High-Voltage Flexible Aqueous Zn-Ion Battery with Extremely Low Dropout Voltage and Super-Flat Platform
Corresponding Author: Yan Huang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 75
Abstract
Flexible rechargeable aqueous zinc-ion batteries (ZIBs) have attracted extensive attentions in the energy storage field due to their high safety, environmental friendliness, and outstanding electrochemical performance while the exploration of high-voltage aqueous ZIBs with excellent rate capability is still a great challenge for the further application them in flexible and wearable electronics. Herein, we fabricated a 2.4 V high-voltage flexible aqueous ZIB, being among the highest voltage reported in aqueous ZIBs. Moreover, it exhibits extremely flat charging/discharging voltage platforms and the dropout voltage is only 0.1 V, which is the smallest gap in all aqueous batteries to our best knowledge. Furthermore, the prepared ZIB performs high rate capability of 25 C and energy density of 120 Wh kg−1 and exhibits excellent safety under various destructive conditions including hammering, sewing, punching, and soaking. These extraordinary results indicate the great application potential of our high-voltage flexible aqueous ZIB in wearable electronics.
Highlights:
1 A 2.4 V high-voltage flexible aqueous ZIB was fabricated, and superiors performances were achieved: extremely flat charging/discharging voltage plateaus (1.9/1.8 V), the smallest plateau voltage gap of 0.1 V, high energy density of 120 Wh kg−1, high power density of 3700 W kg−1, and excellent rate capability of 25 C.
2 The battery posed application potential in wearable electronics with extreme safety against tough destructions including hammering, sewing, punching, and soaking.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Huang, W.S. Ip, Y.Y. Lau, J.F. Sun, J. Zeng et al., Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 11(9), 8953–8961 (2017). https://doi.org/10.1021/acsnano.7b03322
- W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29(1), 1603436 (2017). https://doi.org/10.1002/adma.201603436
- B. He, Q. Zhang, L. Li, J. Sun, P. Man et al., High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors. J. Mater. Chem. A 6(30), 14594–14601 (2018). https://doi.org/10.1039/c8ta05862h
- Y. Zhao, Y. Zhu, X. Zhang, Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat (2019). https://doi.org/10.1002/inf2.12042
- Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
- H.J. Liao, Y.M. Chen, Y.T. Kao, J.Y. An, Y.H. Lai, D.Y. Wang, Freestanding cathode electrode design for high-performance sodium dual-ion battery. J. Phys. Chem. C 121(44), 24463–24469 (2017). https://doi.org/10.1021/acs.jpcc.7b08429
- M.S. Park, J.G. Kim, Y.J. Kim, N.S. Choi, J.S. Kim, Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr. J. Chem. 55(5), 570–585 (2015). https://doi.org/10.1002/ijch.201400174
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- Y. Yu, Y.B. Yin, J.L. Ma, Z.W. Chang, T. Sun et al., Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 18, 382–388 (2019). https://doi.org/10.1016/j.ensm.2019.01.009
- T. Sun, Z.J. Li, X.B. Zhang, Achieving of high density/utilization of active groups via synergic integration of C=N and C=O bonds for ultra-stable and high-rate lithium-ion batteries. Research 2018, 1936735 (2018). https://doi.org/10.1155/2018/1936735
- J.L. Ma, F.L. Meng, Y. Yu, D.P. Liu, J.M. Yan, Y. Zhang, X.B. Zhang, Q. Jiang, Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nat. Chem. 11(1), 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
- B.H. Zhang, Y. Liu, X.W. Wu, Y.Q. Yang, Z. Chang, Z.B. Wen, Y.P. Wu, An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50(10), 1209–1211 (2014). https://doi.org/10.1039/c3cc48382g
- H.P. Zhang, X. Wu, T. Yang, S.S. Liang, X.J. Yang, Cooperation behavior between heterogeneous cations in hybrid batteries. Chem. Commun. 49(85), 9977–9979 (2013). https://doi.org/10.1039/c3cc45895d
- H.F. Li, C.P. Han, Y. Huang, Y. Huang, M.S. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/c7ee03232c
- R.S. Kuhnel, D. Reber, C. Battaglia, A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Lett. 2(9), 2005–2006 (2017). https://doi.org/10.1021/acsenergylett.7b00623
- H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
- Y.H. Zhu, Q. Zhang, X. Yang, E.Y. Zhao, T. Sun et al., Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem 5(1), 168–179 (2019). https://doi.org/10.1016/j.chempr.2018.10.004
- S. Wang, X.B. Zhang, N-doped C@ Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: high performance and new reaction mechanism. Adv. Mater. 31(5), 1805432 (2019). https://doi.org/10.1002/adma.201805432
- S. Wang, Y.H. Zhu, J.M. Yan, X.B. Zhang, P3-type K0.32Fe0.35 Mn0.65O2·0.39H2O: a promising cathode for Na-ion full batteries. J. Mater. Chem. A 6(27), 13075–13081 (2018). https://doi.org/10.1039/C8TA03270J
- M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201703725
- V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18(4), 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
- C.W. Li, Q.C. Zhang, J. Sun, T.T. Li, E. Songfeng et al., High-performance quasi-solid-state flexible aqueous rechargeable Ag–Zn battery based on metal–organic framework-derived ag nanowires. ACS Energy Lett. 3(11), 2761–2768 (2018). https://doi.org/10.1021/acsenergylett.8b01675
- H.F. Li, Z.X. Liu, G.J. Liang, Y. Huang, Y. Huan et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
- L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu, Towards high-voltage aqueous metal-ion batteries beyond 15.V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell, R.A. Huggins, M.F. Toney, Y. Cui, Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014). https://doi.org/10.1038/ncomms4007
