0152-8
- C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen et al., Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019). https://doi.org/10.1038/s41467-019-09532-z
- M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney et al., A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014). https://doi.org/10.1038/nmat3782
- M. Yousaf, Y. Lu, E. Hu, M. Akbar, M.A.K.Y. Shah et al., Interfacial disordering and heterojunction enabling fast proton conduction. Small Methods 7, e2300450 (2023). https://doi.org/10.1002/smtd.202300450
- M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703
- R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto et al., Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013). https://doi.org/10.1063/1.4812709
- H.S. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, A. Halder et al., Efficient solar energy conversion using CaCu3Ti4O12 photoanode for photocatalysis and photoelectrocatalysis. Sci. Rep. 6, 18557 (2016). https://doi.org/10.1038/srep18557
- L.C. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. de Oliveira, A.S.B. Sombra, Dielectric permittivity and loss of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. J. Mater. Sci. Mater. Electron. 15, 657–663 (2004). https://doi.org/10.1023/B:JMSE.0000038920.30408.77
- K. Sun, L.-F. Xu, C. Mao, X. Feng, J.-Y. Liang et al., Preferential orientation and relaxation behaviors of CaCu3Ti4O12 thin films in a low frequency range. J. Alloys Compd. 704, 676–682 (2017). https://doi.org/10.1016/j.jallcom.2017.02.074
- L. He, J. Neaton, M.H. Cohen, D. Vanderbilt, C. Homes, First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12. Phys. Rev. B 65, 214112 (2002). https://doi.org/10.1103/PhysRevB.65.214112
- G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni et al., Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials. Solid State Commun. 132, 241–246 (2004). https://doi.org/10.1016/j.ssc.2004.07.058
- G. Cao, L. Feng, C. Wang, Grain-boundary and subgrain-boundary effects on the dielectric properties of CaCu3Ti4O12 ceramics. J. Phys. D Appl. Phys. 40, 2899–2905 (2007). https://doi.org/10.1088/0022-3727/40/9/035
- A.A. Felix, M.O. Orlandi, J.A. Varela, Schottky-type grain boundaries in CCTO ceramics. Solid State Commun. 151, 1377–1381 (2011). https://doi.org/10.1016/j.ssc.2011.06.012
- M.H. Braga, N.S. Grundish, A.J. Murchison, J.B. Goodenough, Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 10, 331–336 (2017). https://doi.org/10.1039/c6ee02888h
- M.H. Braga, J.A. Ferreira, A.J. Murchison, J.B. Goodenough, Electric dipoles and ionic conductivity in a Na+ glass electrolyte. J. Electrochem. Soc. 164, A207–A213 (2016). https://doi.org/10.1149/2.0691702jes
- M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough, glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy Environ. Sci. 9, 948–954 (2016). https://doi.org/10.1039/c5ee02924d
- M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Effects of annealing temperature on the structural, morphology, optical properties and resistivity of sputtered CCTO thin film. J. Mater. Sci. Mater. Electron. 28, 12458–12466 (2017). https://doi.org/10.1007/s10854-017-7067-3
- S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004). https://doi.org/10.1038/nmat1238
- Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, High dielectric and nonlinear electrical behaviors in TiO2-rich CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88, 172902 (2006). https://doi.org/10.1063/1.2198479
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
- S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós et al., Crystallography open database–an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009). https://doi.org/10.1107/s0021889809016690
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
