Beyond Antibiotics: Photo/Sonodynamic Approaches for Bacterial Theranostics
Corresponding Author: Gang Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 144
Abstract
Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics, but antimicrobial photodynamic therapy (aPDT) provides an excellent alternative. This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species (ROS), which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern. When replacing light with low-frequency ultrasonic wave to activate sensitizer, a novel ultrasound-driven treatment emerges as antimicrobial sonodynamic therapy (aSDT). Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections, especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers, and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization. In this review, we systemically outline the mechanisms, targets, and current progress of aPDT/SDT for bacterial theranostic application. Furthermore, potential limitations and future perspectives are also highlighted.
Highlights:
1 Recent advances in bacterial theranostics using antimicrobial photo/sonodynamic therapy (aPDT/SDT) are summarized in this review.
2 The inherent optical characteristics of photo/sonosensitizers facilely enable imaging diagnosis of bacterial infections.
3 Reactive oxygen species as the killing effector of aPDT/SDT cause broad-spectrum damage for sterilization with no concern about antibiotic resistance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.H. Jung, C.M. Ryu, J.S. Kim, Bacterial persistence: fundamentals and clinical importance. J. Microbiol. 57(10), 829–835 (2019). https://doi.org/10.1007/s12275-019-9218-0
- A.J. Trotter, A. Aydin, M.J. Strinden, J. O’Grady, Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. Curr. Opin. Microbiol. 51, 39–45 (2019). https://doi.org/10.1016/j.mib.2019.03.001
- J. Neill, Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance. (2016). http://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
- A.J. Loonen, P.F. Wolffs, C.A. Bruggeman, A.J. van den Brule, Developments for improved diagnosis of bacterial bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 33(10), 1687–1702 (2014). https://doi.org/10.1007/s10096-014-2153-4
- S.A.R. Naqvi, K. Drlica, Fluoroquinolones as imaging agents for bacterial infection. Dalton Trans. 46(42), 14452–14460 (2017). https://doi.org/10.1039/C7DT01189J
- J. Dutta, T. Naicker, T. Ebenhan, H.G. Kruger, P.I. Arvidsson et al., Synthetic approaches to radiochemical probes for imaging of bacterial infections. Eur. J. Med. Chem. 133, 287–308 (2017). https://doi.org/10.1016/j.ejmech.2017.03.060
- D.M. Livermore, W. John, Revolutionising bacteriology to improve treatment outcomes and antibiotic stewardship. Infect. Chemother. 45(1), 1–10 (2013). https://doi.org/10.3947/ic.2013.45.1.1
- J. Sun, B. Wang, A.R. Warden, D. Cui, X. Ding, Overcoming multidrug-resistance in bacteria with a two-step process to repurpose and recombine established drugs. Anal. Chem. 91(21), 13562–13569 (2019). https://doi.org/10.1021/acs.analchem.9b02690
- L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14(3), 2880–2893 (2020). https://doi.org/10.1021/acsnano.9b06731
- X. Zhi, Y. Liu, L. Lin, M. Yang, L. Zhang et al., Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine 20, 102019 (2019). https://doi.org/10.1016/j.nano.2019.102019
- C.L. Pan, M.H. Chen, F.I. Tung, T.Y. Liu, A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomater. 47, 159–169 (2017). https://doi.org/10.1016/j.actbio.2016.10.003
- D.A. Relman, Microbiota: a high-pressure situation for bacteria. Nature 551(7682), 571–572 (2017). https://doi.org/10.1038/nature24760
- H. Mahmoudi, A. Bahador, M. Pourhajibagher, M.Y. Alikhani, Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J. Lasers Med. Sci. 9(3), 154–160 (2018). https://doi.org/10.15171/jlms.2018.29
- F. Cieplik, D. Deng, W. Crielaard, W. Buchalla, E. Hellwig et al., Antimicrobial photodynamic therapy - what we know and what we don’t. Crit. Rev. Microbiol. 44(5), 571–589 (2018). https://doi.org/10.1080/1040841x.2018.1467876
- L. Serpe, F. Giuntini, Sonodynamic antimicrobial chemotherapy: first steps towards a sound approach for microbe inactivation. J. Photochem. Photobiol., B 150, 44–49 (2015). https://doi.org/10.1016/j.jphotobiol.2015.05.012
- A.T. Dharmaraja, Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60(8), 3221–3240 (2017). https://doi.org/10.1021/acs.jmedchem.6b01243
- MathSciNet
- T.P.M. Franco, A.P.P. Dos Santos, A. Canabarro, The effects of repeated applications of antimicrobial photodynamic therapy in the treatment of residual periodontal pockets: a systematic review. Lasers Med. Sci. 34(5), 855–863 (2019). https://doi.org/10.1007/s10103-018-02703-2
- C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang et al., Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12(2), 1747–1759 (2018). https://doi.org/10.1021/acsnano.7b08500
- X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren et al., Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv. Mater. 31(35), e1902530 (2019). https://doi.org/10.1002/adma.201902530
- E. Alves, M.A. Faustino, M.G. Neves, A. Cunha, J. Tome et al., An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 6(2), 141–164 (2014). https://doi.org/10.4155/fmc.13.211
- C.S. Foote, Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54(5), 659 (1991). https://doi.org/10.1111/j.1751-1097.1991.tb02071.x
- J. Wu, W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60(10), 1103–1116 (2008). https://doi.org/10.1016/j.addr.2008.03.009
