Spatially Bandgap-Graded MoS2(1−x)Se2x Homojunctions for Self-Powered Visible–Near-Infrared Phototransistors
Corresponding Author: Jiang Wu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 26
Abstract
Ternary transition metal dichalcogenide alloys with spatially graded bandgaps are an emerging class of two-dimensional materials with unique features, which opens up new potential for device applications. Here, visible–near-infrared and self-powered phototransistors based on spatially bandgap-graded MoS2(1−x)Se2x alloys, synthesized by a simple and controllable chemical solution deposition method, are reported. The graded bandgaps, arising from the spatial grading of Se composition and thickness within a single domain, are tuned from 1.83 to 1.73 eV, leading to the formation of a homojunction with a built-in electric field. Consequently, a strong and sensitive gate-modulated photovoltaic effect is demonstrated, enabling the homojunction phototransistors at zero bias to deliver a photoresponsivity of 311 mA W−1, a specific detectivity up to ~ 1011 Jones, and an on/off ratio up to ~ 104. Remarkably, when illuminated by the lights ranging from 405 to 808 nm, the biased devices yield a champion photoresponsivity of 191.5 A W−1, a specific detectivity up to ~ 1012 Jones, a photoconductive gain of 106–107, and a photoresponsive time in the order of ~ 50 ms. These results provide a simple and competitive solution to the bandgap engineering of two-dimensional materials for device applications without the need for p–n junctions.
Highlights:
1 Due to the Se composition and thickness gradient within single MoS2(1−x)Se2x domains, the bandgap of MoS2(1−x)Se2x is gradually tuned from 1.83 to 1.73 eV.
2 The homojunction phototransistors at zero bias deliver a photoresponsivity of 311 mA W−1, a specific detectivity up to ~ 1011 Jones, and an on/off ratio up to ~ 104.
3 The biased devices yield a champion photoresponsivity of 191.5 A W−1, a specific detectivity up to ~ 1012 Jones, and a photoconductive gain of 106–107.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
- O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
- B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). https://doi.org/10.1038/nnano.2014.25
- Y. Ye, Z.J. Wong, X. Lu, X. Ni, H. Zhu et al., Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015). https://doi.org/10.1038/nphoton.2015.197
- H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan et al., Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016). https://doi.org/10.1021/acs.nanolett.5b05066
- V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747
- H. Xu, X. Han, X. Dai, W. Liu, J. Wu et al., High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 30, 1706561 (2018). https://doi.org/10.1002/adma.201706561
- J. Chen, Q. Ma, X.J. Wu, L. Li, J. Liu et al., Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures. Nano-Micro Lett. 11, 86 (2019). https://doi.org/10.1007/s40820-019-0317-6
- Y. Zhang, T.R. Chang, B. Zhou, Y.T. Cui, H. Yan et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014). https://doi.org/10.1038/nnano.2013.277
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011). https://doi.org/10.1021/nl201874w
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). https://doi.org/10.1021/nl903868w
- Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017). https://doi.org/10.1126/science.aan6814
- X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014). https://doi.org/10.1038/nnano.2014.167
- Y. Chen, X. Wang, G. Wu, Z. Wang, H. Fang et al., High-performance photovoltaic detector based on MoTe2/MoS2 van der waals heterostructure. Small 14, 1703293 (2018). https://doi.org/10.1002/smll.201703293
- N. Huo, J. Kang, Z. Wei, S.S. Li, J. Li et al., Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025–7031 (2014). https://doi.org/10.1002/adfm.201401504
- M.Y. Li, Y. Shi, C.C. Cheng, L.S. Lu, Y.C. Lin et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015). https://doi.org/10.1126/science.aab4097
- X.X.W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin et al., CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenumdisulfid. Nanoscale 7, 13554–13560 (2015). https://doi.org/10.1039/c5nr02515j