- V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
- B. Zhu, P.D. Lund, R. Raza, Y. Ma, L. Fan et al., Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv. Energy Mater. 5, 1401895 (2015). https://doi.org/10.1002/aenm.201401895
- L. Li, Single-layer Ga2O3/graphene heterogeneous structure with optical switching effect. Carbon Trends 7, 100153 (2022). https://doi.org/10.1016/j.cartre.2022.100153
- Z. Wang, Q. Chen, J. Wang, Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2. J. Phys. Chem. C 119, 4752–4758 (2015). https://doi.org/10.1021/jp507751p
- N. Hadi, F. Abdi, T.-E. Lamcharfi, A. Belaaraj, S. Kassou et al., Study of the dielectric, optical and microstructure properties of CaCu3Ti4O12PbZr0.48Ti0.52O3 ceramic system with different compositions. Mediterr. J. Chem. 8, 245 (2019). https://doi.org/10.13171/MJC8319052212NH
- M. Guilmard, C. Pouillerie, L. Croguennec, C. Delmas, Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2. Solid State Ion. 160, 39–50 (2003). https://doi.org/10.1016/S0167-2738(03)00106-1
- F. Izumi, T. Ikeda, A rietveld-analysis programm RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321–324, 198–205 (2000). https://doi.org/10.4028/www.scientific.net/msf.321-324.198
- N. Mushtaq, C. Xia, W. Dong, B. Wang, R. Raza et al., Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3–δ–Sm0.25Ce0.75O2–δ heterostructure for fast ionic transport. ACS Appl. Mater. Interfaces 11, 38737–38745 (2019). https://doi.org/10.1021/acsami.9b13044
- N. Mushtaq, Y. Lu, C. Xia, W. Dong, B. Wang et al., Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2−δ heterostructure. Appl. Catal. B Environ. 298, 120503 (2021). https://doi.org/10.1016/j.apcatb.2021.120503
- Y. Xing, S. Rauf, H. Cai, Z. Tayyab, B. Wang et al., Designing p-n heterostructure of LSCF-CeO2 material for ionic transportation as an electrolyte for semiconductor ion membrane fuel cell. Int. J. Hydrog. Energy 50, 428–440 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.204
- A. Yadav, R. Pyare, J.B. Goodenough, P. Singh, KTa1–x–yTixGeyO3−δ: A high κ relaxor dielectric and superior oxide-ion electrolyte for it-sofc. ACS Appl. Energy Mater. 3, 3205–3211 (2020). https://doi.org/10.1021/acsaem.0c00466
- L.-F. Xu, C. Mao, V.V. Marchenkov, K. Sun, T.V. Dyachkova et al., Influence of sintering atmosphere and thermobaric treatment (TBT) on dielectric behaviors of CaCu3Ti4O12 ceramics. Phys. Lett. A 382, 2861–2867 (2018). https://doi.org/10.1016/j.physleta.2018.06.018
- M. Li, D.C. Sinclair, A.R. West, Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale. J. Appl. Phys. 109, 084106 (2011). https://doi.org/10.1063/1.3572256
- E. Fabbri, D. Pergolesi, E. Traversa, Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Technol. Adv. Mater. 11, 054503 (2010). https://doi.org/10.1088/1468-6996/11/5/054503
- N. Akbar, S. Paydar, M.A.K.Y. Shah, N. Mushtaq, M. Yousaf et al., Space charge polarization effect in surface-coated BaTiO3 electrolyte for low-temperature ceramic fuel cell. ACS Appl. Energy Mater. 7, 1128–1135 (2024). https://doi.org/10.1021/acsaem.3c02633
- J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li et al., Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures. Appl. Phys. Lett. 87, 142901 (2005). https://doi.org/10.1063/1.2077864
- L. Chen, C. Chen, Y. Lin, Y. Chen, X. Chen et al., High temperature electrical properties of highly epitaxial CaCu3Ti4O12 thin films on (001) LaAlO3. Appl. Phys. Lett. 82, 2317–2319 (2003). https://doi.org/10.1063/1.1565702
- R. Yu, H. Xue, Z. Cao, L. Chen, Z. Xiong, Effect of oxygen sintering atmosphere on the electrical behavior of CCTO ceramics. J. Eur. Ceram. Soc. 32, 1245–1249 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.039
