Nano-Medicine for Thrombosis: A Precise Diagnosis and Treatment Strategy
Corresponding Author: Gang Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 96
Abstract
Thrombosis is a global health issue and one of the leading factors of death. However, its diagnosis has been limited to the late stages, and its therapeutic window is too narrow to provide reasonable and effective treatment. In addition, clinical thrombolytics suffer from a short half-life, allergic reactions, inactivation, and unwanted tissue hemorrhage. Nano-medicines have gained extensive attention in diagnosis, drug delivery, and photo/sound/magnetic-theranostics due to their convertible properties. Furthermore, diagnosis and treatment of thrombosis using nano-medicines have also been widely studied. This review summarizes the recent advances in this area, which revealed six types of nanoparticle approaches: (1) in vitro diagnostic kits using “synthetic biomarkers”; (2) in vivo imaging using nano-contrast agents; (3) targeted drug delivery systems using artificial nanoparticles; (4) microenvironment responsive drug delivery systems; (5) drug delivery systems using biological nanostructures; and (6) treatments with external irradiation. The investigations of nano-medicines are believed to be of great significance, and some of the advanced drug delivery systems show potential applications in clinical theranotics.
Highlights:
1 Recent advances in diagnosis and treatment of thrombosis using nano-medicine are summarized in this review.
2 The diagnosis system based on biomarkers and imaging nanoprobes could enable the detection in early state of thrombosis.
3 The targeted drug delivery nanosystems serve as clinically translatable theranostics for thrombosis treatment with minor side effects.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.G. Dakin, Resolving deep vein thrombosis. Sci. Transl. Med. 11(504), eaay7696 (2019). https://doi.org/10.1126/scitranslmed.aay7696
- D.A. Gorog, Z.A. Fayad, V. Fuster, Arterial thrombus stability: does it matter and can we detect it? J. Am. Coll. Cardiol. 70(16), 2036–2047 (2017). https://doi.org/10.1016/j.jacc.2017.08.065
- R.S. Schwartz, A. Burke, A. Farb, D. Kaye, J.R. Lesser, T.D. Henry, R. Virmani, Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J. Am. Coll. Cardiol. 54(23), 2167–2173 (2009). https://doi.org/10.1016/j.jacc.2009.07.042
- G. Lippi, M. Franchini, G. Targher, Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 8(9), 502–512 (2011). https://doi.org/10.1038/nrcardio.2011.91
- A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry et al., Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3), 399–410 (2014). https://doi.org/10.1161/01.cir.0000442015.53336.12
- M. Lecouffe-Desprets, J. Graveleau, M. Artifoni, J. Connault, C. Agard, P. Pottier, M. Hamidou, A. Néel, Hemolytic disorders and venous thrombosis: an update. Rev. Med. Intern. 40(4), 232–237 (2019). https://doi.org/10.1016/j.revmed.2018.10.387
- J.R. Byrnes, A.S. Wolberg, Red blood cells in thrombosis. Blood 130(16), 1795–1799 (2017). https://doi.org/10.1182/blood-2017-03-745349
- O.N. Okafor, D.A. Gorog, Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J. Am. Coll. Cardiol. 65(16), 1683–1699 (2015). https://doi.org/10.1016/j.jacc.2015.02.040
- R.S. Parakh, D.E. Sabath, Venous thromboembolism: role of the clinical laboratory in diagnosis and management. J. Appl. Lab Med. 3(5), 870–882 (2019). https://doi.org/10.1373/jalm.2017.025734
- D.E. Kim, J.Y. Kim, M. Nahrendorf, S.K. Lee, J.H. Ryu, K. Kim, I.C. Kwon, D. Schellingerhout, Direct thrombus imaging as a means to control the variability of mouse embolic infarct models: the role of optical molecular imaging. Stroke 42(12), 3566–3573 (2011). https://doi.org/10.1161/strokeaha.111.629428
- A. Onishi, K. St Ange, J.S. Dordick, R.J. Linhardt, Heparin and anticoagulation. Front. Biosci. 21, 1372–1392 (2016). https://doi.org/10.2741/4462
- P. Jinatongthai, J. Kongwatcharapong, C.Y. Foo, A. Phrommintikul, S. Nathisuwan, A. Thakkinstian, C.M. Reid, N. Chaiyakunapruk, Comparative efficacy and safety of reperfusion therapy with fibrinolytic agents in patients with ST-segment elevation myocardial infarction: a systematic review and network meta-analysis. Lancet 390(10096), 747–759 (2017). https://doi.org/10.1016/S0140-6736(17)31441-1
- T. Huang, N. Li, J. Gao, Recent strategies on targeted delivery of thrombolytics. Asian J. Pharm. Sci. 14(3), 233–247 (2019). https://doi.org/10.1016/j.ajps.2018.12.004
- G. Chen, I. Roy, C. Yang, P.N. Prasad, Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116(5), 2826–2885 (2016). https://doi.org/10.1021/acs.chemrev.5b00148
- Y. Min, J.M. Caster, M.J. Eblan, A.Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015). https://doi.org/10.1021/acs.chemrev.5b00116
- Y. Li, Y. Wang, G. Huang, J. Gao, Cooperativity principles in self-assembled nanomedicine. Chem. Rev. 118(11), 5359–5391 (2018). https://doi.org/10.1021/acs.chemrev.8b00195
- C. Chu, M. Su, J. Zhu, D. Li, H. Cheng, X. Chen, G. Liu, Metal-organic framework nanoparticle-based biomineralization: a new strategy toward cancer treatment. Theranostics 9(11), 3134–3149 (2019). https://doi.org/10.7150/thno.33539
- C. Chu, M. Li, S. Ge, L. Ge, J. Yu et al., Sugarcoated haws on a stick-like MWNTs-Fe3O4-C coaxial nanomaterial: synthesis, characterization and application in electrochemiluminescence immunoassays. Biosens. Bioelectron. 47, 68–74 (2013). https://doi.org/10.1016/j.bios.2013.02.048
- N. Li, P. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53(7), 1756–1789 (2014). https://doi.org/10.1002/anie.201300441
- T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, Y. Xia, Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53(46), 12320–12364 (2014). https://doi.org/10.1002/anie.201403036
- S.R. D'Mello, C.N. Cruz, M.-L. Chen, M. Kapoor, S.L. Lee, K.M. Tyner, The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12(6), 523 (2017). https://doi.org/10.1038/nnano.2017.67
- H. Liu, C. Chu, Y. Liu, X. Pang, Y. Wu et al., Novel intrapolymerization doped manganese-eumelanin coordination nanocomposites with ultrahigh relaxivity and their application in tumor theranostics. Adv. Sci. 5(7), 1800032 (2018). https://doi.org/10.1002/advs.2018000322018
- X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren et al., Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv. Mater. 31(35), 1902530 (2019). https://doi.org/10.1002/adma.201902530
- Y. Zhang, L. Zhang, K.C. Gui, S. Ge, X. Cheng, M. Yan, J. Yu, H. Liu, Flexible electronics based on micro/nanostructured paper. Adv. Mater. 30(51), 1801588 (2018). https://doi.org/10.1002/adma.201801588
- C. Chu, S. Ge, J. Zhang, H. Lin, G. Liu, X. Chen, Enzyme-free colorimetric determination of EV71 virus using a 3D-MnO2-PEG nanoflower and 4-MBA-MA-cAgNPs. Nanoscale 8(36), 16168–16171 (2016). https://doi.org/10.1039/C6NR06005F