- X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou et al., Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016). https://doi.org/10.1021/acs.nanolett.5b03662
- L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015). https://doi.org/10.1039/c5nr02652k
- Y. Gong, Z. Liu, A.R. Lupini, G. Shi, J. Lin et al., Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14, 442–449 (2014). https://doi.org/10.1021/nl4032296
- J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). https://doi.org/10.1063/1.4774090
- J. Kang, J. Li, S.S. Li, J.B. Xia, L.W. Wang, Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485–5490 (2013). https://doi.org/10.1021/nl4030648
- C. Feng, Y. Zhang, Y. Qian, B. Chang, F. Shi et al., Photoemission from advanced heterostructured AlxGa1−xAs/GaAs photocathodes under multilevel built-in electric field. Opt. Express 23, 19478 (2015). https://doi.org/10.1364/OE.23.019478
- K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim et al., Band-gap-graded Cu2 ZnSn(S1−x, Sex)4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 3, 3069 (2013). https://doi.org/10.1038/srep03069
- R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003). https://doi.org/10.1021/ja035000o
- R. Zhou, L. Wan, H. Niu, L. Yang, X. Mao et al., Tailoring band structure of ternary CdSx Se1−x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016). https://doi.org/10.1016/j.solmat.2016.04.049
- A. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin et al., Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009). https://doi.org/10.1021/n1803456k
- L. Li, H. Lu, Z. Yang, L. Tong, Y. Bando et al., Bandgap-graded CdSxSe1−x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 25, 1109–1113 (2013). https://doi.org/10.1002/adma.201204434
- X. Zhuang, C.Z. Ning, A. Pan, Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 24, 13–33 (2012). https://doi.org/10.1002/adma.201103191
- H. Li, Q. Zhang, X. Duan, X. Wu, X. Fan et al., Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015). https://doi.org/10.1021/jacs.5b01594
- S. Zheng, L. Sun, T. Yin, A.M. Dubrovkin, F. Liu et al., Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 106, 63113 (2015). https://doi.org/10.1063/1.4908256
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
- S. Steiner, S. Khmelevskyi, M. Marsmann, G. Kresse, Calculation of the magnetic anisotropy with projected-augmented-wavemethodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016). https://doi.org/10.1103/PhysRevB.93.224425
- J. Zhu, H. Xu, G. Zou, W. Zhang, R. Chai et al., MoS2 -OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 141, 5392–5401 (2019). https://doi.org/10.1021/jacs.9b00047
- G.W. Shim, K. Yoo, S.B. Seo, J. Shin, D.Y. Jung et al., Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano 8, 6655–6662 (2014). https://doi.org/10.1021/nn405685j
- X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar et al., Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8, 5125–5131 (2014). https://doi.org/10.1021/nn501175k
- H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin et al., From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
- C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone et al., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010). https://doi.org/10.1021/nn1003937
- R. Saito, Y. Tatsumi, S. Huang, X. Ling, M.S. Dresselhaus, Raman spectroscopy of transition metal dichalcogenides. J. Phys.: Condens. Matter 28, 353002 (2016). https://doi.org/10.1088/0953-8984/28/35/353002
- N.A. Lanzillo, A.G. Birdwell, M. Amani, F.J. Crowne, P.B. Shah et al., Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 103, 093102 (2013). https://doi.org/10.1063/1.4819337
- P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner et al., Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908 (2013). https://doi.org/10.1364/OE.21.004908
- Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213–2219 (2015). https://doi.org/10.1021/cs501970w
