Connecting Calcium-Based Nanomaterials and Cancer: From Diagnosis to Therapy
Corresponding Author: Gang Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 145
Abstract
As the indispensable second cellular messenger, calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins. The importance of calcium ions (Ca2+) makes its “Janus nature” strictly regulated by its concentration. Abnormal regulation of calcium signals may cause some diseases; however, artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role. “Calcium overload,” for example, is characterized by excessive enrichment of intracellular Ca2+, which irreversibly switches calcium signaling from “positive regulation” to “reverse destruction,” leading to cell death. However, this undesirable death could be defined as “calcicoptosis” to offer a novel approach for cancer treatment. Indeed, Ca2+ is involved in various cancer diagnostic and therapeutic events, including calcium overload-induced calcium homeostasis disorder, calcium channels dysregulation, mitochondrial dysfunction, calcium-associated immunoregulation, cell/vascular/tumor calcification, and calcification-mediated CT imaging. In parallel, the development of multifunctional calcium-based nanomaterials (e.g., calcium phosphate, calcium carbonate, calcium peroxide, and hydroxyapatite) is becoming abundantly available. This review will highlight the latest insights of the calcium-based nanomaterials, explain their application, and provide novel perspective. Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.
Highlights:
1 Recent progress of the calcium-based nanomaterials-mediated cancer diagnosis and therapy were summarized.
2 Main challenges and clinical translation prospects of calcium-based nanomaterials were discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Zhu, C.B. Thompson, Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Bio. 20(7), 436–450 (2019). https://doi.org/10.1038/s41580-019-0123-5
- L. Liu, W. Michowski, A. Kolodziejczyk, P. Sicinski, The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 21(9), 1060–1067 (2019). https://doi.org/10.1038/s41556-019-0384-4
- H. Li, B.K. Wu, M. Kanchwala, J. Cai, L. Wang et al., YAP/TAZ drives cell proliferation and tumour growth via a polyamine-eIF5A hypusination-LSD1 axis. Nat. Cell Biol. 24(3), 373–383 (2022). https://doi.org/10.1038/s41556-022-00848-5
- T.P. Fidler, C. Xue, M. Yalcinkaya, B. Hardaway, S. Abramowicz et al., The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592(7853), 296–301 (2021). https://doi.org/10.1038/s41586-021-03341-5
- X. Chen, D.B. Burkhardt, A.A. Hartman, X. Hu, A.E. Eastman et al., MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat. Commun. 10, 5767 (2019). https://doi.org/10.1038/s41467-019-13666-5
- H.L. Roderick, S.J. Cook, Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8(5), 361–375 (2008). https://doi.org/10.1038/nrc2374
- U. Harjes, A source of calcium. Nat. Rev. Cancer 19(1), 3 (2019). https://doi.org/10.1038/s41568-018-0089-1
- R. Bagur, G. Hajnoczky, Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66(6), 780–788 (2017). https://doi.org/10.1016/j.molcel.2017.05.028
- H. Liu, P. Yi, W. Zhao, Y. Wu, F. Acher et al., Illuminating the allosteric modulation of the calcium-sensing receptor. PNAS 117(35), 21711–21722 (2020). https://doi.org/10.1073/pnas.1922231117
- G.R. Monteith, N. Prevarskaya, S.J. Roberts-Thomson, The calcium-cancer signalling nexus. Nat. Rev. Cancer 17(6), 367–380 (2017). https://doi.org/10.1038/nrc.2017.18
- S. Marchi, C. Giorgi, L. Galluzzi, P. Pinton, Ca2+ fluxes and cancer. Mol. Cell 78(6), 1055–1069 (2020). https://doi.org/10.1016/j.molcel.2020.04.017
- X. Li, R. Wei, M. Wang, L. Ma, Z. Zhang et al., MGP promotes colon cancer proliferation by activating the NF-κB pathway through upregulation of the calcium signaling pathway. Mol. Ther. Oncolyt. 17, 371–383 (2020). https://doi.org/10.1016/j.omto.2020.04.005
- C. Giorgi, S. Marchi, P. Pinton, The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Bio. 19(11), 713–730 (2018). https://doi.org/10.1038/s41580-018-0052-8
- E.J. Ge, A.I. Bush, A. Casini, P.A. Cobine, J.R. Cross et al., Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat. Rev. Cancer 22(2), 102–113 (2022). https://doi.org/10.1038/s41568-021-00417-2
- Y. Su, I. Cockerill, Y. Wang, Y.X. Qin, L. Chang et al., Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4), 428–441 (2019). https://doi.org/10.1016/j.tibtech.2018.10.009
- M. Nairz, G. Weiss, Iron in health and disease. Mol. Aspects Med. 75, 100906 (2020). https://doi.org/10.1016/j.mam.2020.100906
- Y. Liu, Y. Wang, S. Song, H. Zhang, Tumor diagnosis and therapy mediated by metal phosphorus-based nanomaterials. Adv. Mater. 33(49), 2103936 (2021). https://doi.org/10.1002/adma.202103936
- C. Cui, R. Merritt, L. Fu, Z. Pan, Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7(1), 3–17 (2017). https://doi.org/10.1016/j.apsb.2016.11.001
- D.E. Clapham, Calcium signaling. Cell 131(6), 1047–1058 (2007). https://doi.org/10.1016/j.cell.2007.11.028
- M.J. Berridge, The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96(4), 1261–1296 (2016). https://doi.org/10.1152/physrev.00006.2016
- D.D. Stefani, R. Rizzuto, T. Pozzan, Enjoy the trip: calcium in mitochondria back and forth. Annu. Rev. Biochem. 85, 161–192 (2016). https://doi.org/10.1146/annurev-biochem-060614-034216
- C. Giorgi, A. Danese, S. Missiroli, S. Patergnani, P. Pinton, Calcium dynamics as a machine for decoding signals. Trends Cell Biol. 28(4), 258–273 (2018). https://doi.org/10.1016/j.tcb.2018.01.002
- M.D. Bootman, G. Bultynck, Fundamentals of cellular calcium signaling: a primer. CSH. Perspec. Biol. 12(1), a038802 (2020). https://doi.org/10.1101/cshperspect.a038802
- A. Raffaello, C. Mammucari, G. Gherardi, R. Rizzuto, Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41(12), 1035–1049 (2016). https://doi.org/10.1016/j.tibs.2016.09.001
- W. Choi, N. Clemente, W. Sun, J. Du, W. Lü, The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 576(7785), 163–167 (2019). https://doi.org/10.1038/s41586-019-1781-3
- C. Ge, H. Huang, F. Huang, T. Yang, T. Zhang et al., Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. PNAS 116(39), 19635–19645 (2019). https://doi.org/10.1073/pnas.1908998116
- S. O’Grady, M.P. Morgan, Calcium transport and signalling in breast cancer: functional and prognostic significance. Semin. Cancer Biol. 72, 19–26 (2021). https://doi.org/10.1016/j.semcancer.2019.12.006
- M. Zhang, R. Song, Y. Liu, Z. Yi, X. Meng et al., Calcium-overload-mediated tumor therapy by calcium peroxide nanops. Chem 5(8), 2171–2182 (2019). https://doi.org/10.1016/j.chempr.2019.06.003
- C. Qi, J. Lin, L.H. Fu, P. Huang, Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem. Soc. Rev. 47(2), 357–403 (2018). https://doi.org/10.1039/c6cs00746e
- W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19(2), 69–87 (2016). https://doi.org/10.1016/j.mattod.2015.10.008
- H.H. Xu, P. Wang, L. Wang, C. Bao, Q. Chen et al., Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 5, 17056 (2017). https://doi.org/10.1038/boneres.2017.56
- C. Wang, Z. Dong, Y. Hao, Y. Zhu, J. Ni et al., Coordination polymer-coated CaCO3 reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv. Mater. 34(3), 2106520 (2022). https://doi.org/10.1002/adma.202106520
- Z. Dong, L. Feng, Y. Hao, Q. Li, M. Chen et al., Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem 6(6), 1391–1407 (2020). https://doi.org/10.1016/j.chempr.2020.02.020
- P. Zheng, B. Ding, R. Shi, Z. Jiang, W. Xu et al., A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater. 33(15), 2007426 (2021). https://doi.org/10.1002/adma.202007426
- H. Xiong, S. Du, J. Ni, J. Zhou, J. Yao, Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanops for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94, 70–83 (2016). https://doi.org/10.1016/j.biomaterials.2016.04.004
- H. Zhao, C. Wu, D. Gao, S. Chen, Y. Zhu et al., Antitumor effect by hydroxyapatite nanospheres: activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-kinase/protein kinase B pathway. ACS Nano 12(8), 7838–7854 (2018). https://doi.org/10.1021/acsnano.8b01996
- K.K. Johnson, P. Koshy, J.L. Yang, C.C. Sorrell, Preclinical cancer theranostics-from nanomaterials to clinic: the missing link. Adv. Funct. Mater. 31(43), 2104199 (2021). https://doi.org/10.1002/adfm.202104199
- Y. Li, X. Zheng, Q. Chu, Bio-based nanomaterials for cancer therapy. Nano Today 38, 101134 (2021). https://doi.org/10.1016/j.nantod.2021.101134
- C. Qi, S. Musetti, L.H. Fu, Y.J. Zhu, L. Huang, Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem. Soc. Rev. 48(10), 2698–2737 (2019). https://doi.org/10.1039/c8cs00489g
- L.H. Fu, Y.R. Hu, C. Qi, T. He, S. Jiang et al., Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 13(12), 13985–13994 (2019). https://doi.org/10.1021/acsnano.9b05836
- S. Qing, C. Lyu, L. Zhu, C. Pan, S. Wang et al., Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv. Mater. 32(47), 2002085 (2020). https://doi.org/10.1002/adma.202002085
- Y. Li, S. Zhou, H. Song, T. Yu, X. Zheng et al., CaCO3 nanops incorporated with KAE to enable amplified calcium overload cancer therapy. Biomaterials 277, 121080 (2021). https://doi.org/10.1016/j.biomaterials.2021.121080
- P. Zheng, B. Ding, Z. Jiang, W. Xu, G. Li et al., Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 21(5), 2088–2093 (2021). https://doi.org/10.1021/acs.nanolett.0c04778
- Y. Zhu, Z. Yang, Z. Dong, Y. Gong, Y. Hao et al., CaCO3-assisted preparation of pH-responsive immune-modulating nanops for augmented chemo-immunotherapy. Nano-Micro Lett. 13, 29 (2020). https://doi.org/10.1007/s40820-020-00549-4
- K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee et al., pH-controlled gas-generating mineralized nanops: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9(1), 134–145 (2015). https://doi.org/10.1021/nn506210a
- T. Fan, W. Ye, P. Zhao, W. Zhou, Y. Chen et al., pH-responsive core-shell nanogels induce in situ antigen production for cancer treatment. Chem. Eng. J. 426, 130839 (2021). https://doi.org/10.1016/j.cej.2021.130839