- K. Wu, C. Chu, C. Ma, H. Yang, M. Yan, S. Ge, J. Yu, X. Song, Immunoassay for carcinoembryonic antigen based on the Zn2+-enhanced fluorescence of magnetic-fluorescent nanocomposites. Sens. Actuator B Chem. 206, 43–49 (2015). https://doi.org/10.1016/j.snb.2014.09.041
- L.-H. Fu, C. Qi, J. Lin, P. Huang, Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 47(17), 6454–6472 (2018). https://doi.org/10.1039/C7CS00891K
- J. Lei, H. Ju, Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 41(6), 2122–2134 (2012). https://doi.org/10.1039/C1CS15274B
- W. Sendama, K.M. Musgrave, Decision-making with d-dimer in the diagnosis of pulmonary embolism. Am. J. Med. 131(12), 1438–1443 (2018). https://doi.org/10.1016/j.amjmed.2018.08.006
- C.N. Loynachan, A.P. Soleimany, J.S. Dudani, Y. Lin, A. Najer et al., Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14(9), 883–890 (2019). https://doi.org/10.1038/s41565-019-0527-6
- G.A. Kwong, G. von Maltzahn, G. Murugappan, O. Abudayyeh, S. Mo et al., Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31(1), 63 (2012). https://doi.org/10.1038/nbt.2464
- K.Y. Lin, G.A. Kwong, A.D. Warren, D.K. Wood, S.N. Bhatia, Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 7(10), 9001–9009 (2013). https://doi.org/10.1021/nn403550c
- A.D. Warren, G.A. Kwong, D.K. Wood, K.Y. Lin, S.N. Bhatia, Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad. Sci. 111(10), 3671 (2014). https://doi.org/10.1073/pnas.1314651111
- J.S. Dudani, C.G. Buss, R.T.K. Akana, G.A. Kwong, S.N. Bhatia, Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. Adv. Funct. Mater. 26(17), 2919–2928 (2016). https://doi.org/10.1002/adfm.201505142
- M.A. Nakatsuka, R.F. Mattrey, S.C. Esener, J.N. Cha, A.P. Goodwin, Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv. Mater. 24(45), 6010 (2012). https://doi.org/10.1002/adma.201201484
- T. Matsushige, K. Shimonaga, T. Mizoue, M. Hosogai, Y. Hashimoto et al., Focal aneurysm wall enhancement on magnetic resonance imaging indicates intraluminal thrombus and the rupture point. World Neurosurg. 127, e578–e584 (2019). https://doi.org/10.1016/j.wneu.2019.03.209
- K.L. Ciesienski, Y. Yang, I. Ay, D.B. Chonde, G.S. Loving, T.A. Rietz, C. Catana, P. Caravan, Fibrin-targeted PET probes for the detection of thrombi. Mol. Pharm. 10(3), 1100–1110 (2013). https://doi.org/10.1021/mp300610s
- J. Vymazal, E. Spuentrup, G. Cardenas-Molina, A.J. Wiethoff, M.G. Hartmann et al., Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Invest. Radiol. 44(11), 697–704 (2009). https://doi.org/10.1097/RLI.0b013e3181b092a7
- C.P. Stracke, M. Katoh, A.J. Wiethoff, E.C. Parsons, P. Spangenberg, E. Spuntrup, Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 38(5), 1476–1481 (2007). https://doi.org/10.1161/strokeaha.106.479998
- N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115(19), 10637–10689 (2015). https://doi.org/10.1021/acs.chemrev.5b00112
- G. Lin, Y. Zhang, C. Zhu, C. Chu, Y. Shi et al., Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials 176, 60–70 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.036
- L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112(11), 5818–5878 (2012). https://doi.org/10.1021/cr300068p
- M. Juenet, R. Aid-Launais, B. Li, A. Berger, J. Aerts et al., Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 156, 204–216 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.047
- M. Suzuki, L. Bachelet-Violette, F. Rouzet, A. Beilvert, G. Autret et al., Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine 10(1), 73–87 (2014). https://doi.org/10.2217/nnm.14.51
- J. Liao, X. Ren, B. Yang, H. Li, Y. Zhang, Z. Yin, Targeted thrombolysis by using c-RGD-modified N, N, N-Trimethyl Chitosan nanoparticles loaded with lumbrokinase. Drug Dev. Ind. Pharm. 45(1), 88–95 (2019). https://doi.org/10.1080/03639045.2018.1522324
- J. Liu, J. Xu, J. Zhou, Y. Zhang, D. Guo, Z. Wang et al., Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int. J. Nanomed. 12, 1113–1126 (2017). https://doi.org/10.2147/ijn.s123228
- Z. Jin, D. Chen, P. Zhao, Y. Wen, M. Fan, G. Zhou, Y. Wang, Q. He, Coordination-induced exfoliation to monolayer Bi-anchored MnB2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 10(4), 1861–1872 (2020). https://doi.org/10.7150/thno.39715
- J.R. Ashton, K.D. Castle, Y. Qi, D.G. Kirsch, J.L. West, C.T. Badea, Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics 8(7), 1782–1797 (2018). https://doi.org/10.7150/thno.22621
- X. Wang, B.A. Lane, J.F. Eberth, S.M. Lessner, N.R. Vyavahare, Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm. Theranostics 9(14), 4156–4167 (2019). https://doi.org/10.7150/thno.34441
- D.E. Kim, J.Y. Kim, I.C. Sun, D. Schellingerhout, S.K. Lee, C.H. Ahn, I.C. Kwon, K. Kim, Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles. Ann. Neurol. 73(5), 617–625 (2013). https://doi.org/10.1002/ana.23849
- J.Y. Kim, J.H. Ryu, D. Schellingerhout, I.C. Sun, S.K. Lee et al., Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5(10), 1098–1114 (2015). https://doi.org/10.7150/thno.11679
- C. Kim, C. Favazza, L.V. Wang, In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev. 110(5), 2756–2782 (2010). https://doi.org/10.1021/cr900266s
- C. Cui, Z. Yang, X. Hu, J. Wu, K. Shou et al., Organic semiconducting nanoparticles as efficient photoacoustic agents for lightening early thrombus and monitoring thrombolysis in living mice. ACS Nano 11(3), 3298–3310 (2017). https://doi.org/10.1021/acsnano.7b00594
- Y. Liu, Y. Pan, W. Cao, F. Xia, B. Liu et al., A tumor microenvironment responsive biodegradable CaCO3/MnO2- based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics 9(23), 6867–6884 (2019). https://doi.org/10.7150/thno.37586
- X. Shi, X. Ma, E. Ren, Y. Zhang, D. Jia et al., Tumor-microenvironment-activatable nanoreactor based on a polyprodrug for multimodal-imaging-medicated enhanced cancer chemo/phototherapy. ACS Appl. Mater. Interfaces 11(43), 40704–40715 (2019). https://doi.org/10.1021/acsami.9b16054
- P. Wang, W. Yang, S. Shen, C. Wu, L. Wen, Q. Cheng, B. Zhang, X. Wang, Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: a photomedicine strategy. ACS Nano 13(10), 11168–11180 (2019). https://doi.org/10.1021/acsnano.9b04070
- J. Lux, A.M. Vezeridis, K. Hoyt, S.R. Adams, A.M. Armstrong, S.R. Sirsi, R.F. Mattrey, Thrombin-activatable microbubbles as potential ultrasound contrast agents for the detection of acute thrombosis. ACS Appl. Mater. Interfaces 9(43), 37587–37596 (2017). https://doi.org/10.1021/acsami.7b10592
- S.P. Kwon, S. Jeon, S.H. Lee, H.Y. Yoon, J.H. Ryu et al., Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials 150, 125–136 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.017