- T.G. Leighton, M.J.W. Pickworth, A.J. Walton, P.P. Dendy, Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 1. Correlation of sonoluminescence with the standing wave pattern in an acoustic field produced by a therapeutic unit. Phys. Med. Biol. 33(11), 1239–1248 (1988). https://doi.org/10.1088/0031-9155/33/11/002
- X. Pan, H. Wang, S. Wang, X. Sun, L. Wang et al., Sonodynamic therapy(SDT): a novel strategy for cancer nanotheranostics. Sci. China. Life Sci. 61(4), 49–60 (2018). https://doi.org/10.1007/s11427-017-9262-x
- T.G. Leighton, What is ultrasound? Prog. Biophys. Mol. Biol. 93(1–3), 3–83 (2007). https://doi.org/10.1016/j.pbiomolbio.2006.07.026
- D. Bemporad, C. Luttmann, J.W. Essex, Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophys. J. 87(1), 1–13 (2004). https://doi.org/10.1529/biophysj.103.030601
- Y. Liu, R. Qin, S. Zaat, E. Breukink, M. Heger, Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Transl. Res. 1(3), 140–167 (2015). https://doi.org/10.18053/jctres.201503.002
- U. Chilakamarthi, L. Giribabu, Photodynamic therapy: past, present and future. Chem. Rec. 17(8), 775–802 (2017). https://doi.org/10.1002/tcr.201600121
- T.J. Silhavy, D. Kahne, S. Walker, The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2(5), a000414 (2010). https://doi.org/10.1101/cshperspect.a000414
- D.I. Pattison, A.S. Rahmanto, M.J. Davies, Photo-oxidation of proteins. Photochem. Photobiol. Sci. 11(1), 38–53 (2012). https://doi.org/10.1039/c1pp05164d
- G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti et al., Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg. Med. 38(5), 468–481 (2006). https://doi.org/10.1002/lsm.20361
- C. Chen, J. Wang, X. Li, X. Liu, X. Han, Recent advances in developing photosensitizers for photodynamic cancer therapy. Comb. Chem. High Throughput Screen 20(5), 414–422 (2017). https://doi.org/10.2174/1386207320666170113123132
- B.Z. Tang, Z. Zhao, H. Zhang, J.W.Y. Lam, Aggregation-induced emission: new vistas at aggregate level. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201916729
- L. Misba, S. Zaidi, A.U. Khan, A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm. Photodiagnosis Photodyn. Ther. 18, 24–33 (2017). https://doi.org/10.1016/j.pdpdt.2017.01.177
- I. García, S. Ballesta, Y. Gilaberte, A. Rezusta, Á. Pascual, Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 10(3), 347–356 (2015). https://doi.org/10.2217/fmb.14.114
- F. Halili, A. Arboleda, H. Durkee, M. Taneja, D. Miller et al., Rose bengal- and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates. Am. J. Ophthalmol. 166, 194–202 (2016). https://doi.org/10.1016/j.ajo.2016.03.014
- T. Maisch, Anti-microbial photodynamic therapy: useful in the future? Lasers Med. Sci. 22(2), 83–91 (2007). https://doi.org/10.1007/s10103-006-0409-7
- J. Ghorbani, D. Rahban, S. Aghamiri, A. Teymouri, A. Bahador, Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 27(4), 293–302 (2018). https://doi.org/10.5978/islsm.27_18-RA-01
- A. Gomes, M. Neves, J.A.S. Cavaleiro, Cancer, photodynamic therapy and porphyrin-type derivatives. An. Acad. Bras. Cienc. 90(1 Suppl 2), 993–1026 (2018). https://doi.org/10.1590/0001-3765201820170811
- E. Alves, L. Costa, C.M. Carvalho, J.O.P. Tomé, M.A. Faustino et al., Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationicmeso-substituted porphyrins. BMC Microbiol. 9(1), 70 (2009). https://doi.org/10.1186/1471-2180-9-70
- C.S. Prasanth, S.C. Karunakaran, A.K. Paul, V. Kussovski, V. Mantareva et al., Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal Gram-positive and Gram-negative pathogenic bacteria. Photochem. Photobiol. 90(3), 628–640 (2014). https://doi.org/10.1111/php.12198
- Z. Zhao, R. Yan, J. Wang, H. Wu, Y. Wang et al., A bacteria-activated photodynamic nanosystem based on polyelectrolyte-coated silica nanoparticles. J. Mater. Chem. B 5(19), 3572–3579 (2017). https://doi.org/10.1039/C7TB00199A
- Z.A.I. Mazrad, C.A. Choi, Y.M. Kwon, I. In, K.D. Lee et al., Design of surface-coatable NIR-responsive fluorescent nanoparticles with pei passivation for bacterial detection and killing. ACS Appl. Mater. Interfaces 9(38), 33317–33326 (2017). https://doi.org/10.1021/acsami.7b10688
- B. Mai, M. Jia, S. Liu, Z. Sheng, M. Li et al., Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl. Mater. Interfaces 12(9), 10156–10169 (2020). https://doi.org/10.1021/acsami.0c00298
- Z. Jiang, A.I. Vasil, J. Hale, R.E.W. Hancock, R.S. Hodges, Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90(3), 369–383 (2009). https://doi.org/10.1002/bip.20911
- H.R. Jia, Y.X. Zhu, Z. Chen, F.G. Wu, Cholesterol-assisted bacterial cell surface engineering for photodynamic inactivation of Gram-positive and Gram-negative bacteria. ACS Appl. Mater. Interfaces 9(19), 15943–15951 (2017). https://doi.org/10.1021/acsami.7b02562
- F. Liu, A. Soh Yan Ni, Y. Lim, H. Mohanram, S. Bhattacharjya et al., Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains. Bioconjug. Chem. 23(8), 1639–1647 (2012). https://doi.org/10.1021/bc300203d
- J. Zhou, G.-B. Qi, H. Wang, A purpurin-peptide derivative for selective killing of Gram-positive bacteria via insertion into cell membrane. J. Mater. Chem. B. 4(28), 4855–4861 (2016). https://doi.org/10.1039/C6TB00406G
- J. Tang, B. Chu, J. Wang, B. Song, Y. Su et al., Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat. Commun. 10(1), 4057 (2019). https://doi.org/10.1038/s41467-019-12088-7
- Maisch Tim, Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J. Photochem. Photobiol., B 150, 2–10 (2015). https://doi.org/10.1016/j.jphotobiol.2015.05.010
- N. Brasseur, R. Ouellet, C. La Madeleine, J.E. van Lier, Water-soluble aluminium phthalocyanine-polymer conjugates for PDT: photodynamic activities and pharmacokinetics in tumour-bearing mice. Br. J. Cancer 80(10), 1533–1541 (1999). https://doi.org/10.1038/sj.bjc.6690557