- A.D. Trofimov, A.A. Ivanova, M.V. Zyuzin, A.S. Timin, Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives. Pharmaceutics 10(4), 167 (2018). https://doi.org/10.3390/pharmaceutics10040167
- P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. Int. Ed. 61(16), e202117075 (2022). https://doi.org/10.1002/anie.202117075
- Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14(12), 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
- C. Xu, Y. Wang, E. Wang, N. Yan, S. Sheng et al., Effective eradication of tumors by enhancing photoacoustic-imaging-guided combined photothermal therapy and ultrasonic therapy. Adv. Funct. Mater. 31(10), 2009314 (2020). https://doi.org/10.1002/adfm.202009314
- Q. Guan, L.L. Zhou, F.H. Lv, W.Y. Li, Y.A. Li et al., A glycosylated covalent organic framework equipped with bodipy and CaCO3 for synergistic tumor therapy. Angew. Chem. Int. Ed. 59(41), 18042–18047 (2020). https://doi.org/10.1002/anie.202008055
- J.W. Ko, E.J. Son, C.B. Park, Nature-inspired synthesis of nanostructured electrocatalysts through mineralization of calcium carbonate. Chemsuschem 10(12), 2585–2591 (2017). https://doi.org/10.1002/cssc.201700616
- S. Yao, B. Jin, Z. Liu, C. Shao, R. Zhao et al., Biomineralization: from material tactics to biological strategy. Adv. Mater. 29(14), 1605903 (2017). https://doi.org/10.1002/adma.201605903
- Y. Liu, B. Yu, X. Dai, N. Zhao, F.J. Xu, Biomineralized calcium carbonate nanohybrids for mild photothermal heating-enhanced gene therapy. Biomaterials 274, 120885 (2021). https://doi.org/10.1016/j.biomaterials.2021.120885
- X. Wan, H. Zhong, W. Pan, Y. Li, Y. Chen et al., Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal-organic framework. Angew. Chem. Int. Ed. 58(40), 14134–14139 (2019). https://doi.org/10.1002/anie.201907388
- H.D. Chen, Y.P. Chen, R. Xie, Q.Y. Hu, Q. Cheng et al., Absorption characteristics of novel compound calcium carbonate granules: effects of gastric acid deficiency and exogenous weak acids. Curr. Med. Sci. 39(2), 337–342 (2019). https://doi.org/10.1007/s11596-019-2040-4
- Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14(1), 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
- C. Pellow, M.A. O’Reilly, K. Hynynen, G. Zheng, D.E. Goertz, Simultaneous intravital optical and acoustic monitoring of ultrasound-triggered nanobubble generation and extravasation. Nano Lett. 20(6), 4512–4519 (2020). https://doi.org/10.1021/acs.nanolett.0c01310
- F. Ridi, I. Meazzini, B. Castroflorio, M. Bonini, D. Berti et al., Functional calcium phosphate composites in nanomedicine. Adv. Colloid Interf. Sci. 244, 281–295 (2017). https://doi.org/10.1016/j.cis.2016.03.006
- R. Khalifehzadeh, H. Arami, Biodegradable calcium phosphate nanops for cancer therapy. Adv. Colloid Interf. Sci. 279, 102157 (2020). https://doi.org/10.1016/j.cis.2020.102157
- J. Tang, B. Li, C.B. Howard, S.M. Mahler, K.J. Thurecht et al., Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials 216, 119232 (2019). https://doi.org/10.1016/j.biomaterials.2019.119232
- Q. Wang, X. Zhang, H. Liao, Y. Sun, L. Ding et al., Multifunctional shell-core nanops for treatment of multidrug resistance hepatocellular carcinoma. Adv. Funct. Mater. 28(14), 1706124 (2018). https://doi.org/10.1002/adfm.201706124
- W. Zhi, X. Wang, D. Sun, T. Chen, B. Yuan et al., Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact. Mater. 11, 240–253 (2022). https://doi.org/10.1016/j.bioactmat.2021.09.024
- Y. Lai, H. Cao, X. Wang, S. Chen, M. Zhang et al., Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials 153, 1–13 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.025
- F.L. Graham, A.J. Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52(2), 456–467 (1973). https://doi.org/10.1016/0042-6822(73)90341-3
- Q. Jia, R. Zhang, Y. Wang, H. Yan, Z. Li et al., A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Sci. Bull. 67(3), 288–298 (2022). https://doi.org/10.1016/j.scib.2021.11.003
- G. Li, Y. Chen, L. Zhang, M. Zhang, S. Li et al., Facile approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk-shell nanops for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-Micro Lett. 10, 7 (2018). https://doi.org/10.1007/s40820-017-0155-3
- L.H. Fu, Y. Wan, C. Li, C. Qi, T. He et al., Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 31(14), 2009848 (2021). https://doi.org/10.1002/adfm.202009848
- X. Tan, J. Huang, Y. Wang, S. He, L. Jia et al., Transformable nanosensitizer with tumor microenvironment-activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew. Chem. Int. Ed. 60(25), 14051–14059 (2021). https://doi.org/10.1002/anie.202102703
- C. Wang, X. Wang, W. Zhang, D. Ma, F. Li et al., Shielding ferritin with a biomineralized shell enables efficient modulation of tumor microenvironment and targeted delivery of diverse therapeutic agents. Adv. Mater. 34(5), 2107150 (2022). https://doi.org/10.1002/adma.202107150
- H. Kong, Q. Chu, C. Fang, G. Cao, G. Han et al., Cu-ferrocene-functionalized CaO2 nanops to enable tumor-specific synergistic therapy with GSH depletion and calcium overload. Adv. Sci. 8(14), 2100241 (2021). https://doi.org/10.1002/advs.202100241
- B. Liu, Y. Bian, S. Liang, M. Yuan, S. Dong et al., One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy. ACS Nano 16(1), 617–630 (2021). https://doi.org/10.1021/acsnano.1c07893
- Y. Jiang, W. Meng, L. Wu, K. Shao, L. Wang et al., Image-guided TME-improving nano-platform for Ca2+ signal disturbance and enhanced tumor PDT. Adv. Healthc. Mater. 10(19), 2100789 (2021). https://doi.org/10.1002/adhm.202100789
- Q. Sun, B. Liu, R. Zhao, L. Feng, Z. Wang et al., Calcium peroxide-based nanosystem with cancer microenvironment-activated capabilities for imaging guided combination therapy via mitochondrial Ca2+ overload and chemotherapy. ACS Appl. Mater. Interfaces 13(37), 44096–44107 (2021). https://doi.org/10.1021/acsami.1c13304
- Q. Sun, B. Liu, Z. Wang, L. Feng, R. Zhao et al., H2O2/O2 self-supplementing and GSH-depleting Ca2+ nanogenerator with hyperthermia-triggered, TME-responsive capacities for combination cancer therapy. Chem. Eng. J. 425, 131485 (2021). https://doi.org/10.1016/j.cej.2021.131485
- L.H. Liu, Y.H. Zhang, W.X. Qiu, L. Zhang, F. Gao et al., Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 13(37), 1701621 (2017). https://doi.org/10.1002/smll.201701621
- J. He, L.H. Fu, C. Qi, J. Lin, P. Huang, Metal peroxides for cancer treatment. Bioact. Mater. 6(9), 2698–2710 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.026
- S. Gao, Y. Jin, K. Ge, Z. Li, H. Liu et al., Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 6(24), 1902137 (2019). https://doi.org/10.1002/advs.201902137
- C. Liu, Y. Cao, Y. Cheng, D. Wang, T. Xu et al., An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 11, 1735 (2020). https://doi.org/10.1038/s41467-020-15591-4
- K. Zhou, P. Yu, X. Shi, T. Ling, W. Zeng et al., Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano 13(8), 9595–9606 (2019). https://doi.org/10.1021/acsnano.9b04723
- X. Wang, S. Ihara, X. Li, A. Ito, Y. Sogo et al., Rod-scale design strategies for immune-targeted delivery system toward cancer immunotherapy. ACS Nano 13(7), 7705–7715 (2019). https://doi.org/10.1021/acsnano.9b01271
- K. Zhang, Y. Zhou, C. Xiao, W. Zhao, H. Wu et al., Application of hydroxyapatite nanops in tumor-associated bone segmental defect. Sci. Adv. 5(8), eaax6946 (2019). https://doi.org/10.1126/sciadv.aax6946
- J. Liao, R. Han, Y. Wu, Z. Qian, Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 9(1), 18 (2021). https://doi.org/10.1038/s41413-021-00139-z
- S. Pan, J. Yin, L. Yu, C. Zhang, Y. Zhu et al., 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. 7(2), 1901511 (2020). https://doi.org/10.1002/advs.201901511
- Z. Li, X. Zhang, J. Ouyang, D. Chu, F. Han et al., Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact. Mater. 6(11), 4053–4064 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.014
- Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/j.nantod.2021.101182
- Y. Kang, W. Sun, S. Li, M. Li, J. Fan et al., Oligo hyaluronan-coated silica/hydroxyapatite degradable nanops for targeted cancer treatment. Adv. Sci. 6(13), 1900716 (2019). https://doi.org/10.1002/advs.201900716
- C.N. Cornell, J.M. Lane, M. Chapman, R. Merkow, D. Seligson et al., Multicenter trial of collagraft as bone graft substitute. J. Orthop. Trauma 5(1), 1–8 (1991). https://doi.org/10.1097/00005131-199103000-00001
- G. Chen, M. Yin, W. Liu, B. Xin, G. Bai et al., A novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body for reconstruction of thoracolumbar structural stability after spinal tumor resection. World Neurosurg. 12, 206–214 (2019). https://doi.org/10.1016/j.wneu.2018.09.213
- H. Ma, T. Li, Z. Huan, M. Zhang, Z. Yang et al., 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater. 10(4), 31–44 (2018). https://doi.org/10.1038/s41427-018-0015-8
- Z. Li, Y. Zhang, L. Huang, Y. Yang, Y. Zhao et al., Nanoscale “fluorescent stone”: luminescent calcium fluoride nanops as theranostic platforms. Theranostics 6(13), 2380–2393 (2016). https://doi.org/10.7150/thno.15914
- F. Gong, J. Xu, B. Liu, N. Yang, L. Cheng et al., Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem 8(1), 268–286 (2022). https://doi.org/10.1016/j.chempr.2021.11.020
- X. Wang, J. Xue, B. Ma, J. Wu, J. Chang et al., Black bioceramics: combining regeneration with therapy. Adv. Mater. 32(48), 2005140 (2020). https://doi.org/10.1002/adma.202005140
- Z. Kang, B. Yu, S. Fu, D. Li, X. Zhang et al., Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SiO4 composite scaffolds for bone regeneration. Appl. Mater. Today 16, 132–140 (2019). https://doi.org/10.1016/j.apmt.2019.05.005
- S. Guo, D. Sun, D. Ni, M. Yu, K. Qian et al., Smart tumor microenvironment-responsive nanotheranostic agent for effective cancer therapy. Adv. Funct. Mater. 30(17), 2000486 (2020). https://doi.org/10.1002/adfm.202000486
- Z. Li, H. Liu, R. Wang, C. Ji, Y. Wei et al., Bioactive core-shell CaF2 upconversion nanostructure for promotion and visualization of engineered bone reconstruction. ACS Nano 14(11), 16085–16095 (2020). https://doi.org/10.1021/acsnano.0c08013
- N.N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati et al., NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanops: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5(11), 8665–8671 (2011). https://doi.org/10.1021/nn202490m