- N. Zhang, C. Li, D. Zhou, C. Ding, Y. Jin et al., Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 70, 227–236 (2018). https://doi.org/10.1016/j.actbio.2018.01.038
- M.E. Klegerman, Y. Zou, D.D. McPherson, Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J. Liposome Res. 18(2), 95–112 (2008). https://doi.org/10.1080/08982100802118482
- S. Koudelka, R. Mikulik, J. Mašek, M. Raška, P. Turánek Knotigová, A.D. Miller, J. Turánek, Liposomal nanocarriers for plasminogen activators. J. Control. Release 227, 45–57 (2016). https://doi.org/10.1016/j.jconrel.2016.02.019
- B. Vaidya, M.K. Nayak, D. Dash, G.P. Agrawal, S.P. Vyas, Development and characterization of highly selective target-sensitive liposomes for the delivery of streptokinase: in vitro/in vivo studies. Drug Deliv. 23(3), 801–807 (2016). https://doi.org/10.3109/10717544.2014.916770
- H. Shekhar, K.B. Bader, S. Huang, T. Peng, S. Huang, D.D. McPherson, C.K. Holland, In vitro thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas. Phys. Med. Biol. 62(2), 517–538 (2017). https://doi.org/10.1088/1361-6560/62/2/517
- K.B. Bader, G. Bouchoux, T. Peng, M.E. Klegerman, D.D. McPherson, C.K. Holland, Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes. J. Thromb. Thrombolysis 40(2), 144–155 (2015). https://doi.org/10.1007/s11239-015-1204-8
- Y. Pan, X. Ren, S. Wang, X. Li, X. Luo, Z. Yin, Annexin v-conjugated mixed micelles as a potential drug delivery system for targeted thrombolysis. Biomacromol 18(3), 865–876 (2017). https://doi.org/10.1021/acs.biomac.6b01756
- Z.G. She, X. Liu, V.R. Kotamraju, E. Ruoslahti, Clot-targeted micellar formulation improves anticoagulation efficacy of bivalirudin. ACS Nano 8(10), 10139–10149 (2014). https://doi.org/10.1021/nn502947b
- M. Colasuonno, A.L. Palange, R. Aid, M. Ferreira, H. Mollica et al., Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano 12(12), 12224–12237 (2018). https://doi.org/10.1021/acsnano.8b06021
- J. Chen, Y. Lu, Y. Cheng, R. Ma, J. Zou et al., Novel strategy of gene delivery system based on dendrimer loaded recombinant hirudine plasmid for thrombus targeting therapy. Mol. Pharm. 16(4), 1648–1657 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b01325
- J. Zhou, D. Guo, Y. Zhang, W. Wu, H. Ran, Z. Wang, Construction and evaluation of Fe(3)O(4)-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Appl. Mater. Interfaces 6(8), 5566–5576 (2014). https://doi.org/10.1021/am406008k
- F. Wang, C. Chen, Y. Chen, P. Wang, C. Chen, D. Geng, L. Li, T. Song, Magnetically targeted photothemal cancer therapy in vivo with bacterial magnetic nanoparticles. Colloids Surf. B 172, 308–314 (2018). https://doi.org/10.1016/j.colsurfb.2018.08.051
- J.-P. Chen, P.-C. Yang, Y.-H. Ma, T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohyd. Polym. 84(1), 364–372 (2011). https://doi.org/10.1016/j.carbpol.2010.11.052
- T. Wu, Y. Dai, Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61–68 (2017). https://doi.org/10.1016/j.canlet.2016.01.043
- J.-N. Liu, W. Bu, J. Shi, Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 117(9), 6160–6224 (2017). https://doi.org/10.1021/acs.chemrev.6b00525
- C. Chu, H. Lin, H. Liu, X. Wang, J. Wang et al., Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Adv. Mater. 29(23), 1605928 (2017). https://doi.org/10.1002/adma.201605928
- P. Zhang, J. Wang, H. Chen, L. Zhao, B. Chen et al., Tumor microenvironment-responsive ultrasmall nanodrug generators with enhanced tumor delivery and penetration. J. Am. Chem. Soc. 140(44), 14980–14989 (2018). https://doi.org/10.1021/jacs.8b09396
- S.-Y. Li, H. Cheng, B.-R. Xie, W.-X. Qiu, J.-Y. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
- H. Cai, Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68(1), 26–36 (2005). https://doi.org/10.1016/j.cardiores.2005.06.021
- D. Vara, G. Pula, Reactive oxygen species: physiological roles in the regulation of vascular cells. Curr. Mol. Med. 14(9), 1103–1125 (2014). https://doi.org/10.2174/1566524014666140603114010
- C. Kang, S. Gwon, C. Song, P.M. Kang, S.-C. Park, J. Jeon, D.W. Hwang, D. Lee, Fibrin-targeted and H2O2-responsive nanoparticles as a theranostics for thrombosed vessels. ACS Nano 11(6), 6194–6203 (2017). https://doi.org/10.1021/acsnano.7b0230
- E. Jung, C. Kang, J. Lee, D. Yoo, D.W. Hwang et al., Molecularly engineered theranostic nanoparticles for thrombosed vessels: H2O2-activatable contrast-enhanced photoacoustic imaging and antithrombotic therapy. ACS Nano 12(1), 392–401 (2018). https://doi.org/10.1021/acsnano.7b06560
- B. Li, R. Chen, Y. Zhang, L. Zhao, H. Liang et al., RGD modified protein–polymer conjugates for pH-triggered targeted thrombolysis. ACS Appl. Bio Mater. 2(1), 437–446 (2019). https://doi.org/10.1021/acsabm.8b00644
- S.T. Gunawan, K. Kempe, T. Bonnard, J. Cui, K. Alt et al., Multifunctional thrombin-activatable polymer capsules for specific targeting to activated platelets. Adv. Mater. 27(35), 5153–5157 (2015). https://doi.org/10.1002/adma.201502243
- C. Li, H. Du, A. Yang, S. Jiang, Z. Li, D. Li, J.L. Brash, H. Chen, Thrombosis-responsive thrombolytic coating based on thrombin-degradable tissue plasminogen activator (t-PA) nanocapsules. Adv. Funct. Mater. 27(45), 1703934 (2017). https://doi.org/10.1002/adfm.201703934
- M. Rother, M.G. Nussbaumer, K. Renggli, N. Bruns, Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem. Soc. Rev. 45(22), 6213–6249 (2016). https://doi.org/10.1039/C6CS00177G
- H.-M. Meng, H. Liu, H. Kuai, R. Peng, L. Mo, X.-B. Zhang, Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 45(9), 2583–2602 (2016). https://doi.org/10.1039/C5CS00645G
- Y. Zhang, Y. Chen, C. Lo, J. Zhuang, P. Angsantikul et al., Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew. Chem. Int. Ed. 58(33), 11404–11408 (2019). https://doi.org/10.1002/anie.201906280
- F. Zhang, R. Mundaca-Uribe, H. Gong, B. Esteban-Fernández de Ávila, M. Beltrán-Gastélum et al., A macrophage–magnesium hybrid biomotor: fabrication and characterization. Adv. Mater. 31(27), 1901828 (2019). https://doi.org/10.1002/adma.201901828
- R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128, 69–83 (2017). https://doi.org/10.1016/j.biomaterials.2017.02.041
- P. Zhang, L. Zhang, Z. Qin, S. Hua, Z. Guo et al., Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater. 30(7), 1705350 (2018). https://doi.org/10.1002/adma.201705350
- L. Rao, G.-T. Yu, Q.-F. Meng, L.-L. Bu, R. Tian et al., Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv. Funct. Mater. 29(51), 1905671 (2019). https://doi.org/10.1002/adfm.201905671
- N. Doshi, J.N. Orje, B. Molins, J.W. Smith, S. Mitragotri, Z.M. Ruggeri, Platelet mimetic particles for targeting thrombi in flowing blood. Adv. Mater. 24(28), 3864–3869 (2012). https://doi.org/10.1002/adma.201200607