- M. Barthel, D. Dini, S. Vagin, M. Hanack, An easy route for the synthesis of new axially substituted titanium(IV) phthalocyanines. European J. Org. Chem. 22, 3756–3762 (2002). https://doi.org/10.1002/1099-0690(200211)2002:22%3c3756:AID-EJOC3756%3e3.0.CO;2-4
- V.C. Colussi, D.K. Feyes, J.W. Mulvihill, Y.S. Li, M.E. Kenney et al., Phthalocyanine 4 (Pc 4) photodynamic therapy of human OVCAR-3 tumor xenografts. Photochem. Photobiol. 69(2), 236–241 (1999). https://doi.org/10.1111/j.1751-1097.1999.tb03280.x
- M.C. Grüner, S. Niemann, A. Faust, C.A. Strassert, Axially decorated SiIV-phthalocyanines bearing mannose- or ammonium-conjugated siloxanes: comparative bacterial labeling and photodynamic inactivation. Photochem. Photobiol. 94(5), 890–899 (2018). https://doi.org/10.1111/php.12881
- C.G. Claessens, D. González-Rodríguez, T. Torres, Subphthalocyanines: singular nonplanar aromatic compounds-synthesis, reactivity, and physical properties. Chem. Rev. 102(3), 835–853 (2002). https://doi.org/10.1021/cr0101454
- R. Hota, K. Baek, G. Yun, Y. Kim, H. Jung et al., Self-assembled, covalently linked, hollow phthalocyanine nanospheres. Chem. Sci. 4, 339–344 (2013). https://doi.org/10.1039/C2SC21254D
- I. Roy, D. Shetty, R. Hota, K. Baek, J. Kim et al., A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria. Angew. Chem. Int. Ed. 54(50), 15152–15155 (2015). https://doi.org/10.1002/anie.201507140
- M. Wainwright, K.B. Crossley, Methylene blue - a therapeutic dye for all seasons? J. Chemother. 14(5), 431–443 (2012). https://doi.org/10.1179/joc.2002.14.5.431
- E.J. Prażmo, A. Mielczarek, M. Kwaśny, M. Łapiński, Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv. Clin. Exp. Med. 25(4), 799–807 (2016). https://doi.org/10.17219/acem/32488
- C.R. Fontana, A.D. Abernethy, S. Som, K. Ruggiero, N.S. Soukos, The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res. 44(6), 751–759 (2009). https://doi.org/10.1111/j.1600-0765.2008.01187.x
- X. Dai, Z. Fan, Y. Lu, P.C. Ray, Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl. Mater. Interfaces 5(21), 11348–11354 (2013). https://doi.org/10.1021/am403567k
- H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice et al., Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14(9), 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94
- L. Sun, W. Jiang, H. Zhang, Y. Guo, W. Chen et al., Photosensitizer-loaded multifunctional chitosan nanoparticles for simultaneous in situ imaging, highly efficient bacterial biofilm eradication, and tumor ablation. ACS Appl. Mater. Interfaces 11(2), 2302–2316 (2019). https://doi.org/10.1021/acsami.8b19522
- A. Gollmer, A. Felgenträger, W. Bäumler, T. Maisch, A. Späth, A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling – a structure–response study. Photochem. Photobiol. Sci. 14(2), 335–351 (2015). https://doi.org/10.1039/c4pp00309h
- A. Felgenträger, T. Maisch, D. Dobler, A. Späth, Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: photophysics and antimicrobial efficiency. Biomed. Res. Int. 2013, 482167 (2013). https://doi.org/10.1155/2013/482167
- N. Zhao, Y. Li, W. Yin, J. Zhuang, Q. Jia et al., Controllable coumarin-based NIR fluorophores: selective subcellular imaging, cell membrane potential indication, and enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 12(2), 2076–2086 (2020). https://doi.org/10.1021/acsami.9b18666
- X. Lu, R. Chen, J. Lv, W. Xu, H. Chen et al., High-resolution bimodal imaging and potent antibiotic/photodynamic synergistic therapy for osteomyelitis with a bacterial inflammation-specific versatile agent. Acta Biomater. 99, 363–372 (2019). https://doi.org/10.1016/j.actbio.2019.08.043
- Y. Yuan, B. Liu, Visualization of drug delivery processes using aiegens. Chem. Sci. 8(4), 2537–2546 (2017). https://doi.org/10.1039/c6sc05421h
- J. Zhuang, H. Yang, Y. Li, B. Wang, N. Li et al., Efficient photosensitizers with aggregation-induced emission characteristics for lysosome- and Gram-positive bacteria-targeted photodynamic therapy. Chem. Commun. 56, 2630–2633 (2020). https://doi.org/10.1039/D0CC00394H
- F. Hu, Y. Huang, G. Zhang, R. Zhao, H. Yang et al., Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe. Anal. Chem. 86(15), 7987–7995 (2014). https://doi.org/10.1021/ac502103t
- H. Chen, S. Li, M. Wu, Z. Huang et al., Membrane-anchoring photosensitizer with aggregation-induced emission characteristics for combating multidrug-resistant bacteria. Angew. Chem. Int. Ed. 59(2), 632–636 (2020). https://doi.org/10.1002/anie.201907343
- T. Zhou, R. Hu, L. Wang, Y. Qiu, G. Zhang et al., An AIE-active conjugated polymer with high ROS-generation ability and biocompatibility for efficient photodynamic therapy of bacterial infections. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201916704
- S. Gao, X. Yan, G. Xie, M. Zhu, X. Ju et al., Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proc. Natl. Acad. Sci. U. S. A. 116(47), 23437–23443 (2019). https://doi.org/10.1073/pnas.1911869116
- Q. Li, Y. Li, T. Min, J. Gong, L. Du et al., Time-dependent photodynamic therapy for multiple targets: a highly efficient AIE-active photosensitizer for selective bacterial elimination and cancer cell ablation. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201909706
- M. Kang, C. Zhou, S. Wu, B. Yu, Z. Zhang et al., Evaluation of structure-function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of Gram-positive bacteria. J. Am. Chem. Soc. 141(42), 16781–16789 (2019). https://doi.org/10.1021/jacs.9b07162
- M. Gao, Q. Hu, G. Feng, N. Tomczak, R. Liu et al., A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. Adv. Healthc. Mater. 4(5), 659–663 (2015). https://doi.org/10.1002/adhm.201400654