- C.-M. Wang, S.-Y. Lin, K.-S. Kao, Y.-C. Chen, S.-C. Weng, Microstructural and electrical properties of CaTiO3–CaCu3Ti4O12 ceramics. J. Alloys Compd. 491, 423–430 (2010). https://doi.org/10.1016/j.jallcom.2009.10.216
- C. Xia, B. Wang, Y. Ma, Y. Cai, M. Afzal et al., Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell. J. Power. Sources 307, 270–279 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.086
- J. Sugiyama, K. Mukai, Y. Ikedo, P.L. Russo, H. Nozaki et al., Static magnetic order in the triangular lattice of LixNiO2 (x ≤ 1): Muon-spin spectroscopy measurements. Phys. Rev. B. Conden. Matter Mater. Phys. 78, 144412 (2008). https://doi.org/10.1103/PhysRevB.78.144412
- G. Wang, X. Wu, Y. Cai, Y. Ji, A. Yaqub et al., Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC). J. Power. Sources 332, 8–15 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.011
- Z. Qiao, C. Xia, Y. Cai, M. Afzal, H. Wang et al., Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power. Sources 392, 33–40 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.096
- S.F. Wang, Y.L. Liao, Y.F. Hsu, P. Jasinski, Effects of LiNi0.8Co0.15Al0.05O2 electrodes on the conduction mechanism of Sm0.2Ce0.8O2−δ electrolyte and performance of low-temperature solid oxide fuel cells. J. Power Sources 546, 231995 (2022). https://doi.org/10.1016/j.jpowsour.2022.231995
- S. Chan, K. Khor, Z. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130–140 (2001). https://doi.org/10.1016/S0378-7753(00)00556-5
- B. Zhu, B. Wang, Y. Wang, R. Raza, W. Tan et al., Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 37, 195–202 (2017). https://doi.org/10.1016/j.nanoen.2017.05.003
- D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang et al., Vacancy-mediated magnetism in pure copper oxide nanops. Nanoscale Res. Lett. 5, 769–772 (2010). https://doi.org/10.1007/s11671-010-9555-8
- G. Xing, J. Yi, J. Tao, T. Liu, L. Wong et al., Comparative study of structural inhomogeneity enhanced room-temperature ferromagnetism in Cu-doped ZnO nanowires. Adv. Mater. 20, 3521 (2008). https://doi.org/10.1002/adma.200703149
- S. Rauf, M.B. Hanif, F. Wali, Z. Tayyab, B. Zhu et al., Highly active interfacial sites in SFT-SnO2 heterojunction electrolyte for enhanced fuel cell performance via engineered energy bands: envisioned theoretically and experimentally. Energy Environ. Mater. 7, 12606 (2024). https://doi.org/10.1002/eem2.12606
- T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang et al., Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chin. Chem. Lett. 30, 2274–2278 (2019). https://doi.org/10.1016/j.cclet.2019.07.028
- Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi et al., Proton shuttles in CeO2/CeO2–δ core–shell structure. ACS Energy Lett. 4, 2601–2607 (2019). https://doi.org/10.1021/acsenergylett.9b01829
- C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang et al., Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 11, 3201–3211 (2018). https://doi.org/10.1039/C8EE01046C
- G.-L. Li, Z. Yin, M.-S. Zhang, First-principles study of the electronic and magnetic structures of CaCu3Ti4O12. Phys. Lett. A 344, 238–246 (2005). https://doi.org/10.1016/j.physleta.2005.07.005
- A.M. Ganose, A.J. Jackson, D.O. Scanlon, Sumo: Command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 3, 717 (2018). https://doi.org/10.21105/JOSS.00717
- S. Na-Phattalung, M. Smith, K. Kim, M. Du, S. Wei et al., First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006). https://doi.org/10.1103/PhysRevB.73.125205
- B. Zhu, P. Lund, R. Raza, J. Patakangas, Q.-A. Huang et al., A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2, 1179–1185 (2013). https://doi.org/10.1016/j.nanoen.2013.05.001
- Z. Tayyab, S. Rauf, C. Xia, B. Wang, M.Y. Shah et al., Advanced LT-SOFC based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2–Sm0.2Ce0.8O2-δ heterostructure for fast ionic transport. ACS Appl. Energy Mater. 4, 8922–8932 (2021). https://doi.org/10.1021/acsaem.1c01186