- C.E. Hansen, D.R. Myers, W.H. Baldwin, Y. Sakurai, S.L. Meeks, L.A. Lyon, W.A. Lam, Platelet-microcapsule hybrids leverage contractile force for targeted delivery of hemostatic agents. ACS Nano 11(6), 5579–5589 (2017). https://doi.org/10.1021/acsnano.7b00929
- C.L. Pawlowski, W. Li, M. Sun, K. Ravichandran, D. Hickman, C. Kos, G. Kaur, A. Sen Gupta, Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 128, 94–108 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.012
- Q. Hu, C. Qian, W. Sun, J. Wang, Z. Chen et al., Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 28(43), 9573–9580 (2016). https://doi.org/10.1002/adma.201603463
- J. Xu, X. Wang, H. Yin, X. Cao, Q. Hu et al., Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 13(8), 8577–8588 (2019). https://doi.org/10.1021/acsnano.9b01798
- T. Yang, X. Ding, L. Dong, C. Hong, J. Ye, Y. Xiao, X. Wang, H. Xin, Platelet-mimic uPA delivery nanovectors based on au rods for thrombus targeting and treatment. ACS Biomater. Sci. Eng. 4(12), 4219–4224 (2018). https://doi.org/10.1021/acsbiomaterials.8b00979
- F.F. An, X.H. Zhang, Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 7(15), 3667–3689 (2017). https://doi.org/10.7150/thno.19365
- B.D. Hill, A. Zak, E. Khera, F. Wen, Engineering virus-like particles for antigen and drug delivery. Curr. Protein Pept. Sci. 19(1), 112–127 (2018). https://doi.org/10.2174/1389203718666161122113041
- A.S. Pitek, Y. Wang, S. Gulati, H. Gao, P.L. Stewart, D.I. Simon, N.F. Steinmetz, Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Mol. Pharm. 14(11), 3815–3823 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00559
- C. Huang, C. Chu, X. Wang, H. Lin, J. Wang et al., Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 5(8), 1512–1516 (2017). https://doi.org/10.1039/C7BM00302A
- Z. Wang, H. Gao, Y. Zhang, G. Liu, G. Niu, X. Chen, Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11(4), 633–646 (2017). https://doi.org/10.1007/s11705-017-1620-8
- Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu et al., Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10(3), 3453–3460 (2016). https://doi.org/10.1021/acsnano.5b07521
- M. Liang, H. Tan, J. Zhou, T. Wang, D. Duan et al., Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 12(9), 9300–9308 (2018). https://doi.org/10.1021/acsnano.8b04158
- J. Seo, T.A. Al-Hilal, J.G. Jee, Y.L. Kim, H.J. Kim, B.H. Lee, S. Kim, I.S. Kim, A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots. Nanomedicine 14(3), 633–642 (2018). https://doi.org/10.1016/j.nano.2017.12.022
- X. Wang, Y. Gkanatsas, J. Palasubramaniam, J.D. Hohmann, Y.C. Chen, B. Lim, C.E. Hagemeyer, K. Peter, Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis. Theranostics 6(5), 726–738 (2016). https://doi.org/10.7150/thno.14514
- B. Li, R. Aid-Launais, M.-N. Labour, A. Zenych, M. Juenet et al., Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 194, 139–150 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.023
- J. Brussler, B. Strehlow, A. Becker, R. Schubert, J. Schummelfeder, C. Nimsky, U. Bakowsky, Nanoscaled ultrasound contrast agents for enhanced sonothrombolysis. Colloids Surf. B 172, 728–733 (2018). https://doi.org/10.1002/adma.201201484
- R. Flores, L.J. Hennings, J.D. Lowery, A.T. Brown, W.C. Culp, Microbubble-augmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest. Radiol. 46(7), 419–424 (2011). https://doi.org/10.1097/RLI.0b013e31820e143a
- S.-T. Ren, X.-N. Kang, Y.-R. Liao, W. Wang, H. Ai et al., The ultrasound contrast imaging properties of lipid microbubbles loaded with urokinase in dog livers and their thrombolytic effects when combined with low-frequency ultrasound in vitro. Thromb. Thrombolysis 37(3), 303–309 (2014). https://doi.org/10.1007/s11239-013-0950-8
- Y. Zhong, Y. Zhang, J. Xu, J. Zhou, J. Liu et al., Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy. ACS Nano 13(3), 3387–3403 (2019). https://doi.org/10.1021/acsnano.8b09277
- Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/C8CS00618K
- P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6(7), 948–968 (2016). https://doi.org/10.7150/thno.15217
- J. Li, J. Rao, K. Pu, Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217–235 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.025
- W. Miao, H. Kim, V. Gujrati, J.Y. Kim, H. Jon et al., Photo-decomposable organic nanoparticles for combined tumor optical imaging and multiple phototherapies. Theranostics 6(13), 2367–2379 (2016). https://doi.org/10.7150/thno.15829
- C. Liang, L. Xu, G. Song, Z. Liu, Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev. 45(22), 6250–6269 (2016). https://doi.org/10.1039/C6CS00458J
- L. Dong, X. Liu, T. Wang, B. Fang, J. Chen et al., Localized light-Au-hyperthermia treatment for precise, rapid, and drug-free blood clot lysis. ACS Appl. Mater. Interfaces 11(2), 1951–1956 (2019). https://doi.org/10.1021/acsami.8b20616
- F. Zhang, Y. Liu, J. Lei, S. Wang, X. Ji, H. Liu, Q. Yang, Metal-organic-framework-derived carbon nanostructures for site-specific dual-modality photothermal/photodynamic thrombus therapy. Adv. Sci. 6(17), 1901378 (2019). https://doi.org/10.1002/advs.201901378
- X. Wang, C. Wei, M. Liu, T. Yang, W. Zhou et al., Near-infrared triggered release of uPA from nanospheres for localized hyperthermia-enhanced thrombolysis. Adv. Funct. Mater. 27(40), 1701824 (2017). https://doi.org/10.1002/adfm.201701824
- J. Shao, M. Abdelghani, G. Shen, S. Cao, D.S. Williams, Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano 12(5), 4877–4885 (2018). https://doi.org/10.1021/acsnano.8b01772
- L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017). https://doi.org/10.1039/c7cs00516d
- H. Liu, Y. Yang, Y. Liu, J. Pan, J. Wang, F. Man, W. Zhang, G. Liu, Melanin-like nanomaterials for advanced biomedical applications: a versatile platform with extraordinary promise. Adv. Sci. (2020). https://doi.org/10.1002/advs.201903129
- G. Lin, Y. Zhang, L. Zhang, J. Wang, Y. Tian et al., Metal-organic frameworks nanoswitch: toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 13(1), 238–245 (2020). https://doi.org/10.1007/s12274-019-2606-2
- C. Chen, R. Tian, Y. Zeng, C. Chu, G. Liu, Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: from NIR-I to NIR-II. Bioconjugate Chem. 31(2), 276–292 (2020). https://doi.org/10.1021/acs.bioconjchem.9b00734
- R. Cheng, W. Huang, L. Huang, B. Yang, L. Mao, K. Jin, Q. ZhuGe, Y. Zhao, Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano 8(8), 7746–7754 (2014). https://doi.org/10.1021/nn5029955
- T.O. Tasci, D. Disharoon, R.M. Schoeman, K. Rana, P.S. Herson, D.W.M. Marr, K.B. Neeves, Enhanced fibrinolysis with magnetically powered colloidal microwheels. Small 13(36), 1700954 (2017). https://doi.org/10.1002/smll.201700954
- J. Hu, S. Huang, L. Zhu, W. Huang, Y. Zhao, K. Jin, Q. ZhuGe, Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl. Mater. Interfaces 10(39), 32988 (2018). https://doi.org/10.1021/acsami.8b09423