- G. Feng, Y. Yuan, H. Fang, R. Zhang, B. Xing et al., A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem. Commun. 51(62), 12490–12493 (2015). https://doi.org/10.1039/c5cc03807c
- X. He, Y. Yang, Y. Guo, S. Lu, Y. Du et al., Phage-guided targeting, discriminative imaging, and synergistic killing of bacteria by AIE bioconjugates. J. Am. Chem. Soc. 142(8), 3959–3969 (2020). https://doi.org/10.1021/jacs.9b12936
- M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn, Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect Microbiol. 6, 194 (2016). https://doi.org/10.3389/fcimb.2016.00194
- C. Saylor, E. Dadachova, A. Casadevall, Monoclonal antibody-based therapies for microbial diseases. Vaccine 27(Suppl 6), G38–G46 (2009). https://doi.org/10.1016/j.vaccine.2009.09.105
- D. Mao, F. Hu, S. Ji, W. Wu et al., Metal–organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 30(18), 1706831 (2018). https://doi.org/10.1002/adma.201706831
- H.D. Gresham, J.H. Lowrance, T.E. Caver, B.S. Wilson, A.L. Cheung et al., Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164(7), 3713–3722 (2000). https://doi.org/10.1016/j.ijmm.2017.11.009
- G.E. Thwaites, V. Gant, Are bloodstream leukocytes Trojan horses for the metastasis of Staphylococcus aureus? Nat. Rev. Microbiol. 9(3), 215–222 (2011). https://doi.org/10.1038/nrmicro2508
- F. Hu, G. Qi, D. Mao, S. Zhou et al., Visualization and in situ ablation of intracellular bacterial pathogens through metabolic labeling. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201910187
- G. Qi, F. Hu, L. Shi, M. Wu et al., An AIEgen-peptide conjugate as a phototheranostic agent for phagosome-entrapped bacteria. Angew. Chem. Int. Ed. 58(45), 16229–16235 (2019). https://doi.org/10.1002/anie.201906099
- H. Abrahamse, C.A. Kruger, S. Kadanyo, A. Mishra, Nanoparticles for advanced photodynamic therapy of cancer. Photomed. Laser Surg. 35(11), 581–588 (2017). https://doi.org/10.1089/pho.2017.4308
- S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015). https://doi.org/10.1021/cr5004198
- C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi et al., The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 34(15), 3882–3890 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.001
- J. Krajczewski, K. Rucińska, H.E. Townley, A. Kudelski, Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis Photodyn. Ther. 26, 162–178 (2019). https://doi.org/10.1016/j.pdpdt.2019.03.016
- S. Pleskova, E. Mikheeva, E. Gornostaeva, Using of quantum dots in biology and medicine. Adv. Exp. Med. Biol. 1048, 323–334 (2018). https://doi.org/10.1007/978-3-319-72041-8_19
- W.S. Kuo, Y.T. Shao, K.S. Huang, T.M. Chou, C.H. Yang, Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl. Mater. Interfaces 10(17), 14438–14446 (2018). https://doi.org/10.1021/acsami.8b01429
- M. Sun, A. Qu, C. Hao, X. Wu, L. Xu et al., Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv. Mater. 30(50), 1804241 (2018). https://doi.org/10.1002/adma.201804241
- H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90(6), 1847–1868 (2011). https://doi.org/10.1007/s00253-011-3213-7
- S. Mallidi, S. Anbil, A.L. Bulin, G. Obaid, M. Ichikawa et al., Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6(13), 2458–2487 (2016). https://doi.org/10.7150/thno.16183
- S. Son, J.H. Kim, X. Wang, C. Zhang, S.A. Yoon et al., Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. (2020). https://doi.org/10.1039/C9CS00648F
- D.A. Lammas, E. De Heer, J.D. Edgar, V. Novelli, A. Ben-Smith et al., Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathway. Int. J. Exp. Pathol. 83(1), 1–20 (2010). https://doi.org/10.1046/j.1365-2613.2002.00216.x
- D.F. de Almeida, M. Hungria, C.T. Guimarães, R.V. Antônio, F.C. Almeida et al., The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. U. S. A. 100(20), 11660–11665 (2003). https://doi.org/10.1073/pnas.1832124100
- I.K. Herrmann, How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections. Crit. Care 19(1), 239 (2015). https://doi.org/10.1186/s13054-015-0957-y
- X. Pang, Q. Xiao, Y. Cheng, E. Ren, L. Lian et al., Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano 13(2), 2427–2438 (2019). https://doi.org/10.1021/acsnano.8b09336
- B. Yang, Y. Chen, J. Shi, Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119(8), 4881–4985 (2019). https://doi.org/10.1021/acs.chemrev.8b00626
- K.C. Sadanala, P.K. Chaturvedi, Y.M. Seo, J.M. Kim, Y.S. Jo et al., Sono-photodynamic combination therapy: a review on sensitizers. Anticancer Res. 34(9), 4657–4664 (2014)
- W. Zongfang, L. Chengcheng, Z. Yiming, H. Min, M. Dandan et al., Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria. Chem. Eng. J. 356(15), 811–818 (2019). https://doi.org/10.1016/j.cej.2018.09.077
- R.H. Fang, B.T. Luk, C.M.J. Hu, L. Zhang, Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv. Drug Deliv. Rev. 90, 69–80 (2015). https://doi.org/10.1016/j.addr.2015.04.001
- K. Su, L. Tan, X. Liu, Z. Cui, Y. Zheng et al., Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 14(2), 2077–2089 (2020). https://doi.org/10.1021/acsnano.9b08686
- D.S. Benoit, H. Koo, Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine 11(8), 873–879 (2016). https://doi.org/10.2217/nnm-2016-0014
- G. Li, S. Wang, D. Deng, Z. Xiao, Z. Dong et al., Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano 14(2), 1586–1599 (2020). https://doi.org/10.1021/acsnano.9b06689
- B. Ding, P. Zheng, P. Ma, J. Lin, Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv. Mater. 32(10), e1905823 (2020). https://doi.org/10.1002/adma.201905823
- P. Zhu, Y. Chen, J. Shi, Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 12(4), 3780–3795 (2018). https://doi.org/10.1021/acsnano.8b00999