- B. Zhu, L. Fan, N. Mushtaq, R. Raza, M. Sajid et al., Semiconductor electrochemistry for clean energy conversion and storage. Electrochem. Energy Rev. 4, 757–792 (2021). https://doi.org/10.1007/s41918-021-00112-8
References
R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003). https://doi.org/10.1039/b105764m
L. Fan, B. Zhu, P.-C. Su, C. He, Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities. Nano Energy 45, 148–176 (2018). https://doi.org/10.1016/j.nanoen.2017.12.044
O. Yamamoto, Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ion. 79, 137–142 (1995). https://doi.org/10.1016/0167-2738(95)00044-7
K.A. Khor, L.-G. Yu, S.H. Chan, X.J. Chen, Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). J. Eur. Ceram. Soc. 23, 1855–1863 (2003). https://doi.org/10.1016/s0955-2219(02)00421-1
J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra et al., Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680 (2008). https://doi.org/10.1126/science.1156393
H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito et al., High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, B20 (2007). https://doi.org/10.1149/1.2372592
D. Pergolesi, E. Fabbri, A. D’Epifanio, E. Di Bartolomeo, A. Tebano et al., High proton conduction in grain-boundary-free yttrium-doped Barium zirconate films grown by pulsed laser deposition. Nat. Mater. 9, 846–852 (2010). https://doi.org/10.1038/nmat2837
K. Kerman, B.-K. Lai, S. Ramanathan, Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2, 656–661 (2012). https://doi.org/10.1002/aenm.201100751
M. Tsuchiya, B.-K. Lai, S. Ramanathan, Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nanotechnol. 6, 282–286 (2011). https://doi.org/10.1038/nnano.2011.43
P.C. Su, C.C. Chao, J.H. Shim, R. Fasching, F.B. Prinz, Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 8, 2289–2292 (2008). https://doi.org/10.1021/nl800977z
B. Zhu, R. Raza, G. Abbas, M. Singh, An electrolyte-free fuel cell constructed from one homogenous layer with mixed conductivity. Adv. Funct. Mater. 21, 2465–2469 (2011). https://doi.org/10.1002/adfm.201002471
B. Zhu, R. Raza, L. Fan, C. Sun, Solid oxide fuel cells: from electrolyte-based to electrolyte-free devices (John Wiley & Sons, Hoboken, 2020), pp.1–218
M. Afzal, M. Saleemi, B. Wang, C. Xia, W. Zhang et al., Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9) and schottky barrier. J. Power. Sources 328, 136–142 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.093
P. Simon, Y. Gogotsi, Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific. ed. by (Macmillan Publishers, UK, 2010, pp 320–329
V. Dusastre, Materials for sustainable energy: a collection of peer-reviewed research and review s from nature publishing group (World Scientific, Singapore, 2011), pp.1–327
B. Wang, B. Zhu, S. Yun, W. Zhang, C. Xia et al., Fast ionic conduction in semiconductor CeO2−δ electrolyte fuel cells. npg Asia Mater. 11, 51 (2019). https://doi.org/10.1038/s41427-019-0152-8
C. Xia, Y. Mi, B. Wang, B. Lin, G. Chen et al., Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019). https://doi.org/10.1038/s41467-019-09532-z
M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney et al., A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014). https://doi.org/10.1038/nmat3782
M. Yousaf, Y. Lu, E. Hu, M. Akbar, M.A.K.Y. Shah et al., Interfacial disordering and heterojunction enabling fast proton conduction. Small Methods 7, e2300450 (2023). https://doi.org/10.1002/smtd.202300450
M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703
R.K. Pandey, W.A. Stapleton, J. Tate, A.K. Bandyopadhyay, I. Sutanto et al., Applications of CCTO supercapacitor in energy storage and electronics. AIP Adv. 3, 062126 (2013). https://doi.org/10.1063/1.4812709