- Y.C. Wang, S.H. Tsai, M.H. Chen, F.Y. Hsieh, Y.C. Chang et al., Mineral nanomedicine to enhance the efficacy of adjuvant radiotherapy for treating osteosarcoma. ACS Appl. Mater. Interfaces 14(4), 5586–5597 (2022). https://doi.org/10.1021/acsami.1c21729
- M. Zahedifar, E. Sadeghi, M.M. Shanei, A. Sazgarnia, M. Mehrabi, Afterglow properties of CaF2: Tm nanops and its potential application in photodynamic therapy. J. Lumin. 171, 254–258 (2016). https://doi.org/10.1016/j.jlumin.2015.11.043
- X. Sun, M. Zhang, R. Du, X. Zheng, C. Tang et al., A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy. Chem. Eng. J. 350, 69–78 (2018). https://doi.org/10.1016/j.cej.2018.05.157
- D. Mukherjee, D. Schuhknecht, J. Okuda, Hydrido complexes of calcium: a new family of molecular alkaline-earth-metal compounds. Angew. Chem. Int. Ed. 57(31), 9590–9602 (2018). https://doi.org/10.1002/anie.201801869
- W. Wang, G. Karamanlidis, R. Tian, Novel targets for mitochondrial medicine. Sci. Transl. Med. 8(326), 326rv3 (2016). https://doi.org/10.1126/scitranslmed.aac7410
- D.V. Ziegler, D. Vindrieux, D. Goehrig, S. Jaber, G. Collin et al., Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat. Commun. 12, 720 (2021). https://doi.org/10.1038/s41467-021-20993-z
- M. Fan, J. Zhang, C.W. Tsai, B.J. Orlando, M. Rodriguez et al., Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature 582(7810), 129–133 (2020). https://doi.org/10.1038/s41586-020-2309-6
- Y. Wang, N.X. Nguyen, J. She, W. Zeng, Y. Yang et al., Structural mechanism of EMRE-dependent gating of the human mitochondrial calcium uniporter. Cell 177(5), 1252–1261 (2019). https://doi.org/10.1016/j.cell.2019.03.050
- Y. Zhou, J. Zhang, P. Dan, F. Bi, Y. Chen et al., Tumor calcification as a prognostic factor in cetuximab plus chemotherapy-treated patients with metastatic colorectal cancer. Anticancer Drugs 30(2), 195–200 (2019). https://doi.org/10.1097/CAD.0000000000000726
- J. Wu, Y. Chen, J. Xin, J. Qin, W. Zheng et al., Bioinspired tumor calcification enables early detection and elimination of lung cancer. Adv. Funct. Mater. 31(27), 2101284 (2021). https://doi.org/10.1002/adfm.202101284
- D.T. Blumenthal, O. Aisenstein, I. Ben-Horin, D.B. Bashat, M. Artzi et al., Calcification in high grade gliomas treated with bevacizumab. J. Neurooncol. 123(2), 283–288 (2015). https://doi.org/10.1007/s11060-015-1796-z
- J. An, M. Liu, L. Zhao, W. Lu, S. Wu et al., Boosting tumor immunotherapy by bioactive nanops via Ca2+ interference mediated TME reprogramming and specific PD-L1 depletion. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201275
- Y. Liu, M. Zhang, W. Bu, Bioactive nanomaterials for ion-interference therapy. View 1(2), e18 (2020). https://doi.org/10.1002/viw2.18
- S. Wu, K. Zhang, Y. Liang, Y. Wei, J. An et al., Nano-enabled tumor systematic energy exhaustion via zinc (II) interference mediated glycolysis inhibition and specific GLUT1 depletion. Adv. Sci. 9(7), 2103534 (2022). https://doi.org/10.1002/advs.202103534
- S. Bai, Z. Lu, Y. Jiang, X. Shi, D. Xu et al., Nanotransferrin-based programmable catalysis mediates three-pronged induction of oxidative stress to enhance cancer immunotherapy. ACS Nano 16, 997–1012 (2021). https://doi.org/10.1021/acsnano.1c08619
- H. Lin, Y. Zhou, J. Wang, H. Wang, T. Yao et al., Repurposing ICG enables MR/PA imaging signal amplification and iron depletion for iron-overload disorders. Sci. Adv. 7(51), eabl5862 (2021). https://doi.org/10.1126/sciadv.abl5862
- L. Garzia, M.D. Taylor, Nailing a Fe-rocious form of cancer. Science 369(6501), 250–251 (2020). https://doi.org/10.1126/science.abb7041
- S.H. Park, I. Hwang, D.A. McNaughton, A.J. Kinross, E.N.W. Howe et al., Synthetic Na+/K+ exchangers promote apoptosis by disturbing cellular cation homeostasis. Chem 7(12), 3325–3339 (2021). https://doi.org/10.1016/j.chempr.2021.08.018
- W. Jiang, L. Yin, H. Chen, A.V. Paschall, L. Zhang et al., NaCl nanops as a cancer therapeutic. Adv. Mater. 31(46), 1904058 (2019). https://doi.org/10.1002/adma.201904058
- J. Loncke, A. Kaasik, I. Bezprozvanny, J.B. Parys, M. Kerkhofs et al., Balancing ER-mitochondrial Ca2+ fluxes in health and disease. Trends Cell Biol. 31(7), 598–612 (2021). https://doi.org/10.1016/j.tcb.2021.02.003
- Y. Liu, W. Zhen, Y. Wang, S. Song, H. Zhang, Na2S2O8 nanops trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 142(52), 21751–21757 (2020). https://doi.org/10.1021/jacs.0c09482
- T. Pan, W. Fu, H. Xin, S. Geng, Z. Li et al., Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv. Funct. Mater. 30(38), 2003069 (2020). https://doi.org/10.1002/adfm.202003069
- X. Chi, D. Gong, K. Ren, G. Zhou, G. Huang et al., Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. PNAS 116(51), 25575–25582 (2019). https://doi.org/10.1073/pnas.1914451116
- M. Trebak, J.P. Kinet, Calcium signalling in T cells. Nat. Rev. Immunol. 19(3), 154–169 (2019). https://doi.org/10.1038/s41577-018-0110-7
- D. Gong, X. Chi, J. Wei, G. Zhou, G. Huang et al., Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 572(7769), 347–351 (2019). https://doi.org/10.1038/s41586-019-1377-y
- Y. Zhao, G. Huang, J. Wu, Q. Wu, S. Gao et al., Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 177(6), 1495–1506 (2019). https://doi.org/10.1016/j.cell.2019.04.043
- W. Guo, Q. Tang, M. Wei, Y. Kang, J.X. Wu et al., Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron 110(6), 1023–1035 (2022). https://doi.org/10.1016/j.neuron.2021.12.023
- L. Alza, A. Visa, J. Herreros, C. Cantí, The rise of T-type channels in melanoma progression and chemotherapeutic resistance. BBA. Rev. Cancer 1873(2), 188364 (2020). https://doi.org/10.1016/j.bbcan.2020.188364
- X. Meng, C. Cai, J. Wu, S. Cai, C. Ye et al., TRPM7 mediates breast cancer cell migration and invasion through the mapk pathway. Cancer Lett. 333(1), 96–102 (2013). https://doi.org/10.1016/j.canlet.2013.01.031
- J.Y. Wang, J. Sun, M.Y. Huang, Y.S. Wang, M.F. Hou et al., STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene 34(33), 4358–4367 (2015). https://doi.org/10.1038/onc.2014.366
- D. McAndrew, D.M. Grice, A.A. Peters, F.M. Davis, T. Stewart et al., Orai1-mediated calcium influx in lactation and in breast cancer. Mol. Cancer Ther. 10(3), 448–460 (2011). https://doi.org/10.1158/1535-7163.MCT-10-0923
- N.M. Aiello, Y. Kang, Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 216(5), 1016–1026 (2019). https://doi.org/10.1084/jem.20181827
- X. Deng, X.Q. Yao, K. Berglund, B. Dong, D. Ouedraogo et al., Tuning protein dynamics to sense rapid endoplasmic-reticulum calcium dynamics. Angew. Chem. Int. Ed. 60(43), 23289–23298 (2021). https://doi.org/10.1002/anie.202108443
- A. Bhargava, S. Saha, T-type voltage gated calcium channels: a target in breast cancer? Breast Cancer Res. Tr. 173(1), 11–21 (2019). https://doi.org/10.1007/s10549-018-4970-0
- J.Y. Zhang, P.P. Zhang, W.P. Zhou, J.Y. Yu, Z.H. Yao et al., L-type cav 1.2 calcium channel-α-1C regulates response to rituximab in diffuse large B-cell lymphoma. Clin. Cancer Res. 25(13), 4168–4178 (2019). https://doi.org/10.1158/1078-0432.CCR-18-2146
- J. Hasna, F. Hague, L. Rodat-Despoix, D. Geerts, C. Leroy et al., Orai3 calcium channel and resistance to chemotherapy in breast cancer cells: the p53 connection. Cell Death Differ. 25(4), 691–705 (2018). https://doi.org/10.1038/s41418-017-0007-1
- C. Dubois, F.V. Abeele, V. Lehen’kyi, D. Gkika, B. Guarmit et al., Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26(1), 19–32 (2014). https://doi.org/10.1016/j.ccr.2014.04.025
- J. Taylor, I. Azimi, G. Monteith, M. Bebawy, Ca2+ mediates extracellular vesicle biogenesis through alternate pathways in malignancy. J. Extracell. Vesicles 9(1), 1734326 (2020). https://doi.org/10.1080/20013078.2020.1734326
- M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Bio. 4(7), 517–529 (2003). https://doi.org/10.1038/nrm1155
- A.C. Dolphin, A. Lee, Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 21(4), 213–229 (2020). https://doi.org/10.1038/s41583-020-0278-2
- X. Chu, X. Jiang, Y. Liu, S. Zhai, Y. Jiang et al., Nitric oxide modulating calcium store for Ca2+-initiated cancer therapy. Adv. Funct. Mater. 31(13), 2008507 (2021). https://doi.org/10.1002/adfm.202008507
- D. Kozai, N. Ogawa, Y. Mori, Redox regulation of transient receptor potential channels. Antioxid. Redox Sign. 21(6), 971–986 (2014). https://doi.org/10.1089/ars.2013.5616
- N. Takahashi, Y. Mizuno, D. Kozai, S. Yamamoto, S. Kiyonaka et al., Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels 2(4), 287–298 (2008). https://doi.org/10.4161/chan.2.4.6745
- A. Zaidi, M.L. Michaelis, Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radical Bio. Med. 27(7–8), 810–821 (1999). https://doi.org/10.1016/s0891-5849(99)00128-8
- E. Bertero, C. Maack, Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 122(10), 1460–1478 (2018). https://doi.org/10.1161/CIRCRESAHA.118.310082
- K.I. Ataga, M. Reid, S.K. Ballas, Z. Yasin, C. Bigelow et al., Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the gardos channel blocker senicapoc (ICA-17043). Brit. J. Haematol. 153(1), 92–104 (2011). https://doi.org/10.1111/j.1365-2141.2010.08520.x
- J.W. Stocker, L.D. Franceschi, G.A. McNaughton-Smith, R. Corrocher, Y. Beuzard et al., ICA-17043, a novel gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in sad mice. Blood 101(6), 2412–2418 (2003). https://doi.org/10.1182/blood-2002-05-1433
- J. An, K. Zhang, B. Wang, S. Wu, Y. Wang et al., Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 14(6), 7639–7650 (2020). https://doi.org/10.1021/acsnano.0c03881
- S. Wang, D. Ni, H. Yue, N. Luo, X. Xi et al., Exploration of antigen induced CaCO3 nanops for therapeutic vaccine. Small 14(14), 1704272 (2018). https://doi.org/10.1002/smll.201704272
- M. Li, M. Qin, G. Song, H. Deng, D. Wang et al., A biomimetic antitumor nanovaccine based on biocompatible calcium pyrophosphate and tumor cell membrane antigens. Asian J. Pharm. Sci. 16(1), 97–109 (2021). https://doi.org/10.1016/j.ajps.2020.06.006
- H. Kang, K. Zhang, D.S.H. Wong, F. Han, B. Li et al., Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials 178, 681–696 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.007