- D. Sun, X. Pang, Y. Cheng, J. Ming, S. Xiang et al., Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 14(2), 2063–2076 (2020). https://doi.org/10.1021/acsnano.9b08667
- S.H.E. Kaufmann, Dorhoi1 A, Hotchkiss RS, Bartenschlager R (2017) Host-directed therapies for bacterial and viral infections. Nat. Rev. 17(1), 35–56 (2017). https://doi.org/10.1038/nrd.2017.162
References
S.H. Jung, C.M. Ryu, J.S. Kim, Bacterial persistence: fundamentals and clinical importance. J. Microbiol. 57(10), 829–835 (2019). https://doi.org/10.1007/s12275-019-9218-0
A.J. Trotter, A. Aydin, M.J. Strinden, J. O’Grady, Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. Curr. Opin. Microbiol. 51, 39–45 (2019). https://doi.org/10.1016/j.mib.2019.03.001
J. Neill, Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance. (2016). http://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf
A.J. Loonen, P.F. Wolffs, C.A. Bruggeman, A.J. van den Brule, Developments for improved diagnosis of bacterial bloodstream infections. Eur. J. Clin. Microbiol. Infect. Dis. 33(10), 1687–1702 (2014). https://doi.org/10.1007/s10096-014-2153-4
S.A.R. Naqvi, K. Drlica, Fluoroquinolones as imaging agents for bacterial infection. Dalton Trans. 46(42), 14452–14460 (2017). https://doi.org/10.1039/C7DT01189J
J. Dutta, T. Naicker, T. Ebenhan, H.G. Kruger, P.I. Arvidsson et al., Synthetic approaches to radiochemical probes for imaging of bacterial infections. Eur. J. Med. Chem. 133, 287–308 (2017). https://doi.org/10.1016/j.ejmech.2017.03.060
D.M. Livermore, W. John, Revolutionising bacteriology to improve treatment outcomes and antibiotic stewardship. Infect. Chemother. 45(1), 1–10 (2013). https://doi.org/10.3947/ic.2013.45.1.1
J. Sun, B. Wang, A.R. Warden, D. Cui, X. Ding, Overcoming multidrug-resistance in bacteria with a two-step process to repurpose and recombine established drugs. Anal. Chem. 91(21), 13562–13569 (2019). https://doi.org/10.1021/acs.analchem.9b02690
L. Xie, X. Pang, X. Yan, Q. Dai, H. Lin et al., Photoacoustic imaging-trackable magnetic microswimmers for pathogenic bacterial infection treatment. ACS Nano 14(3), 2880–2893 (2020). https://doi.org/10.1021/acsnano.9b06731
X. Zhi, Y. Liu, L. Lin, M. Yang, L. Zhang et al., Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomedicine 20, 102019 (2019). https://doi.org/10.1016/j.nano.2019.102019
C.L. Pan, M.H. Chen, F.I. Tung, T.Y. Liu, A nanovehicle developed for treating deep-seated bacteria using low-dose X-ray. Acta Biomater. 47, 159–169 (2017). https://doi.org/10.1016/j.actbio.2016.10.003
D.A. Relman, Microbiota: a high-pressure situation for bacteria. Nature 551(7682), 571–572 (2017). https://doi.org/10.1038/nature24760
H. Mahmoudi, A. Bahador, M. Pourhajibagher, M.Y. Alikhani, Antimicrobial photodynamic therapy: an effective alternative approach to control bacterial infections. J. Lasers Med. Sci. 9(3), 154–160 (2018). https://doi.org/10.15171/jlms.2018.29
F. Cieplik, D. Deng, W. Crielaard, W. Buchalla, E. Hellwig et al., Antimicrobial photodynamic therapy - what we know and what we don’t. Crit. Rev. Microbiol. 44(5), 571–589 (2018). https://doi.org/10.1080/1040841x.2018.1467876
L. Serpe, F. Giuntini, Sonodynamic antimicrobial chemotherapy: first steps towards a sound approach for microbe inactivation. J. Photochem. Photobiol., B 150, 44–49 (2015). https://doi.org/10.1016/j.jphotobiol.2015.05.012
A.T. Dharmaraja, Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J. Med. Chem. 60(8), 3221–3240 (2017). https://doi.org/10.1021/acs.jmedchem.6b01243
MathSciNet
T.P.M. Franco, A.P.P. Dos Santos, A. Canabarro, The effects of repeated applications of antimicrobial photodynamic therapy in the treatment of residual periodontal pockets: a systematic review. Lasers Med. Sci. 34(5), 855–863 (2019). https://doi.org/10.1007/s10103-018-02703-2
C. Mao, Y. Xiang, X. Liu, Z. Cui, X. Yang et al., Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing. ACS Nano 12(2), 1747–1759 (2018). https://doi.org/10.1021/acsnano.7b08500
X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren et al., Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv. Mater. 31(35), e1902530 (2019). https://doi.org/10.1002/adma.201902530
E. Alves, M.A. Faustino, M.G. Neves, A. Cunha, J. Tome et al., An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 6(2), 141–164 (2014). https://doi.org/10.4155/fmc.13.211
C.S. Foote, Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 54(5), 659 (1991). https://doi.org/10.1111/j.1751-1097.1991.tb02071.x
J. Wu, W.L. Nyborg, Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev. 60(10), 1103–1116 (2008). https://doi.org/10.1016/j.addr.2008.03.009
T.G. Leighton, M.J.W. Pickworth, A.J. Walton, P.P. Dendy, Studies of the cavitational effects of clinical ultrasound by sonoluminescence: 1. Correlation of sonoluminescence with the standing wave pattern in an acoustic field produced by a therapeutic unit. Phys. Med. Biol. 33(11), 1239–1248 (1988). https://doi.org/10.1088/0031-9155/33/11/002
X. Pan, H. Wang, S. Wang, X. Sun, L. Wang et al., Sonodynamic therapy(SDT): a novel strategy for cancer nanotheranostics. Sci. China. Life Sci. 61(4), 49–60 (2018). https://doi.org/10.1007/s11427-017-9262-x
T.G. Leighton, What is ultrasound? Prog. Biophys. Mol. Biol. 93(1–3), 3–83 (2007). https://doi.org/10.1016/j.pbiomolbio.2006.07.026
D. Bemporad, C. Luttmann, J.W. Essex, Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophys. J. 87(1), 1–13 (2004). https://doi.org/10.1529/biophysj.103.030601
Y. Liu, R. Qin, S. Zaat, E. Breukink, M. Heger, Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J. Clin. Transl. Res. 1(3), 140–167 (2015). https://doi.org/10.18053/jctres.201503.002
U. Chilakamarthi, L. Giribabu, Photodynamic therapy: past, present and future. Chem. Rec. 17(8), 775–802 (2017). https://doi.org/10.1002/tcr.201600121