- M. O’Brien, N. McEvoy, D. Hanlon, T. Hallam, J.N. Coleman et al., Mapping of low-frequency raman modes in CVD-grown transition metal dichalcogenides: layer number, stacking orientation and resonant effects. Sci. Rep. 6, 19476 (2016). https://doi.org/10.1038/srep19476
- W. Hsu, L. Lu, D. Wang, J. Huang, M. Li et al., Evidence of indirect gap in monolayer WSe2. Nat. Commun. 13, 929 (2017). https://doi.org/10.1038/s41467-017-01012-6
- D. Jariwala, V.K. Sangwan, C.-C. Wu, P.L. Prabhumirashi, M.L. Geier et al., Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. 110, 18076–18080 (2013). https://doi.org/10.1073/pnas.1317226110
- H.C. Cheng, G. Wang, D. Li, Q. He, A. Yin et al., Van der waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016). https://doi.org/10.1021/acs.nanolett.5b03944
- Y. Yang, N. Huo, J. Li, Gate tunable photovoltaic effect in a MoSe2 homojunction enabled with different thicknesses. J. Mater. Chem. C 5, 7051–7056 (2017). https://doi.org/10.1039/c7tc01806a
- Y. Ma, Y. Gu, Y. Zhang, X. Chen, S. Xi et al., Carrier scattering and relaxation dynamics in n-type In0.83Ga0.17 As as a function of temperature and doping density. J. Mater. Chem. C 3, 2872–2880 (2015). https://doi.org/10.1039/c4tc02709d
- C. Xie, C. Mak, X. Tao, F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27, 1603886 (2017). https://doi.org/10.1002/adfm.201603886
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012). https://doi.org/10.1021/nn2024557
- W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G.B. Cha et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012). https://doi.org/10.1002/adma.201201909
- Y. Lee, J. Yang, D. Lee, Y.H. Kim, J.H. Park et al., Trap-induced photoresponse of solution-synthesized MoS2. Nanoscale 8, 9193–9200 (2016). https://doi.org/10.1039/c6nr00654j
- C. Jung, S.M. Kim, H. Moon, G. Han, J. Kwon et al., Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 5, 15313 (2015). https://doi.org/10.1038/srep15313
- Y.H. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu et al., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014). https://doi.org/10.1021/nn503287m
- H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, J. Zhang, High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300 (2014). https://doi.org/10.1002/smll.201303670
- J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis et al., Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798–5806 (2014). https://doi.org/10.1002/adfm.201400330
- L. Ye, H. Li, Z. Chen, J. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
- Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song et al., Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10, 573–580 (2016). https://doi.org/10.1021/acsnano.5b05596
References
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013). https://doi.org/10.1038/nnano.2013.100
B.W.H. Baugher, H.O.H. Churchill, Y. Yang, P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014). https://doi.org/10.1038/nnano.2014.25
Y. Ye, Z.J. Wong, X. Lu, X. Ni, H. Zhu et al., Monolayer excitonic laser. Nat. Photonics 9, 733–737 (2015). https://doi.org/10.1038/nphoton.2015.197
H.J. Chuang, B. Chamlagain, M. Koehler, M.M. Perera, J. Yan et al., Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016). https://doi.org/10.1021/acs.nanolett.5b05066
V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck et al., Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018). https://doi.org/10.1038/nature25747
H. Xu, X. Han, X. Dai, W. Liu, J. Wu et al., High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 30, 1706561 (2018). https://doi.org/10.1002/adma.201706561
J. Chen, Q. Ma, X.J. Wu, L. Li, J. Liu et al., Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures. Nano-Micro Lett. 11, 86 (2019). https://doi.org/10.1007/s40820-019-0317-6
Y. Zhang, T.R. Chang, B. Zhou, Y.T. Cui, H. Yan et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014). https://doi.org/10.1038/nnano.2013.277
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen et al., Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011). https://doi.org/10.1021/nl201874w
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim et al., Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010). https://doi.org/10.1021/nl903868w
Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017). https://doi.org/10.1126/science.aan6814
X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin et al., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014). https://doi.org/10.1038/nnano.2014.167
Y. Chen, X. Wang, G. Wu, Z. Wang, H. Fang et al., High-performance photovoltaic detector based on MoTe2/MoS2 van der waals heterostructure. Small 14, 1703293 (2018). https://doi.org/10.1002/smll.201703293
N. Huo, J. Kang, Z. Wei, S.S. Li, J. Li et al., Novel and enhanced optoelectronic performances of multilayer MoS2-WS2 heterostructure transistors. Adv. Funct. Mater. 24, 7025–7031 (2014). https://doi.org/10.1002/adfm.201401504
M.Y. Li, Y. Shi, C.C. Cheng, L.S. Lu, Y.C. Lin et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015). https://doi.org/10.1126/science.aab4097
X.X.W. Zhang, X. Li, T. Jiang, J. Song, Y. Lin et al., CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenumdisulfid. Nanoscale 7, 13554–13560 (2015). https://doi.org/10.1039/c5nr02515j
X. Duan, C. Wang, Z. Fan, G. Hao, L. Kou et al., Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016). https://doi.org/10.1021/acs.nanolett.5b03662
L. Yang, Q. Fu, W. Wang, J. Huang, J. Huang et al., Large-area synthesis of monolayered MoS2(1−x)Se2x with a tunable band gap and its enhanced electrochemical catalytic activity. Nanoscale 7, 10490–10497 (2015). https://doi.org/10.1039/c5nr02652k
Y. Gong, Z. Liu, A.R. Lupini, G. Shi, J. Lin et al., Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14, 442–449 (2014). https://doi.org/10.1021/nl4032296
J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013). https://doi.org/10.1063/1.4774090
J. Kang, J. Li, S.S. Li, J.B. Xia, L.W. Wang, Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 13, 5485–5490 (2013). https://doi.org/10.1021/nl4030648
C. Feng, Y. Zhang, Y. Qian, B. Chang, F. Shi et al., Photoemission from advanced heterostructured AlxGa1−xAs/GaAs photocathodes under multilevel built-in electric field. Opt. Express 23, 19478 (2015). https://doi.org/10.1364/OE.23.019478
K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim et al., Band-gap-graded Cu2 ZnSn(S1−x, Sex)4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 3, 3069 (2013). https://doi.org/10.1038/srep03069
R.E. Bailey, S. Nie, Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J. Am. Chem. Soc. 125, 7100–7106 (2003). https://doi.org/10.1021/ja035000o
R. Zhou, L. Wan, H. Niu, L. Yang, X. Mao et al., Tailoring band structure of ternary CdSx Se1−x quantum dots for highly efficient sensitized solar cells. Sol. Energy Mater. Sol. Cells 155, 20–29 (2016). https://doi.org/10.1016/j.solmat.2016.04.049
A. Pan, W. Zhou, E.S.P. Leong, R. Liu, A.H. Chin et al., Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9, 784–788 (2009). https://doi.org/10.1021/n1803456k
L. Li, H. Lu, Z. Yang, L. Tong, Y. Bando et al., Bandgap-graded CdSxSe1−x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 25, 1109–1113 (2013). https://doi.org/10.1002/adma.201204434
X. Zhuang, C.Z. Ning, A. Pan, Composition and bandgap-graded semiconductor alloy nanowires. Adv. Mater. 24, 13–33 (2012). https://doi.org/10.1002/adma.201103191
H. Li, Q. Zhang, X. Duan, X. Wu, X. Fan et al., Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015). https://doi.org/10.1021/jacs.5b01594
S. Zheng, L. Sun, T. Yin, A.M. Dubrovkin, F. Liu et al., Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 106, 63113 (2015). https://doi.org/10.1063/1.4908256
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006). https://doi.org/10.1002/jcc.20495
S. Steiner, S. Khmelevskyi, M. Marsmann, G. Kresse, Calculation of the magnetic anisotropy with projected-augmented-wavemethodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016). https://doi.org/10.1103/PhysRevB.93.224425
J. Zhu, H. Xu, G. Zou, W. Zhang, R. Chai et al., MoS2 -OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 141, 5392–5401 (2019). https://doi.org/10.1021/jacs.9b00047
G.W. Shim, K. Yoo, S.B. Seo, J. Shin, D.Y. Jung et al., Large-area single-layer MoSe2 and its van der Waals heterostructures. ACS Nano 8, 6655–6662 (2014). https://doi.org/10.1021/nn405685j