- S. Sen, M. Won, M.S. Levine, Y. Noh, A.C. Sedgwick et al., Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem. Soc. Rev. 51(4), 1212–1233 (2022). https://doi.org/10.1039/d1cs00417d
- L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17(2), 97–111 (2017). https://doi.org/10.1038/nri.2016.107
- S. Bai, L.L. Yang, Y. Wang, T. Zhang, L. Fu et al., Prodrug-based versatile nanomedicine for enhancing cancer immunotherapy by increasing immunogenic cell death. Small 16(19), 2000214 (2020). https://doi.org/10.1002/smll.202000214
- X. Shi, Y. Zhang, S. Xu, S. Bai, S. Li et al., Unimolecule-based size-charge switchable nanomedicine for deep cancer sono-immunotherapy. Nano Today 43, 101417 (2022). https://doi.org/10.1016/j.nantod.2022.101417
- Z. Dai, J. Tang, Z. Gu, Y. Wang, Y. Yang et al., Eliciting immunogenic cell death via a unitized nanoinducer. Nano Lett. 20(9), 6246–6254 (2020). https://doi.org/10.1021/acs.nanolett.0c00713
- R. Tufi, T. Panaretakis, K. Bianchi, A. Criollo, B. Fazi et al., Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ. 15(2), 274–282 (2008). https://doi.org/10.1038/sj.cdd.4402275
- Q. Chen, T. Sun, C. Jiang, Recent advancements in nanomedicine for “cold” tumor immunotherapy. Nano-Micro Lett. 13, 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
- S.D. Jeong, B.K. Jung, H.M. Ahn, D. Lee, J. Ha et al., Immunogenic cell death inducing fluorinated mitochondria-disrupting helical polypeptide synergizes with PD-L1 immune checkpoint blockade. Adv. Sci. 8(7), 2001308 (2021). https://doi.org/10.1002/advs.202001308
- Y. Shen, M.J. Czaja, A novel mechanism of starvation-stimulated hepatic autophagy: calcium-induced o-glcnac-dependent signaling. Hepatology 69(1), 446–448 (2019). https://doi.org/10.1002/hep.30118
- H. Nakatogawa, Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Bio. 21(8), 439–458 (2020). https://doi.org/10.1038/s41580-020-0241-0
- L. Galluzzi, D.R. Green, Autophagy-independent functions of the autophagy machinery. Cell 177(7), 1682–1699 (2019). https://doi.org/10.1016/j.cell.2019.05.026
- Y. Shi, G. Lin, H. Zheng, D. Mu, H. Chen et al., Biomimetic nanops blocking autophagy for enhanced chemotherapy and metastasis inhibition via reversing focal adhesion disassembly. J. Nanobiotechnol. 19(1), 447 (2021). https://doi.org/10.1186/s12951-021-01189-5
- Y. Shi, J. Wang, J. Liu, G. Lin, F. Xie et al., Oxidative stress-driven DR5 upregulation restores TRAIL/Apo2l sensitivity induced by iron oxide nanops in colorectal cancer. Biomaterials 233, 119753 (2020). https://doi.org/10.1016/j.biomaterials.2019.119753
- Y.H. Guan, N. Wang, Z.W. Deng, X.G. Chen, Y. Liu, Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 282, 121434 (2022). https://doi.org/10.1016/j.biomaterials.2022.121434
- A. Gardner, B. Ruffell, Dendritic cells and cancer immunity. Trends Immunol. 37(12), 855–865 (2016). https://doi.org/10.1016/j.it.2016.09.006
- S.E. Crawford, M.K. Estes, Viroporin-mediated calcium-activated autophagy. Autophagy 9(5), 797–798 (2013). https://doi.org/10.4161/auto.23959
- D.L. Medina, A. Ballabio, Lysosomal calcium regulates autophagy. Autophagy 11(6), 970–971 (2015). https://doi.org/10.1080/15548627.2015.1047130
- J. Lu, Y. Jiao, G. Cao, Z. Liu, Multimode CaCO3/pneumolysin antigen delivery systems for inducing efficient cellular immunity for anti-tumor immunotherapy. Chem. Eng. J. 420, 129746 (2021). https://doi.org/10.1016/j.cej.2021.129746
- W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
- C. Liu, X. Liu, X. Xiang, X. Pang, S. Chen et al., A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022). https://doi.org/10.1038/s41565-022-01098-0
- A.M. Harandi, Systems analysis of human vaccine adjuvants. Semin. Immunol. 39, 30–34 (2018). https://doi.org/10.1016/j.smim.2018.08.001
- S.R. Bonam, C.D. Partidos, S.K.M. Halmuthur, S. Muller, An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 38(9), 771–793 (2017). https://doi.org/10.1016/j.tips.2017.06.002
- G.D. Giudice, R. Rappuoli, A.M. Didierlaurent, Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin. Immunol. 39, 14–21 (2018). https://doi.org/10.1016/j.smim.2018.05.001
- T.J. Moyer, Y. Kato, W. Abraham, J.Y.H. Chang, D.W. Kulp et al., Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26(3), 430–440 (2020). https://doi.org/10.1038/s41591-020-0753-3
- A.T. Glenny, C.G. Pope, H. Waddington, V. Wallace, The antigenic value of toxoid precipitated by potassium alim. J. Pathol. Bacteriol. 29, 38–45 (1926). https://doi.org/10.1002/path.1700290106
- J. Wang, P. Li, Y. Yu, Y. Fu, H. Jiang et al., Pulmonary surfactant-biomimetic nanops potentiate heterosubtypic influenza immunity. Science 367(6480), 869 (2020). https://doi.org/10.1126/science.aau0810
- L. Xu, X. Wang, W. Wang, M. Sun, W.J. Choi et al., Enantiomer-dependent immunological response to chiral nanops. Nature 601(7893), 366–373 (2022). https://doi.org/10.1038/s41586-021-04243-2
- S.Y. Peng, X.H. Liu, Q.W. Chen, Y.J. Yu, M.D. Liu et al., Harnessing in situ glutathione for effective ROS generation and tumor suppression via nanohybrid-mediated catabolism dynamic therapy. Biomaterials 281, 121358 (2022). https://doi.org/10.1016/j.biomaterials.2021.121358
- M. Casanova-Acebes, E. Dalla, A.M. Leader, J. LeBerichel, J. Nikolic et al., Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595(7868), 578–584 (2021). https://doi.org/10.1038/s41586-021-03651-8
- D.M. Mosser, K. Hamidzadeh, R. Goncalves, Macrophages and the maintenance of homeostasis. Cell. Mol. Immunol. 18(3), 579–587 (2021). https://doi.org/10.1038/s41423-020-00541-3
- Y. Qiu, T. Chen, R. Hu, R. Zhu, C. Li et al., Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark. Res. 9(1), 72 (2021). https://doi.org/10.1186/s40364-021-00327-3
- A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14(7), 399–416 (2017). https://doi.org/10.1038/nrclinonc.2016.217
- P.J. Murray, Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017). https://doi.org/10.1146/annurev-physiol-022516-034339
- D.V. Krysko, K.S. Ravichandran, P. Vandenabeele, Macrophages regulate the clearance of living cells by calreticulin. Nat. Commun. 9, 4644 (2018). https://doi.org/10.1038/s41467-018-06807-9
- D. Chen, J. Xie, R. Fiskesund, W. Dong, X. Liang et al., Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 9, 873 (2018). https://doi.org/10.1038/s41467-018-03225-9
- P. Zhou, D. Xia, Z. Ni, T. Ou, Y. Wang et al., Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M. Bioact. Mater. 6(3), 810–822 (2021). https://doi.org/10.1016/j.bioactmat.2020.09.018
- L. Wang, G.H. Nancollas, Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108(11), 4628–4669 (2008). https://doi.org/10.1021/cr0782574
- H. Shou, J. Wu, N. Tang, B. Wang, Calcification-based cancer diagnosis and therapy. ChemMedChem 17(4), e202100339 (2022). https://doi.org/10.1002/cmdc.202100339
- H.C. Kim, I. Joo, M. Lee, Y.J. Kim, J.C. Paeng et al., Radioembolization-induced tumor calcifications as a surrogate marker of tumor response in patients with hepatocellular carcinoma. Anticancer Res. 40(7), 4191–4198 (2020)
- B. Liu, S. Liang, Z. Wang, Q. Sun, F. He et al., A tumor-microenvironment-responsive nanocomposite for hydrogen sulfide gas and trimodal-enhanced enzyme dynamic therapy. Adv. Mater. 33(30), 2101223 (2021). https://doi.org/10.1002/adma.202101223
- N. Tang, H. Li, L. Zhang, X. Zhang, Y. Chen et al., A macromolecular drug for cancer therapy via extracellular calcification. Angew. Chem. Int. Ed. 60(12), 6509–6517 (2021). https://doi.org/10.1002/anie.202016122
- R. Zhao, B. Wang, X. Yang, Y. Xiao, X. Wang et al., A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angew. Chem. Int. Ed. 55(17), 5225–5229 (2016). https://doi.org/10.1002/anie.201601364
- X.Q. Wang, W. Wang, M. Peng, X.Z. Zhang, Free radicals for cancer theranostics. Biomaterials 266, 120474 (2021). https://doi.org/10.1016/j.biomaterials.2020.120474
- D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
- U.S. Srinivas, B.W.Q. Tan, B.A. Vellayappan, A.D. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019). https://doi.org/10.1016/j.redox.2018.101084
- S. Li, Y. Ma, S. Ye, S. Tang, N. Liang et al., Polystyrene microplastics trigger hepatocyte apoptosis and abnormal glycolytic flux via ROS-driven calcium overload. J. Hazard. Mater. 417, 126025 (2021). https://doi.org/10.1016/j.jhazmat.2021.126025
- O.H. Petersen, J.V. Gerasimenko, O.V. Gerasimenko, O. Gryshchenko, S. Peng, The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol. Rev. 101(4), 1691–1744 (2021). https://doi.org/10.1152/physrev.00003.2021
- H. Zhao, L. Wang, K. Zeng, J. Li, W. Chen et al., Nanomessenger-mediated signaling cascade for antitumor immunotherapy. ACS Nano 15(8), 13188–13199 (2021). https://doi.org/10.1021/acsnano.1c02765
- L.R. Roberts, C.B. Sirlin, F. Zaiem, J. Almasri, L.J. Prokop et al., Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology 67(1), 401–421 (2018). https://doi.org/10.1002/hep.29487
- M. Ishimura, Y. Yamamoto, K. Mitamura, T. Norikane, Y. Nishiyama, A case of glioblastoma with calcified region imaged with 18F-NaF PET/CT. Clin. Nucl. Med. 43(10), 764–765 (2018). https://doi.org/10.1097/RLU.0000000000002226
- A.S. Agatston, W.R. Janowitz, F.J. Hildner, N.R. Zusmer, M. Viamonte et al., Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15(4), 827–832 (1990). https://doi.org/10.1016/0735-1097(90)90282-t
- J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
- M. Tinawi, Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 13(1), e12420 (2021). https://doi.org/10.7759/cureus.12420
- S. Bai, D. Jia, X. Ma, M. Liang, P. Xue et al., Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy. Bioact. Mater. 6(9), 2894–2904 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.011
- S. Bai, Y. Zhang, D. Li, X. Shi, G. Lin et al., Gain an advantage from both sides: smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today 36, 101038 (2021). https://doi.org/10.1016/j.nantod.2020.101038
- X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50(15), 8669–8742 (2021). https://doi.org/10.1039/d0cs00461h
References