References
S.G. Dakin, Resolving deep vein thrombosis. Sci. Transl. Med. 11(504), eaay7696 (2019). https://doi.org/10.1126/scitranslmed.aay7696
D.A. Gorog, Z.A. Fayad, V. Fuster, Arterial thrombus stability: does it matter and can we detect it? J. Am. Coll. Cardiol. 70(16), 2036–2047 (2017). https://doi.org/10.1016/j.jacc.2017.08.065
R.S. Schwartz, A. Burke, A. Farb, D. Kaye, J.R. Lesser, T.D. Henry, R. Virmani, Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: relation to epicardial plaque histopathology. J. Am. Coll. Cardiol. 54(23), 2167–2173 (2009). https://doi.org/10.1016/j.jacc.2009.07.042
G. Lippi, M. Franchini, G. Targher, Arterial thrombus formation in cardiovascular disease. Nat. Rev. Cardiol. 8(9), 502–512 (2011). https://doi.org/10.1038/nrcardio.2011.91
A.S. Go, D. Mozaffarian, V.L. Roger, E.J. Benjamin, J.D. Berry et al., Executive summary: heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129(3), 399–410 (2014). https://doi.org/10.1161/01.cir.0000442015.53336.12
M. Lecouffe-Desprets, J. Graveleau, M. Artifoni, J. Connault, C. Agard, P. Pottier, M. Hamidou, A. Néel, Hemolytic disorders and venous thrombosis: an update. Rev. Med. Intern. 40(4), 232–237 (2019). https://doi.org/10.1016/j.revmed.2018.10.387
J.R. Byrnes, A.S. Wolberg, Red blood cells in thrombosis. Blood 130(16), 1795–1799 (2017). https://doi.org/10.1182/blood-2017-03-745349
O.N. Okafor, D.A. Gorog, Endogenous fibrinolysis: an important mediator of thrombus formation and cardiovascular risk. J. Am. Coll. Cardiol. 65(16), 1683–1699 (2015). https://doi.org/10.1016/j.jacc.2015.02.040
R.S. Parakh, D.E. Sabath, Venous thromboembolism: role of the clinical laboratory in diagnosis and management. J. Appl. Lab Med. 3(5), 870–882 (2019). https://doi.org/10.1373/jalm.2017.025734
D.E. Kim, J.Y. Kim, M. Nahrendorf, S.K. Lee, J.H. Ryu, K. Kim, I.C. Kwon, D. Schellingerhout, Direct thrombus imaging as a means to control the variability of mouse embolic infarct models: the role of optical molecular imaging. Stroke 42(12), 3566–3573 (2011). https://doi.org/10.1161/strokeaha.111.629428
A. Onishi, K. St Ange, J.S. Dordick, R.J. Linhardt, Heparin and anticoagulation. Front. Biosci. 21, 1372–1392 (2016). https://doi.org/10.2741/4462
P. Jinatongthai, J. Kongwatcharapong, C.Y. Foo, A. Phrommintikul, S. Nathisuwan, A. Thakkinstian, C.M. Reid, N. Chaiyakunapruk, Comparative efficacy and safety of reperfusion therapy with fibrinolytic agents in patients with ST-segment elevation myocardial infarction: a systematic review and network meta-analysis. Lancet 390(10096), 747–759 (2017). https://doi.org/10.1016/S0140-6736(17)31441-1
T. Huang, N. Li, J. Gao, Recent strategies on targeted delivery of thrombolytics. Asian J. Pharm. Sci. 14(3), 233–247 (2019). https://doi.org/10.1016/j.ajps.2018.12.004
G. Chen, I. Roy, C. Yang, P.N. Prasad, Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev. 116(5), 2826–2885 (2016). https://doi.org/10.1021/acs.chemrev.5b00148
Y. Min, J.M. Caster, M.J. Eblan, A.Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015). https://doi.org/10.1021/acs.chemrev.5b00116
Y. Li, Y. Wang, G. Huang, J. Gao, Cooperativity principles in self-assembled nanomedicine. Chem. Rev. 118(11), 5359–5391 (2018). https://doi.org/10.1021/acs.chemrev.8b00195
C. Chu, M. Su, J. Zhu, D. Li, H. Cheng, X. Chen, G. Liu, Metal-organic framework nanoparticle-based biomineralization: a new strategy toward cancer treatment. Theranostics 9(11), 3134–3149 (2019). https://doi.org/10.7150/thno.33539
C. Chu, M. Li, S. Ge, L. Ge, J. Yu et al., Sugarcoated haws on a stick-like MWNTs-Fe3O4-C coaxial nanomaterial: synthesis, characterization and application in electrochemiluminescence immunoassays. Biosens. Bioelectron. 47, 68–74 (2013). https://doi.org/10.1016/j.bios.2013.02.048
N. Li, P. Zhao, D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53(7), 1756–1789 (2014). https://doi.org/10.1002/anie.201300441
T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, Y. Xia, Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53(46), 12320–12364 (2014). https://doi.org/10.1002/anie.201403036
S.R. D'Mello, C.N. Cruz, M.-L. Chen, M. Kapoor, S.L. Lee, K.M. Tyner, The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12(6), 523 (2017). https://doi.org/10.1038/nnano.2017.67
H. Liu, C. Chu, Y. Liu, X. Pang, Y. Wu et al., Novel intrapolymerization doped manganese-eumelanin coordination nanocomposites with ultrahigh relaxivity and their application in tumor theranostics. Adv. Sci. 5(7), 1800032 (2018). https://doi.org/10.1002/advs.2018000322018
X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren et al., Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections. Adv. Mater. 31(35), 1902530 (2019). https://doi.org/10.1002/adma.201902530
Y. Zhang, L. Zhang, K.C. Gui, S. Ge, X. Cheng, M. Yan, J. Yu, H. Liu, Flexible electronics based on micro/nanostructured paper. Adv. Mater. 30(51), 1801588 (2018). https://doi.org/10.1002/adma.201801588
C. Chu, S. Ge, J. Zhang, H. Lin, G. Liu, X. Chen, Enzyme-free colorimetric determination of EV71 virus using a 3D-MnO2-PEG nanoflower and 4-MBA-MA-cAgNPs. Nanoscale 8(36), 16168–16171 (2016). https://doi.org/10.1039/C6NR06005F
K. Wu, C. Chu, C. Ma, H. Yang, M. Yan, S. Ge, J. Yu, X. Song, Immunoassay for carcinoembryonic antigen based on the Zn2+-enhanced fluorescence of magnetic-fluorescent nanocomposites. Sens. Actuator B Chem. 206, 43–49 (2015). https://doi.org/10.1016/j.snb.2014.09.041
L.-H. Fu, C. Qi, J. Lin, P. Huang, Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 47(17), 6454–6472 (2018). https://doi.org/10.1039/C7CS00891K
J. Lei, H. Ju, Signal amplification using functional nanomaterials for biosensing. Chem. Soc. Rev. 41(6), 2122–2134 (2012). https://doi.org/10.1039/C1CS15274B
W. Sendama, K.M. Musgrave, Decision-making with d-dimer in the diagnosis of pulmonary embolism. Am. J. Med. 131(12), 1438–1443 (2018). https://doi.org/10.1016/j.amjmed.2018.08.006
C.N. Loynachan, A.P. Soleimany, J.S. Dudani, Y. Lin, A. Najer et al., Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14(9), 883–890 (2019). https://doi.org/10.1038/s41565-019-0527-6
G.A. Kwong, G. von Maltzahn, G. Murugappan, O. Abudayyeh, S. Mo et al., Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31(1), 63 (2012). https://doi.org/10.1038/nbt.2464
K.Y. Lin, G.A. Kwong, A.D. Warren, D.K. Wood, S.N. Bhatia, Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano 7(10), 9001–9009 (2013). https://doi.org/10.1021/nn403550c
A.D. Warren, G.A. Kwong, D.K. Wood, K.Y. Lin, S.N. Bhatia, Point-of-care diagnostics for noncommunicable diseases using synthetic urinary biomarkers and paper microfluidics. Proc. Natl. Acad. Sci. 111(10), 3671 (2014). https://doi.org/10.1073/pnas.1314651111