T.J. Silhavy, D. Kahne, S. Walker, The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2(5), a000414 (2010). https://doi.org/10.1101/cshperspect.a000414
D.I. Pattison, A.S. Rahmanto, M.J. Davies, Photo-oxidation of proteins. Photochem. Photobiol. Sci. 11(1), 38–53 (2012). https://doi.org/10.1039/c1pp05164d
G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti et al., Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg. Med. 38(5), 468–481 (2006). https://doi.org/10.1002/lsm.20361
C. Chen, J. Wang, X. Li, X. Liu, X. Han, Recent advances in developing photosensitizers for photodynamic cancer therapy. Comb. Chem. High Throughput Screen 20(5), 414–422 (2017). https://doi.org/10.2174/1386207320666170113123132
B.Z. Tang, Z. Zhao, H. Zhang, J.W.Y. Lam, Aggregation-induced emission: new vistas at aggregate level. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201916729
L. Misba, S. Zaidi, A.U. Khan, A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm. Photodiagnosis Photodyn. Ther. 18, 24–33 (2017). https://doi.org/10.1016/j.pdpdt.2017.01.177
I. García, S. Ballesta, Y. Gilaberte, A. Rezusta, Á. Pascual, Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 10(3), 347–356 (2015). https://doi.org/10.2217/fmb.14.114
F. Halili, A. Arboleda, H. Durkee, M. Taneja, D. Miller et al., Rose bengal- and riboflavin-mediated photodynamic therapy to inhibit methicillin-resistant Staphylococcus aureus keratitis isolates. Am. J. Ophthalmol. 166, 194–202 (2016). https://doi.org/10.1016/j.ajo.2016.03.014
T. Maisch, Anti-microbial photodynamic therapy: useful in the future? Lasers Med. Sci. 22(2), 83–91 (2007). https://doi.org/10.1007/s10103-006-0409-7
J. Ghorbani, D. Rahban, S. Aghamiri, A. Teymouri, A. Bahador, Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 27(4), 293–302 (2018). https://doi.org/10.5978/islsm.27_18-RA-01
A. Gomes, M. Neves, J.A.S. Cavaleiro, Cancer, photodynamic therapy and porphyrin-type derivatives. An. Acad. Bras. Cienc. 90(1 Suppl 2), 993–1026 (2018). https://doi.org/10.1590/0001-3765201820170811
E. Alves, L. Costa, C.M. Carvalho, J.O.P. Tomé, M.A. Faustino et al., Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationicmeso-substituted porphyrins. BMC Microbiol. 9(1), 70 (2009). https://doi.org/10.1186/1471-2180-9-70
C.S. Prasanth, S.C. Karunakaran, A.K. Paul, V. Kussovski, V. Mantareva et al., Antimicrobial photodynamic efficiency of novel cationic porphyrins towards periodontal Gram-positive and Gram-negative pathogenic bacteria. Photochem. Photobiol. 90(3), 628–640 (2014). https://doi.org/10.1111/php.12198
Z. Zhao, R. Yan, J. Wang, H. Wu, Y. Wang et al., A bacteria-activated photodynamic nanosystem based on polyelectrolyte-coated silica nanoparticles. J. Mater. Chem. B 5(19), 3572–3579 (2017). https://doi.org/10.1039/C7TB00199A
Z.A.I. Mazrad, C.A. Choi, Y.M. Kwon, I. In, K.D. Lee et al., Design of surface-coatable NIR-responsive fluorescent nanoparticles with pei passivation for bacterial detection and killing. ACS Appl. Mater. Interfaces 9(38), 33317–33326 (2017). https://doi.org/10.1021/acsami.7b10688
B. Mai, M. Jia, S. Liu, Z. Sheng, M. Li et al., Smart hydrogel-based DVDMS/bFGF nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl. Mater. Interfaces 12(9), 10156–10169 (2020). https://doi.org/10.1021/acsami.0c00298
Z. Jiang, A.I. Vasil, J. Hale, R.E.W. Hancock, R.S. Hodges, Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 90(3), 369–383 (2009). https://doi.org/10.1002/bip.20911
H.R. Jia, Y.X. Zhu, Z. Chen, F.G. Wu, Cholesterol-assisted bacterial cell surface engineering for photodynamic inactivation of Gram-positive and Gram-negative bacteria. ACS Appl. Mater. Interfaces 9(19), 15943–15951 (2017). https://doi.org/10.1021/acsami.7b02562
F. Liu, A. Soh Yan Ni, Y. Lim, H. Mohanram, S. Bhattacharjya et al., Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains. Bioconjug. Chem. 23(8), 1639–1647 (2012). https://doi.org/10.1021/bc300203d
J. Zhou, G.-B. Qi, H. Wang, A purpurin-peptide derivative for selective killing of Gram-positive bacteria via insertion into cell membrane. J. Mater. Chem. B. 4(28), 4855–4861 (2016). https://doi.org/10.1039/C6TB00406G
J. Tang, B. Chu, J. Wang, B. Song, Y. Su et al., Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat. Commun. 10(1), 4057 (2019). https://doi.org/10.1038/s41467-019-12088-7
Maisch Tim, Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J. Photochem. Photobiol., B 150, 2–10 (2015). https://doi.org/10.1016/j.jphotobiol.2015.05.010
N. Brasseur, R. Ouellet, C. La Madeleine, J.E. van Lier, Water-soluble aluminium phthalocyanine-polymer conjugates for PDT: photodynamic activities and pharmacokinetics in tumour-bearing mice. Br. J. Cancer 80(10), 1533–1541 (1999). https://doi.org/10.1038/sj.bjc.6690557
M. Barthel, D. Dini, S. Vagin, M. Hanack, An easy route for the synthesis of new axially substituted titanium(IV) phthalocyanines. European J. Org. Chem. 22, 3756–3762 (2002). https://doi.org/10.1002/1099-0690(200211)2002:22%3c3756:AID-EJOC3756%3e3.0.CO;2-4
V.C. Colussi, D.K. Feyes, J.W. Mulvihill, Y.S. Li, M.E. Kenney et al., Phthalocyanine 4 (Pc 4) photodynamic therapy of human OVCAR-3 tumor xenografts. Photochem. Photobiol. 69(2), 236–241 (1999). https://doi.org/10.1111/j.1751-1097.1999.tb03280.x
M.C. Grüner, S. Niemann, A. Faust, C.A. Strassert, Axially decorated SiIV-phthalocyanines bearing mannose- or ammonium-conjugated siloxanes: comparative bacterial labeling and photodynamic inactivation. Photochem. Photobiol. 94(5), 890–899 (2018). https://doi.org/10.1111/php.12881
C.G. Claessens, D. González-Rodríguez, T. Torres, Subphthalocyanines: singular nonplanar aromatic compounds-synthesis, reactivity, and physical properties. Chem. Rev. 102(3), 835–853 (2002). https://doi.org/10.1021/cr0101454