J. Zhu, C.B. Thompson, Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Bio. 20(7), 436–450 (2019). https://doi.org/10.1038/s41580-019-0123-5
L. Liu, W. Michowski, A. Kolodziejczyk, P. Sicinski, The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 21(9), 1060–1067 (2019). https://doi.org/10.1038/s41556-019-0384-4
H. Li, B.K. Wu, M. Kanchwala, J. Cai, L. Wang et al., YAP/TAZ drives cell proliferation and tumour growth via a polyamine-eIF5A hypusination-LSD1 axis. Nat. Cell Biol. 24(3), 373–383 (2022). https://doi.org/10.1038/s41556-022-00848-5
T.P. Fidler, C. Xue, M. Yalcinkaya, B. Hardaway, S. Abramowicz et al., The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592(7853), 296–301 (2021). https://doi.org/10.1038/s41586-021-03341-5
X. Chen, D.B. Burkhardt, A.A. Hartman, X. Hu, A.E. Eastman et al., MLL-AF9 initiates transformation from fast-proliferating myeloid progenitors. Nat. Commun. 10, 5767 (2019). https://doi.org/10.1038/s41467-019-13666-5
H.L. Roderick, S.J. Cook, Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat. Rev. Cancer 8(5), 361–375 (2008). https://doi.org/10.1038/nrc2374
U. Harjes, A source of calcium. Nat. Rev. Cancer 19(1), 3 (2019). https://doi.org/10.1038/s41568-018-0089-1
R. Bagur, G. Hajnoczky, Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66(6), 780–788 (2017). https://doi.org/10.1016/j.molcel.2017.05.028
H. Liu, P. Yi, W. Zhao, Y. Wu, F. Acher et al., Illuminating the allosteric modulation of the calcium-sensing receptor. PNAS 117(35), 21711–21722 (2020). https://doi.org/10.1073/pnas.1922231117
G.R. Monteith, N. Prevarskaya, S.J. Roberts-Thomson, The calcium-cancer signalling nexus. Nat. Rev. Cancer 17(6), 367–380 (2017). https://doi.org/10.1038/nrc.2017.18
S. Marchi, C. Giorgi, L. Galluzzi, P. Pinton, Ca2+ fluxes and cancer. Mol. Cell 78(6), 1055–1069 (2020). https://doi.org/10.1016/j.molcel.2020.04.017
X. Li, R. Wei, M. Wang, L. Ma, Z. Zhang et al., MGP promotes colon cancer proliferation by activating the NF-κB pathway through upregulation of the calcium signaling pathway. Mol. Ther. Oncolyt. 17, 371–383 (2020). https://doi.org/10.1016/j.omto.2020.04.005
C. Giorgi, S. Marchi, P. Pinton, The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Bio. 19(11), 713–730 (2018). https://doi.org/10.1038/s41580-018-0052-8
E.J. Ge, A.I. Bush, A. Casini, P.A. Cobine, J.R. Cross et al., Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat. Rev. Cancer 22(2), 102–113 (2022). https://doi.org/10.1038/s41568-021-00417-2
Y. Su, I. Cockerill, Y. Wang, Y.X. Qin, L. Chang et al., Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol. 37(4), 428–441 (2019). https://doi.org/10.1016/j.tibtech.2018.10.009
M. Nairz, G. Weiss, Iron in health and disease. Mol. Aspects Med. 75, 100906 (2020). https://doi.org/10.1016/j.mam.2020.100906
Y. Liu, Y. Wang, S. Song, H. Zhang, Tumor diagnosis and therapy mediated by metal phosphorus-based nanomaterials. Adv. Mater. 33(49), 2103936 (2021). https://doi.org/10.1002/adma.202103936
C. Cui, R. Merritt, L. Fu, Z. Pan, Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B 7(1), 3–17 (2017). https://doi.org/10.1016/j.apsb.2016.11.001
D.E. Clapham, Calcium signaling. Cell 131(6), 1047–1058 (2007). https://doi.org/10.1016/j.cell.2007.11.028
M.J. Berridge, The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol. Rev. 96(4), 1261–1296 (2016). https://doi.org/10.1152/physrev.00006.2016
D.D. Stefani, R. Rizzuto, T. Pozzan, Enjoy the trip: calcium in mitochondria back and forth. Annu. Rev. Biochem. 85, 161–192 (2016). https://doi.org/10.1146/annurev-biochem-060614-034216
C. Giorgi, A. Danese, S. Missiroli, S. Patergnani, P. Pinton, Calcium dynamics as a machine for decoding signals. Trends Cell Biol. 28(4), 258–273 (2018). https://doi.org/10.1016/j.tcb.2018.01.002
M.D. Bootman, G. Bultynck, Fundamentals of cellular calcium signaling: a primer. CSH. Perspec. Biol. 12(1), a038802 (2020). https://doi.org/10.1101/cshperspect.a038802
A. Raffaello, C. Mammucari, G. Gherardi, R. Rizzuto, Calcium at the center of cell signaling: interplay between endoplasmic reticulum, mitochondria, and lysosomes. Trends Biochem. Sci. 41(12), 1035–1049 (2016). https://doi.org/10.1016/j.tibs.2016.09.001
W. Choi, N. Clemente, W. Sun, J. Du, W. Lü, The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 576(7785), 163–167 (2019). https://doi.org/10.1038/s41586-019-1781-3
C. Ge, H. Huang, F. Huang, T. Yang, T. Zhang et al., Neurokinin-1 receptor is an effective target for treating leukemia by inducing oxidative stress through mitochondrial calcium overload. PNAS 116(39), 19635–19645 (2019). https://doi.org/10.1073/pnas.1908998116
S. O’Grady, M.P. Morgan, Calcium transport and signalling in breast cancer: functional and prognostic significance. Semin. Cancer Biol. 72, 19–26 (2021). https://doi.org/10.1016/j.semcancer.2019.12.006
M. Zhang, R. Song, Y. Liu, Z. Yi, X. Meng et al., Calcium-overload-mediated tumor therapy by calcium peroxide nanops. Chem 5(8), 2171–2182 (2019). https://doi.org/10.1016/j.chempr.2019.06.003
C. Qi, J. Lin, L.H. Fu, P. Huang, Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem. Soc. Rev. 47(2), 357–403 (2018). https://doi.org/10.1039/c6cs00746e
W. Habraken, P. Habibovic, M. Epple, M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Mater. Today 19(2), 69–87 (2016). https://doi.org/10.1016/j.mattod.2015.10.008
H.H. Xu, P. Wang, L. Wang, C. Bao, Q. Chen et al., Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 5, 17056 (2017). https://doi.org/10.1038/boneres.2017.56
C. Wang, Z. Dong, Y. Hao, Y. Zhu, J. Ni et al., Coordination polymer-coated CaCO3 reinforces radiotherapy by reprogramming the immunosuppressive metabolic microenvironment. Adv. Mater. 34(3), 2106520 (2022). https://doi.org/10.1002/adma.202106520
Z. Dong, L. Feng, Y. Hao, Q. Li, M. Chen et al., Synthesis of CaCO3-based nanomedicine for enhanced sonodynamic therapy via amplification of tumor oxidative stress. Chem 6(6), 1391–1407 (2020). https://doi.org/10.1016/j.chempr.2020.02.020
P. Zheng, B. Ding, R. Shi, Z. Jiang, W. Xu et al., A multichannel Ca2+ nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater. 33(15), 2007426 (2021). https://doi.org/10.1002/adma.202007426
H. Xiong, S. Du, J. Ni, J. Zhou, J. Yao, Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanops for enhancing therapeutic efficacy of doxorubicin. Biomaterials 94, 70–83 (2016). https://doi.org/10.1016/j.biomaterials.2016.04.004
H. Zhao, C. Wu, D. Gao, S. Chen, Y. Zhu et al., Antitumor effect by hydroxyapatite nanospheres: activation of mitochondria-dependent apoptosis and negative regulation of phosphatidylinositol-3-kinase/protein kinase B pathway. ACS Nano 12(8), 7838–7854 (2018). https://doi.org/10.1021/acsnano.8b01996
K.K. Johnson, P. Koshy, J.L. Yang, C.C. Sorrell, Preclinical cancer theranostics-from nanomaterials to clinic: the missing link. Adv. Funct. Mater. 31(43), 2104199 (2021). https://doi.org/10.1002/adfm.202104199
Y. Li, X. Zheng, Q. Chu, Bio-based nanomaterials for cancer therapy. Nano Today 38, 101134 (2021). https://doi.org/10.1016/j.nantod.2021.101134
C. Qi, S. Musetti, L.H. Fu, Y.J. Zhu, L. Huang, Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem. Soc. Rev. 48(10), 2698–2737 (2019). https://doi.org/10.1039/c8cs00489g
L.H. Fu, Y.R. Hu, C. Qi, T. He, S. Jiang et al., Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano 13(12), 13985–13994 (2019). https://doi.org/10.1021/acsnano.9b05836
S. Qing, C. Lyu, L. Zhu, C. Pan, S. Wang et al., Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy. Adv. Mater. 32(47), 2002085 (2020). https://doi.org/10.1002/adma.202002085
Y. Li, S. Zhou, H. Song, T. Yu, X. Zheng et al., CaCO3 nanops incorporated with KAE to enable amplified calcium overload cancer therapy. Biomaterials 277, 121080 (2021). https://doi.org/10.1016/j.biomaterials.2021.121080
P. Zheng, B. Ding, Z. Jiang, W. Xu, G. Li et al., Ultrasound-augmented mitochondrial calcium ion overload by calcium nanomodulator to induce immunogenic cell death. Nano Lett. 21(5), 2088–2093 (2021). https://doi.org/10.1021/acs.nanolett.0c04778
Y. Zhu, Z. Yang, Z. Dong, Y. Gong, Y. Hao et al., CaCO3-assisted preparation of pH-responsive immune-modulating nanops for augmented chemo-immunotherapy. Nano-Micro Lett. 13, 29 (2020). https://doi.org/10.1007/s40820-020-00549-4
K.H. Min, H.S. Min, H.J. Lee, D.J. Park, J.Y. Yhee et al., pH-controlled gas-generating mineralized nanops: a theranostic agent for ultrasound imaging and therapy of cancers. ACS Nano 9(1), 134–145 (2015). https://doi.org/10.1021/nn506210a
T. Fan, W. Ye, P. Zhao, W. Zhou, Y. Chen et al., pH-responsive core-shell nanogels induce in situ antigen production for cancer treatment. Chem. Eng. J. 426, 130839 (2021). https://doi.org/10.1016/j.cej.2021.130839
A.D. Trofimov, A.A. Ivanova, M.V. Zyuzin, A.S. Timin, Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: fresh outlook and future perspectives. Pharmaceutics 10(4), 167 (2018). https://doi.org/10.3390/pharmaceutics10040167
P. Jangili, N. Kong, J.H. Kim, J. Zhou, H. Liu et al., DNA-damage-response-targeting mitochondria-activated multifunctional prodrug strategy for self-defensive tumor therapy. Angew. Chem. Int. Ed. 61(16), e202117075 (2022). https://doi.org/10.1002/anie.202117075
Z. Yang, D. Gao, X. Guo, L. Jin, J. Zheng et al., Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 14(12), 17442–17457 (2020). https://doi.org/10.1021/acsnano.0c07721
C. Xu, Y. Wang, E. Wang, N. Yan, S. Sheng et al., Effective eradication of tumors by enhancing photoacoustic-imaging-guided combined photothermal therapy and ultrasonic therapy. Adv. Funct. Mater. 31(10), 2009314 (2020). https://doi.org/10.1002/adfm.202009314
Q. Guan, L.L. Zhou, F.H. Lv, W.Y. Li, Y.A. Li et al., A glycosylated covalent organic framework equipped with bodipy and CaCO3 for synergistic tumor therapy. Angew. Chem. Int. Ed. 59(41), 18042–18047 (2020). https://doi.org/10.1002/anie.202008055
J.W. Ko, E.J. Son, C.B. Park, Nature-inspired synthesis of nanostructured electrocatalysts through mineralization of calcium carbonate. Chemsuschem 10(12), 2585–2591 (2017). https://doi.org/10.1002/cssc.201700616
S. Yao, B. Jin, Z. Liu, C. Shao, R. Zhao et al., Biomineralization: from material tactics to biological strategy. Adv. Mater. 29(14), 1605903 (2017). https://doi.org/10.1002/adma.201605903