J.S. Dudani, C.G. Buss, R.T.K. Akana, G.A. Kwong, S.N. Bhatia, Sustained-release synthetic biomarkers for monitoring thrombosis and inflammation using point-of-care compatible readouts. Adv. Funct. Mater. 26(17), 2919–2928 (2016). https://doi.org/10.1002/adfm.201505142
M.A. Nakatsuka, R.F. Mattrey, S.C. Esener, J.N. Cha, A.P. Goodwin, Aptamer-crosslinked microbubbles: smart contrast agents for thrombin-activated ultrasound imaging. Adv. Mater. 24(45), 6010 (2012). https://doi.org/10.1002/adma.201201484
T. Matsushige, K. Shimonaga, T. Mizoue, M. Hosogai, Y. Hashimoto et al., Focal aneurysm wall enhancement on magnetic resonance imaging indicates intraluminal thrombus and the rupture point. World Neurosurg. 127, e578–e584 (2019). https://doi.org/10.1016/j.wneu.2019.03.209
K.L. Ciesienski, Y. Yang, I. Ay, D.B. Chonde, G.S. Loving, T.A. Rietz, C. Catana, P. Caravan, Fibrin-targeted PET probes for the detection of thrombi. Mol. Pharm. 10(3), 1100–1110 (2013). https://doi.org/10.1021/mp300610s
J. Vymazal, E. Spuentrup, G. Cardenas-Molina, A.J. Wiethoff, M.G. Hartmann et al., Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Invest. Radiol. 44(11), 697–704 (2009). https://doi.org/10.1097/RLI.0b013e3181b092a7
C.P. Stracke, M. Katoh, A.J. Wiethoff, E.C. Parsons, P. Spangenberg, E. Spuntrup, Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 38(5), 1476–1481 (2007). https://doi.org/10.1161/strokeaha.106.479998
N. Lee, D. Yoo, D. Ling, M.H. Cho, T. Hyeon, J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem. Rev. 115(19), 10637–10689 (2015). https://doi.org/10.1021/acs.chemrev.5b00112
G. Lin, Y. Zhang, C. Zhu, C. Chu, Y. Shi et al., Photo-excitable hybrid nanocomposites for image-guided photo/TRAIL synergistic cancer therapy. Biomaterials 176, 60–70 (2018). https://doi.org/10.1016/j.biomaterials.2018.05.036
L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112(11), 5818–5878 (2012). https://doi.org/10.1021/cr300068p
M. Juenet, R. Aid-Launais, B. Li, A. Berger, J. Aerts et al., Thrombolytic therapy based on fucoidan-functionalized polymer nanoparticles targeting P-selectin. Biomaterials 156, 204–216 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.047
M. Suzuki, L. Bachelet-Violette, F. Rouzet, A. Beilvert, G. Autret et al., Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine 10(1), 73–87 (2014). https://doi.org/10.2217/nnm.14.51
J. Liao, X. Ren, B. Yang, H. Li, Y. Zhang, Z. Yin, Targeted thrombolysis by using c-RGD-modified N, N, N-Trimethyl Chitosan nanoparticles loaded with lumbrokinase. Drug Dev. Ind. Pharm. 45(1), 88–95 (2019). https://doi.org/10.1080/03639045.2018.1522324
J. Liu, J. Xu, J. Zhou, Y. Zhang, D. Guo, Z. Wang et al., Fe3O4-based PLGA nanoparticles as MR contrast agents for the detection of thrombosis. Int. J. Nanomed. 12, 1113–1126 (2017). https://doi.org/10.2147/ijn.s123228
Z. Jin, D. Chen, P. Zhao, Y. Wen, M. Fan, G. Zhou, Y. Wang, Q. He, Coordination-induced exfoliation to monolayer Bi-anchored MnB2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 10(4), 1861–1872 (2020). https://doi.org/10.7150/thno.39715
J.R. Ashton, K.D. Castle, Y. Qi, D.G. Kirsch, J.L. West, C.T. Badea, Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics 8(7), 1782–1797 (2018). https://doi.org/10.7150/thno.22621
X. Wang, B.A. Lane, J.F. Eberth, S.M. Lessner, N.R. Vyavahare, Gold nanoparticles that target degraded elastin improve imaging and rupture prediction in an AngII mediated mouse model of abdominal aortic aneurysm. Theranostics 9(14), 4156–4167 (2019). https://doi.org/10.7150/thno.34441
D.E. Kim, J.Y. Kim, I.C. Sun, D. Schellingerhout, S.K. Lee, C.H. Ahn, I.C. Kwon, K. Kim, Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles. Ann. Neurol. 73(5), 617–625 (2013). https://doi.org/10.1002/ana.23849
J.Y. Kim, J.H. Ryu, D. Schellingerhout, I.C. Sun, S.K. Lee et al., Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics 5(10), 1098–1114 (2015). https://doi.org/10.7150/thno.11679
C. Kim, C. Favazza, L.V. Wang, In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem. Rev. 110(5), 2756–2782 (2010). https://doi.org/10.1021/cr900266s
C. Cui, Z. Yang, X. Hu, J. Wu, K. Shou et al., Organic semiconducting nanoparticles as efficient photoacoustic agents for lightening early thrombus and monitoring thrombolysis in living mice. ACS Nano 11(3), 3298–3310 (2017). https://doi.org/10.1021/acsnano.7b00594
Y. Liu, Y. Pan, W. Cao, F. Xia, B. Liu et al., A tumor microenvironment responsive biodegradable CaCO3/MnO2- based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics 9(23), 6867–6884 (2019). https://doi.org/10.7150/thno.37586
X. Shi, X. Ma, E. Ren, Y. Zhang, D. Jia et al., Tumor-microenvironment-activatable nanoreactor based on a polyprodrug for multimodal-imaging-medicated enhanced cancer chemo/phototherapy. ACS Appl. Mater. Interfaces 11(43), 40704–40715 (2019). https://doi.org/10.1021/acsami.9b16054
P. Wang, W. Yang, S. Shen, C. Wu, L. Wen, Q. Cheng, B. Zhang, X. Wang, Differential diagnosis and precision therapy of two typical malignant cutaneous tumors leveraging their tumor microenvironment: a photomedicine strategy. ACS Nano 13(10), 11168–11180 (2019). https://doi.org/10.1021/acsnano.9b04070
J. Lux, A.M. Vezeridis, K. Hoyt, S.R. Adams, A.M. Armstrong, S.R. Sirsi, R.F. Mattrey, Thrombin-activatable microbubbles as potential ultrasound contrast agents for the detection of acute thrombosis. ACS Appl. Mater. Interfaces 9(43), 37587–37596 (2017). https://doi.org/10.1021/acsami.7b10592
S.P. Kwon, S. Jeon, S.H. Lee, H.Y. Yoon, J.H. Ryu et al., Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials 150, 125–136 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.017
N. Zhang, C. Li, D. Zhou, C. Ding, Y. Jin et al., Cyclic RGD functionalized liposomes encapsulating urokinase for thrombolysis. Acta Biomater. 70, 227–236 (2018). https://doi.org/10.1016/j.actbio.2018.01.038
M.E. Klegerman, Y. Zou, D.D. McPherson, Fibrin targeting of echogenic liposomes with inactivated tissue plasminogen activator. J. Liposome Res. 18(2), 95–112 (2008). https://doi.org/10.1080/08982100802118482
S. Koudelka, R. Mikulik, J. Mašek, M. Raška, P. Turánek Knotigová, A.D. Miller, J. Turánek, Liposomal nanocarriers for plasminogen activators. J. Control. Release 227, 45–57 (2016). https://doi.org/10.1016/j.jconrel.2016.02.019
B. Vaidya, M.K. Nayak, D. Dash, G.P. Agrawal, S.P. Vyas, Development and characterization of highly selective target-sensitive liposomes for the delivery of streptokinase: in vitro/in vivo studies. Drug Deliv. 23(3), 801–807 (2016). https://doi.org/10.3109/10717544.2014.916770
H. Shekhar, K.B. Bader, S. Huang, T. Peng, S. Huang, D.D. McPherson, C.K. Holland, In vitro thrombolytic efficacy of echogenic liposomes loaded with tissue plasminogen activator and octafluoropropane gas. Phys. Med. Biol. 62(2), 517–538 (2017). https://doi.org/10.1088/1361-6560/62/2/517