X. Wang, Y. Gong, G. Shi, W.L. Chow, K. Keyshar et al., Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 8, 5125–5131 (2014). https://doi.org/10.1021/nn501175k
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin et al., From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012). https://doi.org/10.1002/adfm.201102111
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone et al., Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010). https://doi.org/10.1021/nn1003937
R. Saito, Y. Tatsumi, S. Huang, X. Ling, M.S. Dresselhaus, Raman spectroscopy of transition metal dichalcogenides. J. Phys.: Condens. Matter 28, 353002 (2016). https://doi.org/10.1088/0953-8984/28/35/353002
N.A. Lanzillo, A.G. Birdwell, M. Amani, F.J. Crowne, P.B. Shah et al., Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 103, 093102 (2013). https://doi.org/10.1063/1.4819337
P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner et al., Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908 (2013). https://doi.org/10.1364/OE.21.004908
Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng et al., Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213–2219 (2015). https://doi.org/10.1021/cs501970w
M. O’Brien, N. McEvoy, D. Hanlon, T. Hallam, J.N. Coleman et al., Mapping of low-frequency raman modes in CVD-grown transition metal dichalcogenides: layer number, stacking orientation and resonant effects. Sci. Rep. 6, 19476 (2016). https://doi.org/10.1038/srep19476
W. Hsu, L. Lu, D. Wang, J. Huang, M. Li et al., Evidence of indirect gap in monolayer WSe2. Nat. Commun. 13, 929 (2017). https://doi.org/10.1038/s41467-017-01012-6
D. Jariwala, V.K. Sangwan, C.-C. Wu, P.L. Prabhumirashi, M.L. Geier et al., Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. Proc. Natl. Acad. Sci. 110, 18076–18080 (2013). https://doi.org/10.1073/pnas.1317226110
H.C. Cheng, G. Wang, D. Li, Q. He, A. Yin et al., Van der waals heterojunction devices based on organohalide perovskites and two-dimensional materials. Nano Lett. 16, 367–373 (2016). https://doi.org/10.1021/acs.nanolett.5b03944
Y. Yang, N. Huo, J. Li, Gate tunable photovoltaic effect in a MoSe2 homojunction enabled with different thicknesses. J. Mater. Chem. C 5, 7051–7056 (2017). https://doi.org/10.1039/c7tc01806a
Y. Ma, Y. Gu, Y. Zhang, X. Chen, S. Xi et al., Carrier scattering and relaxation dynamics in n-type In0.83Ga0.17 As as a function of temperature and doping density. J. Mater. Chem. C 3, 2872–2880 (2015). https://doi.org/10.1039/c4tc02709d
C. Xie, C. Mak, X. Tao, F. Yan, Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Funct. Mater. 27, 1603886 (2017). https://doi.org/10.1002/adfm.201603886
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi et al., Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012). https://doi.org/10.1021/nn2024557
W. Choi, M.Y. Cho, A. Konar, J.H. Lee, G.B. Cha et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012). https://doi.org/10.1002/adma.201201909
Y. Lee, J. Yang, D. Lee, Y.H. Kim, J.H. Park et al., Trap-induced photoresponse of solution-synthesized MoS2. Nanoscale 8, 9193–9200 (2016). https://doi.org/10.1039/c6nr00654j
C. Jung, S.M. Kim, H. Moon, G. Han, J. Kwon et al., Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 5, 15313 (2015). https://doi.org/10.1038/srep15313
Y.H. Chang, W. Zhang, Y. Zhu, Y. Han, J. Pu et al., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014). https://doi.org/10.1021/nn503287m
H. Xu, J. Wu, Q. Feng, N. Mao, C. Wang, J. Zhang, High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 10, 2300 (2014). https://doi.org/10.1002/smll.201303670
J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis et al., Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24, 5798–5806 (2014). https://doi.org/10.1002/adfm.201400330
L. Ye, H. Li, Z. Chen, J. Xu, Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 3, 692–699 (2016). https://doi.org/10.1021/acsphotonics.6b00079
Y. Xue, Y. Zhang, Y. Liu, H. Liu, J. Song et al., Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 10, 573–580 (2016). https://doi.org/10.1021/acsnano.5b05596