Y. Liu, B. Yu, X. Dai, N. Zhao, F.J. Xu, Biomineralized calcium carbonate nanohybrids for mild photothermal heating-enhanced gene therapy. Biomaterials 274, 120885 (2021). https://doi.org/10.1016/j.biomaterials.2021.120885
X. Wan, H. Zhong, W. Pan, Y. Li, Y. Chen et al., Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal-organic framework. Angew. Chem. Int. Ed. 58(40), 14134–14139 (2019). https://doi.org/10.1002/anie.201907388
H.D. Chen, Y.P. Chen, R. Xie, Q.Y. Hu, Q. Cheng et al., Absorption characteristics of novel compound calcium carbonate granules: effects of gastric acid deficiency and exogenous weak acids. Curr. Med. Sci. 39(2), 337–342 (2019). https://doi.org/10.1007/s11596-019-2040-4
Q. Chen, C. Wang, X. Zhang, G. Chen, Q. Hu et al., In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14(1), 89–97 (2019). https://doi.org/10.1038/s41565-018-0319-4
C. Pellow, M.A. O’Reilly, K. Hynynen, G. Zheng, D.E. Goertz, Simultaneous intravital optical and acoustic monitoring of ultrasound-triggered nanobubble generation and extravasation. Nano Lett. 20(6), 4512–4519 (2020). https://doi.org/10.1021/acs.nanolett.0c01310
F. Ridi, I. Meazzini, B. Castroflorio, M. Bonini, D. Berti et al., Functional calcium phosphate composites in nanomedicine. Adv. Colloid Interf. Sci. 244, 281–295 (2017). https://doi.org/10.1016/j.cis.2016.03.006
R. Khalifehzadeh, H. Arami, Biodegradable calcium phosphate nanops for cancer therapy. Adv. Colloid Interf. Sci. 279, 102157 (2020). https://doi.org/10.1016/j.cis.2020.102157
J. Tang, B. Li, C.B. Howard, S.M. Mahler, K.J. Thurecht et al., Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. Biomaterials 216, 119232 (2019). https://doi.org/10.1016/j.biomaterials.2019.119232
Q. Wang, X. Zhang, H. Liao, Y. Sun, L. Ding et al., Multifunctional shell-core nanops for treatment of multidrug resistance hepatocellular carcinoma. Adv. Funct. Mater. 28(14), 1706124 (2018). https://doi.org/10.1002/adfm.201706124
W. Zhi, X. Wang, D. Sun, T. Chen, B. Yuan et al., Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact. Mater. 11, 240–253 (2022). https://doi.org/10.1016/j.bioactmat.2021.09.024
Y. Lai, H. Cao, X. Wang, S. Chen, M. Zhang et al., Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials 153, 1–13 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.025
F.L. Graham, A.J. Eb, A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52(2), 456–467 (1973). https://doi.org/10.1016/0042-6822(73)90341-3
Q. Jia, R. Zhang, Y. Wang, H. Yan, Z. Li et al., A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tumor malignancy. Sci. Bull. 67(3), 288–298 (2022). https://doi.org/10.1016/j.scib.2021.11.003
G. Li, Y. Chen, L. Zhang, M. Zhang, S. Li et al., Facile approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk-shell nanops for dual-mode imaging and pH/NIR-responsive drug delivery. Nano-Micro Lett. 10, 7 (2018). https://doi.org/10.1007/s40820-017-0155-3
L.H. Fu, Y. Wan, C. Li, C. Qi, T. He et al., Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 31(14), 2009848 (2021). https://doi.org/10.1002/adfm.202009848
X. Tan, J. Huang, Y. Wang, S. He, L. Jia et al., Transformable nanosensitizer with tumor microenvironment-activated sonodynamic process and calcium release for enhanced cancer immunotherapy. Angew. Chem. Int. Ed. 60(25), 14051–14059 (2021). https://doi.org/10.1002/anie.202102703
C. Wang, X. Wang, W. Zhang, D. Ma, F. Li et al., Shielding ferritin with a biomineralized shell enables efficient modulation of tumor microenvironment and targeted delivery of diverse therapeutic agents. Adv. Mater. 34(5), 2107150 (2022). https://doi.org/10.1002/adma.202107150
H. Kong, Q. Chu, C. Fang, G. Cao, G. Han et al., Cu-ferrocene-functionalized CaO2 nanops to enable tumor-specific synergistic therapy with GSH depletion and calcium overload. Adv. Sci. 8(14), 2100241 (2021). https://doi.org/10.1002/advs.202100241
B. Liu, Y. Bian, S. Liang, M. Yuan, S. Dong et al., One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy. ACS Nano 16(1), 617–630 (2021). https://doi.org/10.1021/acsnano.1c07893
Y. Jiang, W. Meng, L. Wu, K. Shao, L. Wang et al., Image-guided TME-improving nano-platform for Ca2+ signal disturbance and enhanced tumor PDT. Adv. Healthc. Mater. 10(19), 2100789 (2021). https://doi.org/10.1002/adhm.202100789
Q. Sun, B. Liu, R. Zhao, L. Feng, Z. Wang et al., Calcium peroxide-based nanosystem with cancer microenvironment-activated capabilities for imaging guided combination therapy via mitochondrial Ca2+ overload and chemotherapy. ACS Appl. Mater. Interfaces 13(37), 44096–44107 (2021). https://doi.org/10.1021/acsami.1c13304
Q. Sun, B. Liu, Z. Wang, L. Feng, R. Zhao et al., H2O2/O2 self-supplementing and GSH-depleting Ca2+ nanogenerator with hyperthermia-triggered, TME-responsive capacities for combination cancer therapy. Chem. Eng. J. 425, 131485 (2021). https://doi.org/10.1016/j.cej.2021.131485
L.H. Liu, Y.H. Zhang, W.X. Qiu, L. Zhang, F. Gao et al., Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 13(37), 1701621 (2017). https://doi.org/10.1002/smll.201701621
J. He, L.H. Fu, C. Qi, J. Lin, P. Huang, Metal peroxides for cancer treatment. Bioact. Mater. 6(9), 2698–2710 (2021). https://doi.org/10.1016/j.bioactmat.2021.01.026
S. Gao, Y. Jin, K. Ge, Z. Li, H. Liu et al., Self-supply of O2 and H2O2 by a nanocatalytic medicine to enhance combined chemo/chemodynamic therapy. Adv. Sci. 6(24), 1902137 (2019). https://doi.org/10.1002/advs.201902137
C. Liu, Y. Cao, Y. Cheng, D. Wang, T. Xu et al., An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nat. Commun. 11, 1735 (2020). https://doi.org/10.1038/s41467-020-15591-4
K. Zhou, P. Yu, X. Shi, T. Ling, W. Zeng et al., Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano 13(8), 9595–9606 (2019). https://doi.org/10.1021/acsnano.9b04723
X. Wang, S. Ihara, X. Li, A. Ito, Y. Sogo et al., Rod-scale design strategies for immune-targeted delivery system toward cancer immunotherapy. ACS Nano 13(7), 7705–7715 (2019). https://doi.org/10.1021/acsnano.9b01271
K. Zhang, Y. Zhou, C. Xiao, W. Zhao, H. Wu et al., Application of hydroxyapatite nanops in tumor-associated bone segmental defect. Sci. Adv. 5(8), eaax6946 (2019). https://doi.org/10.1126/sciadv.aax6946
J. Liao, R. Han, Y. Wu, Z. Qian, Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 9(1), 18 (2021). https://doi.org/10.1038/s41413-021-00139-z
S. Pan, J. Yin, L. Yu, C. Zhang, Y. Zhu et al., 2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction. Adv. Sci. 7(2), 1901511 (2020). https://doi.org/10.1002/advs.201901511
Z. Li, X. Zhang, J. Ouyang, D. Chu, F. Han et al., Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis. Bioact. Mater. 6(11), 4053–4064 (2021). https://doi.org/10.1016/j.bioactmat.2021.04.014
Y. Jiang, X. Pan, M. Yao, L. Han, X. Zhang et al., Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 39, 101182 (2021). https://doi.org/10.1016/j.nantod.2021.101182
Y. Kang, W. Sun, S. Li, M. Li, J. Fan et al., Oligo hyaluronan-coated silica/hydroxyapatite degradable nanops for targeted cancer treatment. Adv. Sci. 6(13), 1900716 (2019). https://doi.org/10.1002/advs.201900716
C.N. Cornell, J.M. Lane, M. Chapman, R. Merkow, D. Seligson et al., Multicenter trial of collagraft as bone graft substitute. J. Orthop. Trauma 5(1), 1–8 (1991). https://doi.org/10.1097/00005131-199103000-00001
G. Chen, M. Yin, W. Liu, B. Xin, G. Bai et al., A novel height-adjustable nano-hydroxyapatite/polyamide-66 vertebral body for reconstruction of thoracolumbar structural stability after spinal tumor resection. World Neurosurg. 12, 206–214 (2019). https://doi.org/10.1016/j.wneu.2018.09.213
H. Ma, T. Li, Z. Huan, M. Zhang, Z. Yang et al., 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater. 10(4), 31–44 (2018). https://doi.org/10.1038/s41427-018-0015-8
Z. Li, Y. Zhang, L. Huang, Y. Yang, Y. Zhao et al., Nanoscale “fluorescent stone”: luminescent calcium fluoride nanops as theranostic platforms. Theranostics 6(13), 2380–2393 (2016). https://doi.org/10.7150/thno.15914
F. Gong, J. Xu, B. Liu, N. Yang, L. Cheng et al., Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem 8(1), 268–286 (2022). https://doi.org/10.1016/j.chempr.2021.11.020
X. Wang, J. Xue, B. Ma, J. Wu, J. Chang et al., Black bioceramics: combining regeneration with therapy. Adv. Mater. 32(48), 2005140 (2020). https://doi.org/10.1002/adma.202005140
Z. Kang, B. Yu, S. Fu, D. Li, X. Zhang et al., Three-dimensional printing of CaTiO3 incorporated porous β-Ca2SiO4 composite scaffolds for bone regeneration. Appl. Mater. Today 16, 132–140 (2019). https://doi.org/10.1016/j.apmt.2019.05.005
S. Guo, D. Sun, D. Ni, M. Yu, K. Qian et al., Smart tumor microenvironment-responsive nanotheranostic agent for effective cancer therapy. Adv. Funct. Mater. 30(17), 2000486 (2020). https://doi.org/10.1002/adfm.202000486
Z. Li, H. Liu, R. Wang, C. Ji, Y. Wei et al., Bioactive core-shell CaF2 upconversion nanostructure for promotion and visualization of engineered bone reconstruction. ACS Nano 14(11), 16085–16095 (2020). https://doi.org/10.1021/acsnano.0c08013
N.N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati et al., NIR-to-NIR two-photon excited CaF2:Tm3+, Yb3+ nanops: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. ACS Nano 5(11), 8665–8671 (2011). https://doi.org/10.1021/nn202490m
Y.C. Wang, S.H. Tsai, M.H. Chen, F.Y. Hsieh, Y.C. Chang et al., Mineral nanomedicine to enhance the efficacy of adjuvant radiotherapy for treating osteosarcoma. ACS Appl. Mater. Interfaces 14(4), 5586–5597 (2022). https://doi.org/10.1021/acsami.1c21729
M. Zahedifar, E. Sadeghi, M.M. Shanei, A. Sazgarnia, M. Mehrabi, Afterglow properties of CaF2: Tm nanops and its potential application in photodynamic therapy. J. Lumin. 171, 254–258 (2016). https://doi.org/10.1016/j.jlumin.2015.11.043
X. Sun, M. Zhang, R. Du, X. Zheng, C. Tang et al., A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy. Chem. Eng. J. 350, 69–78 (2018). https://doi.org/10.1016/j.cej.2018.05.157
D. Mukherjee, D. Schuhknecht, J. Okuda, Hydrido complexes of calcium: a new family of molecular alkaline-earth-metal compounds. Angew. Chem. Int. Ed. 57(31), 9590–9602 (2018). https://doi.org/10.1002/anie.201801869