K.B. Bader, G. Bouchoux, T. Peng, M.E. Klegerman, D.D. McPherson, C.K. Holland, Thrombolytic efficacy and enzymatic activity of rt-PA-loaded echogenic liposomes. J. Thromb. Thrombolysis 40(2), 144–155 (2015). https://doi.org/10.1007/s11239-015-1204-8
Y. Pan, X. Ren, S. Wang, X. Li, X. Luo, Z. Yin, Annexin v-conjugated mixed micelles as a potential drug delivery system for targeted thrombolysis. Biomacromol 18(3), 865–876 (2017). https://doi.org/10.1021/acs.biomac.6b01756
Z.G. She, X. Liu, V.R. Kotamraju, E. Ruoslahti, Clot-targeted micellar formulation improves anticoagulation efficacy of bivalirudin. ACS Nano 8(10), 10139–10149 (2014). https://doi.org/10.1021/nn502947b
M. Colasuonno, A.L. Palange, R. Aid, M. Ferreira, H. Mollica et al., Erythrocyte-inspired discoidal polymeric nanoconstructs carrying tissue plasminogen activator for the enhanced lysis of blood clots. ACS Nano 12(12), 12224–12237 (2018). https://doi.org/10.1021/acsnano.8b06021
J. Chen, Y. Lu, Y. Cheng, R. Ma, J. Zou et al., Novel strategy of gene delivery system based on dendrimer loaded recombinant hirudine plasmid for thrombus targeting therapy. Mol. Pharm. 16(4), 1648–1657 (2019). https://doi.org/10.1021/acs.molpharmaceut.8b01325
J. Zhou, D. Guo, Y. Zhang, W. Wu, H. Ran, Z. Wang, Construction and evaluation of Fe(3)O(4)-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Appl. Mater. Interfaces 6(8), 5566–5576 (2014). https://doi.org/10.1021/am406008k
F. Wang, C. Chen, Y. Chen, P. Wang, C. Chen, D. Geng, L. Li, T. Song, Magnetically targeted photothemal cancer therapy in vivo with bacterial magnetic nanoparticles. Colloids Surf. B 172, 308–314 (2018). https://doi.org/10.1016/j.colsurfb.2018.08.051
J.-P. Chen, P.-C. Yang, Y.-H. Ma, T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohyd. Polym. 84(1), 364–372 (2011). https://doi.org/10.1016/j.carbpol.2010.11.052
T. Wu, Y. Dai, Tumor microenvironment and therapeutic response. Cancer Lett. 387, 61–68 (2017). https://doi.org/10.1016/j.canlet.2016.01.043
J.-N. Liu, W. Bu, J. Shi, Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 117(9), 6160–6224 (2017). https://doi.org/10.1021/acs.chemrev.6b00525
C. Chu, H. Lin, H. Liu, X. Wang, J. Wang et al., Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy. Adv. Mater. 29(23), 1605928 (2017). https://doi.org/10.1002/adma.201605928
P. Zhang, J. Wang, H. Chen, L. Zhao, B. Chen et al., Tumor microenvironment-responsive ultrasmall nanodrug generators with enhanced tumor delivery and penetration. J. Am. Chem. Soc. 140(44), 14980–14989 (2018). https://doi.org/10.1021/jacs.8b09396
S.-Y. Li, H. Cheng, B.-R. Xie, W.-X. Qiu, J.-Y. Zeng et al., Cancer cell membrane camouflaged cascade bioreactor for cancer targeted starvation and photodynamic therapy. ACS Nano 11(7), 7006–7018 (2017). https://doi.org/10.1021/acsnano.7b02533
H. Cai, Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc. Res. 68(1), 26–36 (2005). https://doi.org/10.1016/j.cardiores.2005.06.021
D. Vara, G. Pula, Reactive oxygen species: physiological roles in the regulation of vascular cells. Curr. Mol. Med. 14(9), 1103–1125 (2014). https://doi.org/10.2174/1566524014666140603114010
C. Kang, S. Gwon, C. Song, P.M. Kang, S.-C. Park, J. Jeon, D.W. Hwang, D. Lee, Fibrin-targeted and H2O2-responsive nanoparticles as a theranostics for thrombosed vessels. ACS Nano 11(6), 6194–6203 (2017). https://doi.org/10.1021/acsnano.7b0230
E. Jung, C. Kang, J. Lee, D. Yoo, D.W. Hwang et al., Molecularly engineered theranostic nanoparticles for thrombosed vessels: H2O2-activatable contrast-enhanced photoacoustic imaging and antithrombotic therapy. ACS Nano 12(1), 392–401 (2018). https://doi.org/10.1021/acsnano.7b06560
B. Li, R. Chen, Y. Zhang, L. Zhao, H. Liang et al., RGD modified protein–polymer conjugates for pH-triggered targeted thrombolysis. ACS Appl. Bio Mater. 2(1), 437–446 (2019). https://doi.org/10.1021/acsabm.8b00644
S.T. Gunawan, K. Kempe, T. Bonnard, J. Cui, K. Alt et al., Multifunctional thrombin-activatable polymer capsules for specific targeting to activated platelets. Adv. Mater. 27(35), 5153–5157 (2015). https://doi.org/10.1002/adma.201502243
C. Li, H. Du, A. Yang, S. Jiang, Z. Li, D. Li, J.L. Brash, H. Chen, Thrombosis-responsive thrombolytic coating based on thrombin-degradable tissue plasminogen activator (t-PA) nanocapsules. Adv. Funct. Mater. 27(45), 1703934 (2017). https://doi.org/10.1002/adfm.201703934
M. Rother, M.G. Nussbaumer, K. Renggli, N. Bruns, Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem. Soc. Rev. 45(22), 6213–6249 (2016). https://doi.org/10.1039/C6CS00177G
H.-M. Meng, H. Liu, H. Kuai, R. Peng, L. Mo, X.-B. Zhang, Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem. Soc. Rev. 45(9), 2583–2602 (2016). https://doi.org/10.1039/C5CS00645G
Y. Zhang, Y. Chen, C. Lo, J. Zhuang, P. Angsantikul et al., Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles. Angew. Chem. Int. Ed. 58(33), 11404–11408 (2019). https://doi.org/10.1002/anie.201906280
F. Zhang, R. Mundaca-Uribe, H. Gong, B. Esteban-Fernández de Ávila, M. Beltrán-Gastélum et al., A macrophage–magnesium hybrid biomotor: fabrication and characterization. Adv. Mater. 31(27), 1901828 (2019). https://doi.org/10.1002/adma.201901828
R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128, 69–83 (2017). https://doi.org/10.1016/j.biomaterials.2017.02.041
P. Zhang, L. Zhang, Z. Qin, S. Hua, Z. Guo et al., Genetically engineered liposome-like nanovesicles as active targeted transport platform. Adv. Mater. 30(7), 1705350 (2018). https://doi.org/10.1002/adma.201705350
L. Rao, G.-T. Yu, Q.-F. Meng, L.-L. Bu, R. Tian et al., Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv. Funct. Mater. 29(51), 1905671 (2019). https://doi.org/10.1002/adfm.201905671
N. Doshi, J.N. Orje, B. Molins, J.W. Smith, S. Mitragotri, Z.M. Ruggeri, Platelet mimetic particles for targeting thrombi in flowing blood. Adv. Mater. 24(28), 3864–3869 (2012). https://doi.org/10.1002/adma.201200607
C.E. Hansen, D.R. Myers, W.H. Baldwin, Y. Sakurai, S.L. Meeks, L.A. Lyon, W.A. Lam, Platelet-microcapsule hybrids leverage contractile force for targeted delivery of hemostatic agents. ACS Nano 11(6), 5579–5589 (2017). https://doi.org/10.1021/acsnano.7b00929
C.L. Pawlowski, W. Li, M. Sun, K. Ravichandran, D. Hickman, C. Kos, G. Kaur, A. Sen Gupta, Platelet microparticle-inspired clot-responsive nanomedicine for targeted fibrinolysis. Biomaterials 128, 94–108 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.012
Q. Hu, C. Qian, W. Sun, J. Wang, Z. Chen et al., Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv. Mater. 28(43), 9573–9580 (2016). https://doi.org/10.1002/adma.201603463
J. Xu, X. Wang, H. Yin, X. Cao, Q. Hu et al., Sequentially site-specific delivery of thrombolytics and neuroprotectant for enhanced treatment of ischemic stroke. ACS Nano 13(8), 8577–8588 (2019). https://doi.org/10.1021/acsnano.9b01798