R. Hota, K. Baek, G. Yun, Y. Kim, H. Jung et al., Self-assembled, covalently linked, hollow phthalocyanine nanospheres. Chem. Sci. 4, 339–344 (2013). https://doi.org/10.1039/C2SC21254D
I. Roy, D. Shetty, R. Hota, K. Baek, J. Kim et al., A multifunctional subphthalocyanine nanosphere for targeting, labeling, and killing of antibiotic-resistant bacteria. Angew. Chem. Int. Ed. 54(50), 15152–15155 (2015). https://doi.org/10.1002/anie.201507140
M. Wainwright, K.B. Crossley, Methylene blue - a therapeutic dye for all seasons? J. Chemother. 14(5), 431–443 (2012). https://doi.org/10.1179/joc.2002.14.5.431
E.J. Prażmo, A. Mielczarek, M. Kwaśny, M. Łapiński, Photodynamic therapy as a promising method used in the treatment of oral diseases. Adv. Clin. Exp. Med. 25(4), 799–807 (2016). https://doi.org/10.17219/acem/32488
C.R. Fontana, A.D. Abernethy, S. Som, K. Ruggiero, N.S. Soukos, The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res. 44(6), 751–759 (2009). https://doi.org/10.1111/j.1600-0765.2008.01187.x
X. Dai, Z. Fan, Y. Lu, P.C. Ray, Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl. Mater. Interfaces 5(21), 11348–11354 (2013). https://doi.org/10.1021/am403567k
H.C. Flemming, J. Wingender, U. Szewzyk, P. Steinberg, S.A. Rice et al., Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14(9), 563–575 (2016). https://doi.org/10.1038/nrmicro.2016.94
L. Sun, W. Jiang, H. Zhang, Y. Guo, W. Chen et al., Photosensitizer-loaded multifunctional chitosan nanoparticles for simultaneous in situ imaging, highly efficient bacterial biofilm eradication, and tumor ablation. ACS Appl. Mater. Interfaces 11(2), 2302–2316 (2019). https://doi.org/10.1021/acsami.8b19522
A. Gollmer, A. Felgenträger, W. Bäumler, T. Maisch, A. Späth, A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling – a structure–response study. Photochem. Photobiol. Sci. 14(2), 335–351 (2015). https://doi.org/10.1039/c4pp00309h
A. Felgenträger, T. Maisch, D. Dobler, A. Späth, Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: photophysics and antimicrobial efficiency. Biomed. Res. Int. 2013, 482167 (2013). https://doi.org/10.1155/2013/482167
N. Zhao, Y. Li, W. Yin, J. Zhuang, Q. Jia et al., Controllable coumarin-based NIR fluorophores: selective subcellular imaging, cell membrane potential indication, and enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 12(2), 2076–2086 (2020). https://doi.org/10.1021/acsami.9b18666
X. Lu, R. Chen, J. Lv, W. Xu, H. Chen et al., High-resolution bimodal imaging and potent antibiotic/photodynamic synergistic therapy for osteomyelitis with a bacterial inflammation-specific versatile agent. Acta Biomater. 99, 363–372 (2019). https://doi.org/10.1016/j.actbio.2019.08.043
Y. Yuan, B. Liu, Visualization of drug delivery processes using aiegens. Chem. Sci. 8(4), 2537–2546 (2017). https://doi.org/10.1039/c6sc05421h
J. Zhuang, H. Yang, Y. Li, B. Wang, N. Li et al., Efficient photosensitizers with aggregation-induced emission characteristics for lysosome- and Gram-positive bacteria-targeted photodynamic therapy. Chem. Commun. 56, 2630–2633 (2020). https://doi.org/10.1039/D0CC00394H
F. Hu, Y. Huang, G. Zhang, R. Zhao, H. Yang et al., Targeted bioimaging and photodynamic therapy of cancer cells with an activatable red fluorescent bioprobe. Anal. Chem. 86(15), 7987–7995 (2014). https://doi.org/10.1021/ac502103t
H. Chen, S. Li, M. Wu, Z. Huang et al., Membrane-anchoring photosensitizer with aggregation-induced emission characteristics for combating multidrug-resistant bacteria. Angew. Chem. Int. Ed. 59(2), 632–636 (2020). https://doi.org/10.1002/anie.201907343
T. Zhou, R. Hu, L. Wang, Y. Qiu, G. Zhang et al., An AIE-active conjugated polymer with high ROS-generation ability and biocompatibility for efficient photodynamic therapy of bacterial infections. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.201916704
S. Gao, X. Yan, G. Xie, M. Zhu, X. Ju et al., Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Proc. Natl. Acad. Sci. U. S. A. 116(47), 23437–23443 (2019). https://doi.org/10.1073/pnas.1911869116
Q. Li, Y. Li, T. Min, J. Gong, L. Du et al., Time-dependent photodynamic therapy for multiple targets: a highly efficient AIE-active photosensitizer for selective bacterial elimination and cancer cell ablation. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201909706
M. Kang, C. Zhou, S. Wu, B. Yu, Z. Zhang et al., Evaluation of structure-function relationships of aggregation-induced emission luminogens for simultaneous dual applications of specific discrimination and efficient photodynamic killing of Gram-positive bacteria. J. Am. Chem. Soc. 141(42), 16781–16789 (2019). https://doi.org/10.1021/jacs.9b07162
M. Gao, Q. Hu, G. Feng, N. Tomczak, R. Liu et al., A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. Adv. Healthc. Mater. 4(5), 659–663 (2015). https://doi.org/10.1002/adhm.201400654
G. Feng, Y. Yuan, H. Fang, R. Zhang, B. Xing et al., A light-up probe with aggregation-induced emission characteristics (AIE) for selective imaging, naked-eye detection and photodynamic killing of Gram-positive bacteria. Chem. Commun. 51(62), 12490–12493 (2015). https://doi.org/10.1039/c5cc03807c
X. He, Y. Yang, Y. Guo, S. Lu, Y. Du et al., Phage-guided targeting, discriminative imaging, and synergistic killing of bacteria by AIE bioconjugates. J. Am. Chem. Soc. 142(8), 3959–3969 (2020). https://doi.org/10.1021/jacs.9b12936
M. Mahlapuu, J. Håkansson, L. Ringstad, C. Björn, Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect Microbiol. 6, 194 (2016). https://doi.org/10.3389/fcimb.2016.00194