W. Wang, G. Karamanlidis, R. Tian, Novel targets for mitochondrial medicine. Sci. Transl. Med. 8(326), 326rv3 (2016). https://doi.org/10.1126/scitranslmed.aac7410
D.V. Ziegler, D. Vindrieux, D. Goehrig, S. Jaber, G. Collin et al., Calcium channel ITPR2 and mitochondria-ER contacts promote cellular senescence and aging. Nat. Commun. 12, 720 (2021). https://doi.org/10.1038/s41467-021-20993-z
M. Fan, J. Zhang, C.W. Tsai, B.J. Orlando, M. Rodriguez et al., Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature 582(7810), 129–133 (2020). https://doi.org/10.1038/s41586-020-2309-6
Y. Wang, N.X. Nguyen, J. She, W. Zeng, Y. Yang et al., Structural mechanism of EMRE-dependent gating of the human mitochondrial calcium uniporter. Cell 177(5), 1252–1261 (2019). https://doi.org/10.1016/j.cell.2019.03.050
Y. Zhou, J. Zhang, P. Dan, F. Bi, Y. Chen et al., Tumor calcification as a prognostic factor in cetuximab plus chemotherapy-treated patients with metastatic colorectal cancer. Anticancer Drugs 30(2), 195–200 (2019). https://doi.org/10.1097/CAD.0000000000000726
J. Wu, Y. Chen, J. Xin, J. Qin, W. Zheng et al., Bioinspired tumor calcification enables early detection and elimination of lung cancer. Adv. Funct. Mater. 31(27), 2101284 (2021). https://doi.org/10.1002/adfm.202101284
D.T. Blumenthal, O. Aisenstein, I. Ben-Horin, D.B. Bashat, M. Artzi et al., Calcification in high grade gliomas treated with bevacizumab. J. Neurooncol. 123(2), 283–288 (2015). https://doi.org/10.1007/s11060-015-1796-z
J. An, M. Liu, L. Zhao, W. Lu, S. Wu et al., Boosting tumor immunotherapy by bioactive nanops via Ca2+ interference mediated TME reprogramming and specific PD-L1 depletion. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202201275
Y. Liu, M. Zhang, W. Bu, Bioactive nanomaterials for ion-interference therapy. View 1(2), e18 (2020). https://doi.org/10.1002/viw2.18
S. Wu, K. Zhang, Y. Liang, Y. Wei, J. An et al., Nano-enabled tumor systematic energy exhaustion via zinc (II) interference mediated glycolysis inhibition and specific GLUT1 depletion. Adv. Sci. 9(7), 2103534 (2022). https://doi.org/10.1002/advs.202103534
S. Bai, Z. Lu, Y. Jiang, X. Shi, D. Xu et al., Nanotransferrin-based programmable catalysis mediates three-pronged induction of oxidative stress to enhance cancer immunotherapy. ACS Nano 16, 997–1012 (2021). https://doi.org/10.1021/acsnano.1c08619
H. Lin, Y. Zhou, J. Wang, H. Wang, T. Yao et al., Repurposing ICG enables MR/PA imaging signal amplification and iron depletion for iron-overload disorders. Sci. Adv. 7(51), eabl5862 (2021). https://doi.org/10.1126/sciadv.abl5862
L. Garzia, M.D. Taylor, Nailing a Fe-rocious form of cancer. Science 369(6501), 250–251 (2020). https://doi.org/10.1126/science.abb7041
S.H. Park, I. Hwang, D.A. McNaughton, A.J. Kinross, E.N.W. Howe et al., Synthetic Na+/K+ exchangers promote apoptosis by disturbing cellular cation homeostasis. Chem 7(12), 3325–3339 (2021). https://doi.org/10.1016/j.chempr.2021.08.018
W. Jiang, L. Yin, H. Chen, A.V. Paschall, L. Zhang et al., NaCl nanops as a cancer therapeutic. Adv. Mater. 31(46), 1904058 (2019). https://doi.org/10.1002/adma.201904058
J. Loncke, A. Kaasik, I. Bezprozvanny, J.B. Parys, M. Kerkhofs et al., Balancing ER-mitochondrial Ca2+ fluxes in health and disease. Trends Cell Biol. 31(7), 598–612 (2021). https://doi.org/10.1016/j.tcb.2021.02.003
Y. Liu, W. Zhen, Y. Wang, S. Song, H. Zhang, Na2S2O8 nanops trigger antitumor immunotherapy through reactive oxygen species storm and surge of tumor osmolarity. J. Am. Chem. Soc. 142(52), 21751–21757 (2020). https://doi.org/10.1021/jacs.0c09482
T. Pan, W. Fu, H. Xin, S. Geng, Z. Li et al., Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv. Funct. Mater. 30(38), 2003069 (2020). https://doi.org/10.1002/adfm.202003069
X. Chi, D. Gong, K. Ren, G. Zhou, G. Huang et al., Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. PNAS 116(51), 25575–25582 (2019). https://doi.org/10.1073/pnas.1914451116
M. Trebak, J.P. Kinet, Calcium signalling in T cells. Nat. Rev. Immunol. 19(3), 154–169 (2019). https://doi.org/10.1038/s41577-018-0110-7
D. Gong, X. Chi, J. Wei, G. Zhou, G. Huang et al., Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 572(7769), 347–351 (2019). https://doi.org/10.1038/s41586-019-1377-y
Y. Zhao, G. Huang, J. Wu, Q. Wu, S. Gao et al., Molecular basis for ligand modulation of a mammalian voltage-gated Ca2+ channel. Cell 177(6), 1495–1506 (2019). https://doi.org/10.1016/j.cell.2019.04.043
W. Guo, Q. Tang, M. Wei, Y. Kang, J.X. Wu et al., Structural mechanism of human TRPC3 and TRPC6 channel regulation by their intracellular calcium-binding sites. Neuron 110(6), 1023–1035 (2022). https://doi.org/10.1016/j.neuron.2021.12.023
L. Alza, A. Visa, J. Herreros, C. Cantí, The rise of T-type channels in melanoma progression and chemotherapeutic resistance. BBA. Rev. Cancer 1873(2), 188364 (2020). https://doi.org/10.1016/j.bbcan.2020.188364
X. Meng, C. Cai, J. Wu, S. Cai, C. Ye et al., TRPM7 mediates breast cancer cell migration and invasion through the mapk pathway. Cancer Lett. 333(1), 96–102 (2013). https://doi.org/10.1016/j.canlet.2013.01.031
J.Y. Wang, J. Sun, M.Y. Huang, Y.S. Wang, M.F. Hou et al., STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene 34(33), 4358–4367 (2015). https://doi.org/10.1038/onc.2014.366
D. McAndrew, D.M. Grice, A.A. Peters, F.M. Davis, T. Stewart et al., Orai1-mediated calcium influx in lactation and in breast cancer. Mol. Cancer Ther. 10(3), 448–460 (2011). https://doi.org/10.1158/1535-7163.MCT-10-0923
N.M. Aiello, Y. Kang, Context-dependent EMT programs in cancer metastasis. J. Exp. Med. 216(5), 1016–1026 (2019). https://doi.org/10.1084/jem.20181827
X. Deng, X.Q. Yao, K. Berglund, B. Dong, D. Ouedraogo et al., Tuning protein dynamics to sense rapid endoplasmic-reticulum calcium dynamics. Angew. Chem. Int. Ed. 60(43), 23289–23298 (2021). https://doi.org/10.1002/anie.202108443
A. Bhargava, S. Saha, T-type voltage gated calcium channels: a target in breast cancer? Breast Cancer Res. Tr. 173(1), 11–21 (2019). https://doi.org/10.1007/s10549-018-4970-0
J.Y. Zhang, P.P. Zhang, W.P. Zhou, J.Y. Yu, Z.H. Yao et al., L-type cav 1.2 calcium channel-α-1C regulates response to rituximab in diffuse large B-cell lymphoma. Clin. Cancer Res. 25(13), 4168–4178 (2019). https://doi.org/10.1158/1078-0432.CCR-18-2146
J. Hasna, F. Hague, L. Rodat-Despoix, D. Geerts, C. Leroy et al., Orai3 calcium channel and resistance to chemotherapy in breast cancer cells: the p53 connection. Cell Death Differ. 25(4), 691–705 (2018). https://doi.org/10.1038/s41418-017-0007-1
C. Dubois, F.V. Abeele, V. Lehen’kyi, D. Gkika, B. Guarmit et al., Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 26(1), 19–32 (2014). https://doi.org/10.1016/j.ccr.2014.04.025
J. Taylor, I. Azimi, G. Monteith, M. Bebawy, Ca2+ mediates extracellular vesicle biogenesis through alternate pathways in malignancy. J. Extracell. Vesicles 9(1), 1734326 (2020). https://doi.org/10.1080/20013078.2020.1734326
M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Bio. 4(7), 517–529 (2003). https://doi.org/10.1038/nrm1155
A.C. Dolphin, A. Lee, Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 21(4), 213–229 (2020). https://doi.org/10.1038/s41583-020-0278-2
X. Chu, X. Jiang, Y. Liu, S. Zhai, Y. Jiang et al., Nitric oxide modulating calcium store for Ca2+-initiated cancer therapy. Adv. Funct. Mater. 31(13), 2008507 (2021). https://doi.org/10.1002/adfm.202008507
D. Kozai, N. Ogawa, Y. Mori, Redox regulation of transient receptor potential channels. Antioxid. Redox Sign. 21(6), 971–986 (2014). https://doi.org/10.1089/ars.2013.5616
N. Takahashi, Y. Mizuno, D. Kozai, S. Yamamoto, S. Kiyonaka et al., Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels 2(4), 287–298 (2008). https://doi.org/10.4161/chan.2.4.6745
A. Zaidi, M.L. Michaelis, Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radical Bio. Med. 27(7–8), 810–821 (1999). https://doi.org/10.1016/s0891-5849(99)00128-8
E. Bertero, C. Maack, Calcium signaling and reactive oxygen species in mitochondria. Circ. Res. 122(10), 1460–1478 (2018). https://doi.org/10.1161/CIRCRESAHA.118.310082
K.I. Ataga, M. Reid, S.K. Ballas, Z. Yasin, C. Bigelow et al., Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso-occlusive crises in patients with sickle cell disease: a phase III randomized, placebo-controlled, double-blind study of the gardos channel blocker senicapoc (ICA-17043). Brit. J. Haematol. 153(1), 92–104 (2011). https://doi.org/10.1111/j.1365-2141.2010.08520.x
J.W. Stocker, L.D. Franceschi, G.A. McNaughton-Smith, R. Corrocher, Y. Beuzard et al., ICA-17043, a novel gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in sad mice. Blood 101(6), 2412–2418 (2003). https://doi.org/10.1182/blood-2002-05-1433
J. An, K. Zhang, B. Wang, S. Wu, Y. Wang et al., Nanoenabled disruption of multiple barriers in antigen cross-presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 14(6), 7639–7650 (2020). https://doi.org/10.1021/acsnano.0c03881
S. Wang, D. Ni, H. Yue, N. Luo, X. Xi et al., Exploration of antigen induced CaCO3 nanops for therapeutic vaccine. Small 14(14), 1704272 (2018). https://doi.org/10.1002/smll.201704272
M. Li, M. Qin, G. Song, H. Deng, D. Wang et al., A biomimetic antitumor nanovaccine based on biocompatible calcium pyrophosphate and tumor cell membrane antigens. Asian J. Pharm. Sci. 16(1), 97–109 (2021). https://doi.org/10.1016/j.ajps.2020.06.006
H. Kang, K. Zhang, D.S.H. Wong, F. Han, B. Li et al., Near-infrared light-controlled regulation of intracellular calcium to modulate macrophage polarization. Biomaterials 178, 681–696 (2018). https://doi.org/10.1016/j.biomaterials.2018.03.007
S. Sen, M. Won, M.S. Levine, Y. Noh, A.C. Sedgwick et al., Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. Chem. Soc. Rev. 51(4), 1212–1233 (2022). https://doi.org/10.1039/d1cs00417d
L. Galluzzi, A. Buque, O. Kepp, L. Zitvogel, G. Kroemer, Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17(2), 97–111 (2017). https://doi.org/10.1038/nri.2016.107
S. Bai, L.L. Yang, Y. Wang, T. Zhang, L. Fu et al., Prodrug-based versatile nanomedicine for enhancing cancer immunotherapy by increasing immunogenic cell death. Small 16(19), 2000214 (2020). https://doi.org/10.1002/smll.202000214