H.S. Kushwaha, N.A. Madhar, B. Ilahi, P. Thomas, A. Halder et al., Efficient solar energy conversion using CaCu3Ti4O12 photoanode for photocatalysis and photoelectrocatalysis. Sci. Rep. 6, 18557 (2016). https://doi.org/10.1038/srep18557
L.C. Kretly, A.F.L. Almeida, P.B.A. Fechine, R.S. de Oliveira, A.S.B. Sombra, Dielectric permittivity and loss of CaCu3Ti4O12 (CCTO) substrates for microwave devices and antennas. J. Mater. Sci. Mater. Electron. 15, 657–663 (2004). https://doi.org/10.1023/B:JMSE.0000038920.30408.77
K. Sun, L.-F. Xu, C. Mao, X. Feng, J.-Y. Liang et al., Preferential orientation and relaxation behaviors of CaCu3Ti4O12 thin films in a low frequency range. J. Alloys Compd. 704, 676–682 (2017). https://doi.org/10.1016/j.jallcom.2017.02.074
L. He, J. Neaton, M.H. Cohen, D. Vanderbilt, C. Homes, First-principles study of the structure and lattice dielectric response of CaCu3Ti4O12. Phys. Rev. B 65, 214112 (2002). https://doi.org/10.1103/PhysRevB.65.214112
G. Chiodelli, V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni et al., Electric and dielectric properties of pure and doped CaCu3Ti4O12 perovskite materials. Solid State Commun. 132, 241–246 (2004). https://doi.org/10.1016/j.ssc.2004.07.058
G. Cao, L. Feng, C. Wang, Grain-boundary and subgrain-boundary effects on the dielectric properties of CaCu3Ti4O12 ceramics. J. Phys. D Appl. Phys. 40, 2899–2905 (2007). https://doi.org/10.1088/0022-3727/40/9/035
A.A. Felix, M.O. Orlandi, J.A. Varela, Schottky-type grain boundaries in CCTO ceramics. Solid State Commun. 151, 1377–1381 (2011). https://doi.org/10.1016/j.ssc.2011.06.012
M.H. Braga, N.S. Grundish, A.J. Murchison, J.B. Goodenough, Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 10, 331–336 (2017). https://doi.org/10.1039/c6ee02888h
M.H. Braga, J.A. Ferreira, A.J. Murchison, J.B. Goodenough, Electric dipoles and ionic conductivity in a Na+ glass electrolyte. J. Electrochem. Soc. 164, A207–A213 (2016). https://doi.org/10.1149/2.0691702jes
M.H. Braga, A.J. Murchison, J.A. Ferreira, P. Singh, J.B. Goodenough, glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells. Energy Environ. Sci. 9, 948–954 (2016). https://doi.org/10.1039/c5ee02924d
M. Ahmadipour, M.F. Ain, Z.A. Ahmad, Effects of annealing temperature on the structural, morphology, optical properties and resistivity of sputtered CCTO thin film. J. Mater. Sci. Mater. Electron. 28, 12458–12466 (2017). https://doi.org/10.1007/s10854-017-7067-3
S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Strong nonlinear current–voltage behaviour in perovskite-derivative calcium copper titanate. Nat. Mater. 3, 774–778 (2004). https://doi.org/10.1038/nmat1238
Y.-H. Lin, J. Cai, M. Li, C.-W. Nan, J. He, High dielectric and nonlinear electrical behaviors in TiO2-rich CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 88, 172902 (2006). https://doi.org/10.1063/1.2198479
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B Condens. Matter 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998). https://doi.org/10.1103/physrevb.57.1505
S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós et al., Crystallography open database–an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009). https://doi.org/10.1107/s0021889809016690
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). https://doi.org/10.1103/physrevb.13.5188
V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021). https://doi.org/10.1016/j.cpc.2021.108033
B. Zhu, P.D. Lund, R. Raza, Y. Ma, L. Fan et al., Schottky junction effect on high performance fuel cells based on nanocomposite materials. Adv. Energy Mater. 5, 1401895 (2015). https://doi.org/10.1002/aenm.201401895
L. Li, Single-layer Ga2O3/graphene heterogeneous structure with optical switching effect. Carbon Trends 7, 100153 (2022). https://doi.org/10.1016/j.cartre.2022.100153