T. Yang, X. Ding, L. Dong, C. Hong, J. Ye, Y. Xiao, X. Wang, H. Xin, Platelet-mimic uPA delivery nanovectors based on au rods for thrombus targeting and treatment. ACS Biomater. Sci. Eng. 4(12), 4219–4224 (2018). https://doi.org/10.1021/acsbiomaterials.8b00979
F.F. An, X.H. Zhang, Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 7(15), 3667–3689 (2017). https://doi.org/10.7150/thno.19365
B.D. Hill, A. Zak, E. Khera, F. Wen, Engineering virus-like particles for antigen and drug delivery. Curr. Protein Pept. Sci. 19(1), 112–127 (2018). https://doi.org/10.2174/1389203718666161122113041
A.S. Pitek, Y. Wang, S. Gulati, H. Gao, P.L. Stewart, D.I. Simon, N.F. Steinmetz, Elongated plant virus-based nanoparticles for enhanced delivery of thrombolytic therapies. Mol. Pharm. 14(11), 3815–3823 (2017). https://doi.org/10.1021/acs.molpharmaceut.7b00559
C. Huang, C. Chu, X. Wang, H. Lin, J. Wang et al., Ultra-high loading of sinoporphyrin sodium in ferritin for single-wave motivated photothermal and photodynamic co-therapy. Biomater. Sci. 5(8), 1512–1516 (2017). https://doi.org/10.1039/C7BM00302A
Z. Wang, H. Gao, Y. Zhang, G. Liu, G. Niu, X. Chen, Functional ferritin nanoparticles for biomedical applications. Front. Chem. Sci. Eng. 11(4), 633–646 (2017). https://doi.org/10.1007/s11705-017-1620-8
Z. Wang, P. Huang, O. Jacobson, Z. Wang, Y. Liu et al., Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10(3), 3453–3460 (2016). https://doi.org/10.1021/acsnano.5b07521
M. Liang, H. Tan, J. Zhou, T. Wang, D. Duan et al., Bioengineered H-ferritin nanocages for quantitative imaging of vulnerable plaques in atherosclerosis. ACS Nano 12(9), 9300–9308 (2018). https://doi.org/10.1021/acsnano.8b04158
J. Seo, T.A. Al-Hilal, J.G. Jee, Y.L. Kim, H.J. Kim, B.H. Lee, S. Kim, I.S. Kim, A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots. Nanomedicine 14(3), 633–642 (2018). https://doi.org/10.1016/j.nano.2017.12.022
X. Wang, Y. Gkanatsas, J. Palasubramaniam, J.D. Hohmann, Y.C. Chen, B. Lim, C.E. Hagemeyer, K. Peter, Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis. Theranostics 6(5), 726–738 (2016). https://doi.org/10.7150/thno.14514
B. Li, R. Aid-Launais, M.-N. Labour, A. Zenych, M. Juenet et al., Functionalized polymer microbubbles as new molecular ultrasound contrast agent to target P-selectin in thrombus. Biomaterials 194, 139–150 (2019). https://doi.org/10.1016/j.biomaterials.2018.12.023
J. Brussler, B. Strehlow, A. Becker, R. Schubert, J. Schummelfeder, C. Nimsky, U. Bakowsky, Nanoscaled ultrasound contrast agents for enhanced sonothrombolysis. Colloids Surf. B 172, 728–733 (2018). https://doi.org/10.1002/adma.201201484
R. Flores, L.J. Hennings, J.D. Lowery, A.T. Brown, W.C. Culp, Microbubble-augmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest. Radiol. 46(7), 419–424 (2011). https://doi.org/10.1097/RLI.0b013e31820e143a
S.-T. Ren, X.-N. Kang, Y.-R. Liao, W. Wang, H. Ai et al., The ultrasound contrast imaging properties of lipid microbubbles loaded with urokinase in dog livers and their thrombolytic effects when combined with low-frequency ultrasound in vitro. Thromb. Thrombolysis 37(3), 303–309 (2014). https://doi.org/10.1007/s11239-013-0950-8
Y. Zhong, Y. Zhang, J. Xu, J. Zhou, J. Liu et al., Low-intensity focused ultrasound-responsive phase-transitional nanoparticles for thrombolysis without vascular damage: a synergistic nonpharmaceutical strategy. ACS Nano 13(3), 3387–3403 (2019). https://doi.org/10.1021/acsnano.8b09277
Y. Liu, P. Bhattarai, Z. Dai, X. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/C8CS00618K
P. Zhang, C. Hu, W. Ran, J. Meng, Q. Yin, Y. Li, Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6(7), 948–968 (2016). https://doi.org/10.7150/thno.15217
J. Li, J. Rao, K. Pu, Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 155, 217–235 (2018). https://doi.org/10.1016/j.biomaterials.2017.11.025
W. Miao, H. Kim, V. Gujrati, J.Y. Kim, H. Jon et al., Photo-decomposable organic nanoparticles for combined tumor optical imaging and multiple phototherapies. Theranostics 6(13), 2367–2379 (2016). https://doi.org/10.7150/thno.15829
C. Liang, L. Xu, G. Song, Z. Liu, Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem. Soc. Rev. 45(22), 6250–6269 (2016). https://doi.org/10.1039/C6CS00458J
L. Dong, X. Liu, T. Wang, B. Fang, J. Chen et al., Localized light-Au-hyperthermia treatment for precise, rapid, and drug-free blood clot lysis. ACS Appl. Mater. Interfaces 11(2), 1951–1956 (2019). https://doi.org/10.1021/acsami.8b20616
F. Zhang, Y. Liu, J. Lei, S. Wang, X. Ji, H. Liu, Q. Yang, Metal-organic-framework-derived carbon nanostructures for site-specific dual-modality photothermal/photodynamic thrombus therapy. Adv. Sci. 6(17), 1901378 (2019). https://doi.org/10.1002/advs.201901378
X. Wang, C. Wei, M. Liu, T. Yang, W. Zhou et al., Near-infrared triggered release of uPA from nanospheres for localized hyperthermia-enhanced thrombolysis. Adv. Funct. Mater. 27(40), 1701824 (2017). https://doi.org/10.1002/adfm.201701824
J. Shao, M. Abdelghani, G. Shen, S. Cao, D.S. Williams, Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano 12(5), 4877–4885 (2018). https://doi.org/10.1021/acsnano.8b01772
L. Xu, F. Mou, H. Gong, M. Luo, J. Guan, Light-driven micro/nanomotors: from fundamentals to applications. Chem. Soc. Rev. 46(22), 6905–6926 (2017). https://doi.org/10.1039/c7cs00516d
H. Liu, Y. Yang, Y. Liu, J. Pan, J. Wang, F. Man, W. Zhang, G. Liu, Melanin-like nanomaterials for advanced biomedical applications: a versatile platform with extraordinary promise. Adv. Sci. (2020). https://doi.org/10.1002/advs.201903129
G. Lin, Y. Zhang, L. Zhang, J. Wang, Y. Tian et al., Metal-organic frameworks nanoswitch: toward photo-controllable endo/lysosomal rupture and release for enhanced cancer RNA interference. Nano Res. 13(1), 238–245 (2020). https://doi.org/10.1007/s12274-019-2606-2
C. Chen, R. Tian, Y. Zeng, C. Chu, G. Liu, Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging: from NIR-I to NIR-II. Bioconjugate Chem. 31(2), 276–292 (2020). https://doi.org/10.1021/acs.bioconjchem.9b00734
R. Cheng, W. Huang, L. Huang, B. Yang, L. Mao, K. Jin, Q. ZhuGe, Y. Zhao, Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano 8(8), 7746–7754 (2014). https://doi.org/10.1021/nn5029955
T.O. Tasci, D. Disharoon, R.M. Schoeman, K. Rana, P.S. Herson, D.W.M. Marr, K.B. Neeves, Enhanced fibrinolysis with magnetically powered colloidal microwheels. Small 13(36), 1700954 (2017). https://doi.org/10.1002/smll.201700954
J. Hu, S. Huang, L. Zhu, W. Huang, Y. Zhao, K. Jin, Q. ZhuGe, Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl. Mater. Interfaces 10(39), 32988 (2018). https://doi.org/10.1021/acsami.8b09423