X. Shi, Y. Zhang, S. Xu, S. Bai, S. Li et al., Unimolecule-based size-charge switchable nanomedicine for deep cancer sono-immunotherapy. Nano Today 43, 101417 (2022). https://doi.org/10.1016/j.nantod.2022.101417
Z. Dai, J. Tang, Z. Gu, Y. Wang, Y. Yang et al., Eliciting immunogenic cell death via a unitized nanoinducer. Nano Lett. 20(9), 6246–6254 (2020). https://doi.org/10.1021/acs.nanolett.0c00713
R. Tufi, T. Panaretakis, K. Bianchi, A. Criollo, B. Fazi et al., Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ. 15(2), 274–282 (2008). https://doi.org/10.1038/sj.cdd.4402275
Q. Chen, T. Sun, C. Jiang, Recent advancements in nanomedicine for “cold” tumor immunotherapy. Nano-Micro Lett. 13, 92 (2021). https://doi.org/10.1007/s40820-021-00622-6
S.D. Jeong, B.K. Jung, H.M. Ahn, D. Lee, J. Ha et al., Immunogenic cell death inducing fluorinated mitochondria-disrupting helical polypeptide synergizes with PD-L1 immune checkpoint blockade. Adv. Sci. 8(7), 2001308 (2021). https://doi.org/10.1002/advs.202001308
Y. Shen, M.J. Czaja, A novel mechanism of starvation-stimulated hepatic autophagy: calcium-induced o-glcnac-dependent signaling. Hepatology 69(1), 446–448 (2019). https://doi.org/10.1002/hep.30118
H. Nakatogawa, Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Bio. 21(8), 439–458 (2020). https://doi.org/10.1038/s41580-020-0241-0
L. Galluzzi, D.R. Green, Autophagy-independent functions of the autophagy machinery. Cell 177(7), 1682–1699 (2019). https://doi.org/10.1016/j.cell.2019.05.026
Y. Shi, G. Lin, H. Zheng, D. Mu, H. Chen et al., Biomimetic nanops blocking autophagy for enhanced chemotherapy and metastasis inhibition via reversing focal adhesion disassembly. J. Nanobiotechnol. 19(1), 447 (2021). https://doi.org/10.1186/s12951-021-01189-5
Y. Shi, J. Wang, J. Liu, G. Lin, F. Xie et al., Oxidative stress-driven DR5 upregulation restores TRAIL/Apo2l sensitivity induced by iron oxide nanops in colorectal cancer. Biomaterials 233, 119753 (2020). https://doi.org/10.1016/j.biomaterials.2019.119753
Y.H. Guan, N. Wang, Z.W. Deng, X.G. Chen, Y. Liu, Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials 282, 121434 (2022). https://doi.org/10.1016/j.biomaterials.2022.121434
A. Gardner, B. Ruffell, Dendritic cells and cancer immunity. Trends Immunol. 37(12), 855–865 (2016). https://doi.org/10.1016/j.it.2016.09.006
S.E. Crawford, M.K. Estes, Viroporin-mediated calcium-activated autophagy. Autophagy 9(5), 797–798 (2013). https://doi.org/10.4161/auto.23959
D.L. Medina, A. Ballabio, Lysosomal calcium regulates autophagy. Autophagy 11(6), 970–971 (2015). https://doi.org/10.1080/15548627.2015.1047130
J. Lu, Y. Jiao, G. Cao, Z. Liu, Multimode CaCO3/pneumolysin antigen delivery systems for inducing efficient cellular immunity for anti-tumor immunotherapy. Chem. Eng. J. 420, 129746 (2021). https://doi.org/10.1016/j.cej.2021.129746
W. Mu, Q. Chu, Y. Liu, N. Zhang, A review on nano-based drug delivery system for cancer chemoimmunotherapy. Nano-Micro Lett. 12, 142 (2020). https://doi.org/10.1007/s40820-020-00482-6
C. Liu, X. Liu, X. Xiang, X. Pang, S. Chen et al., A nanovaccine for antigen self-presentation and immunosuppression reversal as a personalized cancer immunotherapy strategy. Nat. Nanotechnol. 17, 531–540 (2022). https://doi.org/10.1038/s41565-022-01098-0
A.M. Harandi, Systems analysis of human vaccine adjuvants. Semin. Immunol. 39, 30–34 (2018). https://doi.org/10.1016/j.smim.2018.08.001
S.R. Bonam, C.D. Partidos, S.K.M. Halmuthur, S. Muller, An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci. 38(9), 771–793 (2017). https://doi.org/10.1016/j.tips.2017.06.002
G.D. Giudice, R. Rappuoli, A.M. Didierlaurent, Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin. Immunol. 39, 14–21 (2018). https://doi.org/10.1016/j.smim.2018.05.001
T.J. Moyer, Y. Kato, W. Abraham, J.Y.H. Chang, D.W. Kulp et al., Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26(3), 430–440 (2020). https://doi.org/10.1038/s41591-020-0753-3
A.T. Glenny, C.G. Pope, H. Waddington, V. Wallace, The antigenic value of toxoid precipitated by potassium alim. J. Pathol. Bacteriol. 29, 38–45 (1926). https://doi.org/10.1002/path.1700290106
J. Wang, P. Li, Y. Yu, Y. Fu, H. Jiang et al., Pulmonary surfactant-biomimetic nanops potentiate heterosubtypic influenza immunity. Science 367(6480), 869 (2020). https://doi.org/10.1126/science.aau0810
L. Xu, X. Wang, W. Wang, M. Sun, W.J. Choi et al., Enantiomer-dependent immunological response to chiral nanops. Nature 601(7893), 366–373 (2022). https://doi.org/10.1038/s41586-021-04243-2
S.Y. Peng, X.H. Liu, Q.W. Chen, Y.J. Yu, M.D. Liu et al., Harnessing in situ glutathione for effective ROS generation and tumor suppression via nanohybrid-mediated catabolism dynamic therapy. Biomaterials 281, 121358 (2022). https://doi.org/10.1016/j.biomaterials.2021.121358
M. Casanova-Acebes, E. Dalla, A.M. Leader, J. LeBerichel, J. Nikolic et al., Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature 595(7868), 578–584 (2021). https://doi.org/10.1038/s41586-021-03651-8
D.M. Mosser, K. Hamidzadeh, R. Goncalves, Macrophages and the maintenance of homeostasis. Cell. Mol. Immunol. 18(3), 579–587 (2021). https://doi.org/10.1038/s41423-020-00541-3
Y. Qiu, T. Chen, R. Hu, R. Zhu, C. Li et al., Next frontier in tumor immunotherapy: macrophage-mediated immune evasion. Biomark. Res. 9(1), 72 (2021). https://doi.org/10.1186/s40364-021-00327-3
A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, P. Allavena, Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14(7), 399–416 (2017). https://doi.org/10.1038/nrclinonc.2016.217
P.J. Murray, Macrophage polarization. Annu. Rev. Physiol. 79, 541–566 (2017). https://doi.org/10.1146/annurev-physiol-022516-034339
D.V. Krysko, K.S. Ravichandran, P. Vandenabeele, Macrophages regulate the clearance of living cells by calreticulin. Nat. Commun. 9, 4644 (2018). https://doi.org/10.1038/s41467-018-06807-9
D. Chen, J. Xie, R. Fiskesund, W. Dong, X. Liang et al., Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 9, 873 (2018). https://doi.org/10.1038/s41467-018-03225-9
P. Zhou, D. Xia, Z. Ni, T. Ou, Y. Wang et al., Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M. Bioact. Mater. 6(3), 810–822 (2021). https://doi.org/10.1016/j.bioactmat.2020.09.018
L. Wang, G.H. Nancollas, Calcium orthophosphates: crystallization and dissolution. Chem. Rev. 108(11), 4628–4669 (2008). https://doi.org/10.1021/cr0782574
H. Shou, J. Wu, N. Tang, B. Wang, Calcification-based cancer diagnosis and therapy. ChemMedChem 17(4), e202100339 (2022). https://doi.org/10.1002/cmdc.202100339
H.C. Kim, I. Joo, M. Lee, Y.J. Kim, J.C. Paeng et al., Radioembolization-induced tumor calcifications as a surrogate marker of tumor response in patients with hepatocellular carcinoma. Anticancer Res. 40(7), 4191–4198 (2020)
B. Liu, S. Liang, Z. Wang, Q. Sun, F. He et al., A tumor-microenvironment-responsive nanocomposite for hydrogen sulfide gas and trimodal-enhanced enzyme dynamic therapy. Adv. Mater. 33(30), 2101223 (2021). https://doi.org/10.1002/adma.202101223
N. Tang, H. Li, L. Zhang, X. Zhang, Y. Chen et al., A macromolecular drug for cancer therapy via extracellular calcification. Angew. Chem. Int. Ed. 60(12), 6509–6517 (2021). https://doi.org/10.1002/anie.202016122
R. Zhao, B. Wang, X. Yang, Y. Xiao, X. Wang et al., A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angew. Chem. Int. Ed. 55(17), 5225–5229 (2016). https://doi.org/10.1002/anie.201601364
X.Q. Wang, W. Wang, M. Peng, X.Z. Zhang, Free radicals for cancer theranostics. Biomaterials 266, 120474 (2021). https://doi.org/10.1016/j.biomaterials.2020.120474
D. Zhang, D. Zhong, J. Ouyang, J. He, Y. Qi et al., Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022). https://doi.org/10.1038/s41467-022-28744-4
U.S. Srinivas, B.W.Q. Tan, B.A. Vellayappan, A.D. Jeyasekharan, ROS and the DNA damage response in cancer. Redox Biol. 25, 101084 (2019). https://doi.org/10.1016/j.redox.2018.101084
S. Li, Y. Ma, S. Ye, S. Tang, N. Liang et al., Polystyrene microplastics trigger hepatocyte apoptosis and abnormal glycolytic flux via ROS-driven calcium overload. J. Hazard. Mater. 417, 126025 (2021). https://doi.org/10.1016/j.jhazmat.2021.126025
O.H. Petersen, J.V. Gerasimenko, O.V. Gerasimenko, O. Gryshchenko, S. Peng, The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol. Rev. 101(4), 1691–1744 (2021). https://doi.org/10.1152/physrev.00003.2021
H. Zhao, L. Wang, K. Zeng, J. Li, W. Chen et al., Nanomessenger-mediated signaling cascade for antitumor immunotherapy. ACS Nano 15(8), 13188–13199 (2021). https://doi.org/10.1021/acsnano.1c02765
L.R. Roberts, C.B. Sirlin, F. Zaiem, J. Almasri, L.J. Prokop et al., Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology 67(1), 401–421 (2018). https://doi.org/10.1002/hep.29487
M. Ishimura, Y. Yamamoto, K. Mitamura, T. Norikane, Y. Nishiyama, A case of glioblastoma with calcified region imaged with 18F-NaF PET/CT. Clin. Nucl. Med. 43(10), 764–765 (2018). https://doi.org/10.1097/RLU.0000000000002226
A.S. Agatston, W.R. Janowitz, F.J. Hildner, N.R. Zusmer, M. Viamonte et al., Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 15(4), 827–832 (1990). https://doi.org/10.1016/0735-1097(90)90282-t
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
M. Tinawi, Disorders of calcium metabolism: hypocalcemia and hypercalcemia. Cureus 13(1), e12420 (2021). https://doi.org/10.7759/cureus.12420
S. Bai, D. Jia, X. Ma, M. Liang, P. Xue et al., Cylindrical polymer brushes-anisotropic unimolecular micelle drug delivery system for enhancing the effectiveness of chemotherapy. Bioact. Mater. 6(9), 2894–2904 (2021). https://doi.org/10.1016/j.bioactmat.2021.02.011
S. Bai, Y. Zhang, D. Li, X. Shi, G. Lin et al., Gain an advantage from both sides: smart size-shrinkable drug delivery nanosystems for high accumulation and deep penetration. Nano Today 36, 101038 (2021). https://doi.org/10.1016/j.nantod.2020.101038
X. Wang, X. Zhong, J. Li, Z. Liu, L. Cheng, Inorganic nanomaterials with rapid clearance for biomedical applications. Chem. Soc. Rev. 50(15), 8669–8742 (2021). https://doi.org/10.1039/d0cs00461h