Z. Wang, Q. Chen, J. Wang, Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2. J. Phys. Chem. C 119, 4752–4758 (2015). https://doi.org/10.1021/jp507751p
N. Hadi, F. Abdi, T.-E. Lamcharfi, A. Belaaraj, S. Kassou et al., Study of the dielectric, optical and microstructure properties of CaCu3Ti4O12PbZr0.48Ti0.52O3 ceramic system with different compositions. Mediterr. J. Chem. 8, 245 (2019). https://doi.org/10.13171/MJC8319052212NH
M. Guilmard, C. Pouillerie, L. Croguennec, C. Delmas, Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2. Solid State Ion. 160, 39–50 (2003). https://doi.org/10.1016/S0167-2738(03)00106-1
F. Izumi, T. Ikeda, A rietveld-analysis programm RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321–324, 198–205 (2000). https://doi.org/10.4028/www.scientific.net/msf.321-324.198
N. Mushtaq, C. Xia, W. Dong, B. Wang, R. Raza et al., Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3–δ–Sm0.25Ce0.75O2–δ heterostructure for fast ionic transport. ACS Appl. Mater. Interfaces 11, 38737–38745 (2019). https://doi.org/10.1021/acsami.9b13044
N. Mushtaq, Y. Lu, C. Xia, W. Dong, B. Wang et al., Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2−δ heterostructure. Appl. Catal. B Environ. 298, 120503 (2021). https://doi.org/10.1016/j.apcatb.2021.120503
Y. Xing, S. Rauf, H. Cai, Z. Tayyab, B. Wang et al., Designing p-n heterostructure of LSCF-CeO2 material for ionic transportation as an electrolyte for semiconductor ion membrane fuel cell. Int. J. Hydrog. Energy 50, 428–440 (2024). https://doi.org/10.1016/j.ijhydene.2023.08.204
A. Yadav, R. Pyare, J.B. Goodenough, P. Singh, KTa1–x–yTixGeyO3−δ: A high κ relaxor dielectric and superior oxide-ion electrolyte for it-sofc. ACS Appl. Energy Mater. 3, 3205–3211 (2020). https://doi.org/10.1021/acsaem.0c00466
L.-F. Xu, C. Mao, V.V. Marchenkov, K. Sun, T.V. Dyachkova et al., Influence of sintering atmosphere and thermobaric treatment (TBT) on dielectric behaviors of CaCu3Ti4O12 ceramics. Phys. Lett. A 382, 2861–2867 (2018). https://doi.org/10.1016/j.physleta.2018.06.018
M. Li, D.C. Sinclair, A.R. West, Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale. J. Appl. Phys. 109, 084106 (2011). https://doi.org/10.1063/1.3572256
E. Fabbri, D. Pergolesi, E. Traversa, Ionic conductivity in oxide heterostructures: the role of interfaces. Sci. Technol. Adv. Mater. 11, 054503 (2010). https://doi.org/10.1088/1468-6996/11/5/054503
N. Akbar, S. Paydar, M.A.K.Y. Shah, N. Mushtaq, M. Yousaf et al., Space charge polarization effect in surface-coated BaTiO3 electrolyte for low-temperature ceramic fuel cell. ACS Appl. Energy Mater. 7, 1128–1135 (2024). https://doi.org/10.1021/acsaem.3c02633
J.L. Zhang, P. Zheng, C.L. Wang, M.L. Zhao, J.C. Li et al., Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures. Appl. Phys. Lett. 87, 142901 (2005). https://doi.org/10.1063/1.2077864
L. Chen, C. Chen, Y. Lin, Y. Chen, X. Chen et al., High temperature electrical properties of highly epitaxial CaCu3Ti4O12 thin films on (001) LaAlO3. Appl. Phys. Lett. 82, 2317–2319 (2003). https://doi.org/10.1063/1.1565702
R. Yu, H. Xue, Z. Cao, L. Chen, Z. Xiong, Effect of oxygen sintering atmosphere on the electrical behavior of CCTO ceramics. J. Eur. Ceram. Soc. 32, 1245–1249 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.039
C.-M. Wang, S.-Y. Lin, K.-S. Kao, Y.-C. Chen, S.-C. Weng, Microstructural and electrical properties of CaTiO3–CaCu3Ti4O12 ceramics. J. Alloys Compd. 491, 423–430 (2010). https://doi.org/10.1016/j.jallcom.2009.10.216
C. Xia, B. Wang, Y. Ma, Y. Cai, M. Afzal et al., Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell. J. Power. Sources 307, 270–279 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.086