C. Saylor, E. Dadachova, A. Casadevall, Monoclonal antibody-based therapies for microbial diseases. Vaccine 27(Suppl 6), G38–G46 (2009). https://doi.org/10.1016/j.vaccine.2009.09.105
D. Mao, F. Hu, S. Ji, W. Wu et al., Metal–organic-framework-assisted in vivo bacterial metabolic labeling and precise antibacterial therapy. Adv. Mater. 30(18), 1706831 (2018). https://doi.org/10.1002/adma.201706831
H.D. Gresham, J.H. Lowrance, T.E. Caver, B.S. Wilson, A.L. Cheung et al., Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164(7), 3713–3722 (2000). https://doi.org/10.1016/j.ijmm.2017.11.009
G.E. Thwaites, V. Gant, Are bloodstream leukocytes Trojan horses for the metastasis of Staphylococcus aureus? Nat. Rev. Microbiol. 9(3), 215–222 (2011). https://doi.org/10.1038/nrmicro2508
F. Hu, G. Qi, D. Mao, S. Zhou et al., Visualization and in situ ablation of intracellular bacterial pathogens through metabolic labeling. Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201910187
G. Qi, F. Hu, L. Shi, M. Wu et al., An AIEgen-peptide conjugate as a phototheranostic agent for phagosome-entrapped bacteria. Angew. Chem. Int. Ed. 58(45), 16229–16235 (2019). https://doi.org/10.1002/anie.201906099
H. Abrahamse, C.A. Kruger, S. Kadanyo, A. Mishra, Nanoparticles for advanced photodynamic therapy of cancer. Photomed. Laser Surg. 35(11), 581–588 (2017). https://doi.org/10.1089/pho.2017.4308
S.S. Lucky, K.C. Soo, Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 115(4), 1990–2042 (2015). https://doi.org/10.1021/cr5004198
C. Li, X. Wang, F. Chen, C. Zhang, X. Zhi et al., The antifungal activity of graphene oxide-silver nanocomposites. Biomaterials 34(15), 3882–3890 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.001
J. Krajczewski, K. Rucińska, H.E. Townley, A. Kudelski, Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen. Photodiagnosis Photodyn. Ther. 26, 162–178 (2019). https://doi.org/10.1016/j.pdpdt.2019.03.016
S. Pleskova, E. Mikheeva, E. Gornostaeva, Using of quantum dots in biology and medicine. Adv. Exp. Med. Biol. 1048, 323–334 (2018). https://doi.org/10.1007/978-3-319-72041-8_19
W.S. Kuo, Y.T. Shao, K.S. Huang, T.M. Chou, C.H. Yang, Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl. Mater. Interfaces 10(17), 14438–14446 (2018). https://doi.org/10.1021/acsami.8b01429
M. Sun, A. Qu, C. Hao, X. Wu, L. Xu et al., Chiral upconversion heterodimers for quantitative analysis and bioimaging of antibiotic-resistant bacteria in vivo. Adv. Mater. 30(50), 1804241 (2018). https://doi.org/10.1002/adma.201804241
H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90(6), 1847–1868 (2011). https://doi.org/10.1007/s00253-011-3213-7
S. Mallidi, S. Anbil, A.L. Bulin, G. Obaid, M. Ichikawa et al., Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6(13), 2458–2487 (2016). https://doi.org/10.7150/thno.16183
S. Son, J.H. Kim, X. Wang, C. Zhang, S.A. Yoon et al., Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. (2020). https://doi.org/10.1039/C9CS00648F
D.A. Lammas, E. De Heer, J.D. Edgar, V. Novelli, A. Ben-Smith et al., Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathway. Int. J. Exp. Pathol. 83(1), 1–20 (2010). https://doi.org/10.1046/j.1365-2613.2002.00216.x
D.F. de Almeida, M. Hungria, C.T. Guimarães, R.V. Antônio, F.C. Almeida et al., The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. U. S. A. 100(20), 11660–11665 (2003). https://doi.org/10.1073/pnas.1832124100
I.K. Herrmann, How nanotechnology-enabled concepts could contribute to the prevention, diagnosis and therapy of bacterial infections. Crit. Care 19(1), 239 (2015). https://doi.org/10.1186/s13054-015-0957-y
X. Pang, Q. Xiao, Y. Cheng, E. Ren, L. Lian et al., Bacteria-responsive nanoliposomes as smart sonotheranostics for multidrug resistant bacterial infections. ACS Nano 13(2), 2427–2438 (2019). https://doi.org/10.1021/acsnano.8b09336
B. Yang, Y. Chen, J. Shi, Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 119(8), 4881–4985 (2019). https://doi.org/10.1021/acs.chemrev.8b00626
K.C. Sadanala, P.K. Chaturvedi, Y.M. Seo, J.M. Kim, Y.S. Jo et al., Sono-photodynamic combination therapy: a review on sensitizers. Anticancer Res. 34(9), 4657–4664 (2014)
W. Zongfang, L. Chengcheng, Z. Yiming, H. Min, M. Dandan et al., Photomagnetic nanoparticles in dual-modality imaging and photo-sonodynamic activity against bacteria. Chem. Eng. J. 356(15), 811–818 (2019). https://doi.org/10.1016/j.cej.2018.09.077
R.H. Fang, B.T. Luk, C.M.J. Hu, L. Zhang, Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv. Drug Deliv. Rev. 90, 69–80 (2015). https://doi.org/10.1016/j.addr.2015.04.001
K. Su, L. Tan, X. Liu, Z. Cui, Y. Zheng et al., Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 14(2), 2077–2089 (2020). https://doi.org/10.1021/acsnano.9b08686
D.S. Benoit, H. Koo, Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine 11(8), 873–879 (2016). https://doi.org/10.2217/nnm-2016-0014
G. Li, S. Wang, D. Deng, Z. Xiao, Z. Dong et al., Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano 14(2), 1586–1599 (2020). https://doi.org/10.1021/acsnano.9b06689
B. Ding, P. Zheng, P. Ma, J. Lin, Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv. Mater. 32(10), e1905823 (2020). https://doi.org/10.1002/adma.201905823
P. Zhu, Y. Chen, J. Shi, Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 12(4), 3780–3795 (2018). https://doi.org/10.1021/acsnano.8b00999
D. Sun, X. Pang, Y. Cheng, J. Ming, S. Xiang et al., Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano 14(2), 2063–2076 (2020). https://doi.org/10.1021/acsnano.9b08667
S.H.E. Kaufmann, Dorhoi1 A, Hotchkiss RS, Bartenschlager R (2017) Host-directed therapies for bacterial and viral infections. Nat. Rev. 17(1), 35–56 (2017). https://doi.org/10.1038/nrd.2017.162