J. Sugiyama, K. Mukai, Y. Ikedo, P.L. Russo, H. Nozaki et al., Static magnetic order in the triangular lattice of LixNiO2 (x ≤ 1): Muon-spin spectroscopy measurements. Phys. Rev. B. Conden. Matter Mater. Phys. 78, 144412 (2008). https://doi.org/10.1103/PhysRevB.78.144412
G. Wang, X. Wu, Y. Cai, Y. Ji, A. Yaqub et al., Design, fabrication and characterization of a double layer solid oxide fuel cell (DLFC). J. Power. Sources 332, 8–15 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.011
Z. Qiao, C. Xia, Y. Cai, M. Afzal, H. Wang et al., Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power. Sources 392, 33–40 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.096
S.F. Wang, Y.L. Liao, Y.F. Hsu, P. Jasinski, Effects of LiNi0.8Co0.15Al0.05O2 electrodes on the conduction mechanism of Sm0.2Ce0.8O2−δ electrolyte and performance of low-temperature solid oxide fuel cells. J. Power Sources 546, 231995 (2022). https://doi.org/10.1016/j.jpowsour.2022.231995
S. Chan, K. Khor, Z. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130–140 (2001). https://doi.org/10.1016/S0378-7753(00)00556-5
B. Zhu, B. Wang, Y. Wang, R. Raza, W. Tan et al., Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 37, 195–202 (2017). https://doi.org/10.1016/j.nanoen.2017.05.003
D. Gao, J. Zhang, J. Zhu, J. Qi, Z. Zhang et al., Vacancy-mediated magnetism in pure copper oxide nanops. Nanoscale Res. Lett. 5, 769–772 (2010). https://doi.org/10.1007/s11671-010-9555-8
G. Xing, J. Yi, J. Tao, T. Liu, L. Wong et al., Comparative study of structural inhomogeneity enhanced room-temperature ferromagnetism in Cu-doped ZnO nanowires. Adv. Mater. 20, 3521 (2008). https://doi.org/10.1002/adma.200703149
S. Rauf, M.B. Hanif, F. Wali, Z. Tayyab, B. Zhu et al., Highly active interfacial sites in SFT-SnO2 heterojunction electrolyte for enhanced fuel cell performance via engineered energy bands: envisioned theoretically and experimentally. Energy Environ. Mater. 7, 12606 (2024). https://doi.org/10.1002/eem2.12606
T. Gao, A. Kumar, Z. Shang, X. Duan, H. Wang et al., Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chin. Chem. Lett. 30, 2274–2278 (2019). https://doi.org/10.1016/j.cclet.2019.07.028
Y. Xing, Y. Wu, L. Li, Q. Shi, J. Shi et al., Proton shuttles in CeO2/CeO2–δ core–shell structure. ACS Energy Lett. 4, 2601–2607 (2019). https://doi.org/10.1021/acsenergylett.9b01829
C. Li, S. Dong, R. Tang, X. Ge, Z. Zhang et al., Heteroatomic interface engineering in MOF-derived carbon heterostructures with built-in electric-field effects for high performance Al-ion batteries. Energy Environ. Sci. 11, 3201–3211 (2018). https://doi.org/10.1039/C8EE01046C
G.-L. Li, Z. Yin, M.-S. Zhang, First-principles study of the electronic and magnetic structures of CaCu3Ti4O12. Phys. Lett. A 344, 238–246 (2005). https://doi.org/10.1016/j.physleta.2005.07.005
A.M. Ganose, A.J. Jackson, D.O. Scanlon, Sumo: Command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 3, 717 (2018). https://doi.org/10.21105/JOSS.00717
S. Na-Phattalung, M. Smith, K. Kim, M. Du, S. Wei et al., First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006). https://doi.org/10.1103/PhysRevB.73.125205
B. Zhu, P. Lund, R. Raza, J. Patakangas, Q.-A. Huang et al., A new energy conversion technology based on nano-redox and nano-device processes. Nano Energy 2, 1179–1185 (2013). https://doi.org/10.1016/j.nanoen.2013.05.001
Z. Tayyab, S. Rauf, C. Xia, B. Wang, M.Y. Shah et al., Advanced LT-SOFC based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2–Sm0.2Ce0.8O2-δ heterostructure for fast ionic transport. ACS Appl. Energy Mater. 4, 8922–8932 (2021). https://doi.org/10.1021/acsaem.1c01186
B. Zhu, L. Fan, N. Mushtaq, R. Raza, M. Sajid et al., Semiconductor electrochemistry for clean energy conversion and storage. Electrochem. Energy Rev. 4, 757–792 (2021). https://doi.org/10.1007/s41918-021-00112-8