- Y. Zhang, L. Wang, Z.Y. Guo, Y.F. Xu, Y.G. Wang, H.S. Peng, High-performance lithium–air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55(14), 4487–4491 (2016). https://doi.org/10.1002/anie.201511832
- C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
- C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11(12), 5421–5425 (2011). https://doi.org/10.1021/nl203193q
- R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13(11), 5748–5752 (2013). https://doi.org/10.1021/nl403669a
- L.P. Wang, P.F. Wang, T.S. Wang, Y.X. Yin, Y.G. Guo, C.R. Wang, Prussian blue nanocubes as cathode materials for aqueous Na–Zn hybrid batteries. J. Power Sources 355, 18–22 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
- J.Y. Lai, Y.T. Li, Influence of cross-linker concentration on the functionality of carbodiimide cross-linked gelatin membranes for retinal sheet carriers. J. Biomat. Sci-Polym. E 22(1–3), 277–295 (2011). https://doi.org/10.1163/092050609x12603600753204
- B. He, P. Man, Q.C. Zhang, C. Wang, Z.Y. Zhou, C.W. Li, L. Wei, Y.G. Yao, Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries. Small 15(52), 8 (2019). https://doi.org/10.1002/smll.201905115
- L. Niu, L. Chen, J. Zhang, P. Jiang, Z.P. Liu, Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Sources 380, 135–141 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.083
- M.A. Oliver-Tolentino, J. Vazquez-Samperio, R. Cabrera-Sierra, E. Reguer, Materials for aqueous sodium-ion batteries: cation mobility in a zinc hexacyanoferrate electrode. RSC Adv. 6(110), 108627–108634 (2016). https://doi.org/10.1039/c6ra23261b
- S.D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo et al., Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29(11), 4874–4884 (2017). https://doi.org/10.1021/acs.chemmater.7b00852
- W. Li, K. Wang, S. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc–manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
- B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), e1703850 (2018). https://doi.org/10.1002/smll.201703850
- S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao et al., Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 6(14), 5733–5739 (2018). https://doi.org/10.1039/c8ta01031e
- Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
- P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
- P. Hu, M.Y. Yan, T. Zhu, X.P. Wang, X.J. Wei et al., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9(49), 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
- P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
- D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/c8ee00378e
- Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
- C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
- C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
- X.W. Wang, F.X. Wang, L.Y. Wang, M.X. Li, Y.F. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28(24), 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
- M. Gong, Y.G. Li, H.B. Zhang, B. Zhang, W. Zhou et al., Ultrafast high-capacity nizn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 7(6), 2025–2032 (2014). https://doi.org/10.1039/c4ee00317a
- C.X. Guo, C.M. Li, Molecule-confined FeOx nanocrystals mounted on carbon as stable anode material for high energy density nickel-iron batteries. Nano Energy 42, 166–172 (2017). https://doi.org/10.1016/j.nanoen.2017.10.052
- P. He, M.Y. Yan, G.B. Zhang, R.M. Sun, L.N. Chen, Q.Y. An, L.Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- Y.Q. Kuai, M.T. Liu, T.L. Wang, Y. Fu, H.W. Ma, Q. Jiang, C. Guan, K.R. Hu, Sea anemone-like zinc–cobalt oxysulfides grown on Ni foam as a battery-type electrode with admirable performance. Ionics 23(6), 1391–1398 (2017). https://doi.org/10.1007/s11581-017-1981-5
- J.L. Liu, J. Wang, Z.L. Ku, H.H. Wang, S. Chen et al., Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 battery. ACS Nano 10(1), 1007–1016 (2016). https://doi.org/10.1021/acsnano.5b06275
- J.P. Liu, C. Guan, C. Zhou, Z. Fan, Q.Q. Ke, G.Z. Zhang, C. Liu, J. Wang, A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28(39), 8732–8739 (2016). https://doi.org/10.1002/adma.201603038
- Z.L. Liu, S.W. Tay, X. Li, Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte. Chem. Commun. 47(46), 12473–12475 (2011). https://doi.org/10.1039/c1cc15022g
- T.L. Gu, Z.Y. Cao, B.Q. Wei, All-manganese-based binder-free stretchable lithium-ion batteries. Adv. Energy Mater. 7(18), 1700369 (2017). https://doi.org/10.1002/aenm.201700369
- P. Hu, T.S. Wang, J.W. Zhao, C.J. Zhang, J. Ma et al., Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl. Mater. Interfaces 7(48), 26396–26399 (2015). https://doi.org/10.1021/acsami.5b09728
- G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on nasicon structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
- H.S. Li, Y. Ding, H. Ha, Y. Shi, L.L. Peng, X.G. Zhang, C.J. Ellison, G.H. Yu, An all-stretchable-component sodium-ion full battery. Adv. Mater. 29(23), 1700898 (2017). https://doi.org/10.1002/adma.201700898
- C. Shen, X. Li, N. Li, K.Y. Xie, J.G. Wang, X.R. Liu, B.Q. Wei, Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
- W.J. Song, J. Park, D.H. Kim, S. Bae, M.J. Kwak et al., Jabuticaba-inspired hybrid carbon filler/polymer electrode for use in highly stretchable aqueous Li-ion batteries. Adv. Energy Mater. 8(10), 1702478 (2018). https://doi.org/10.1002/aenm.201702478
- R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
- X.W. Wang, M.X. Li, Y.F. Wang, B.W. Chen, Y.S. Zhu, Y.P. Wu, A Zn–NiO rechargeable battery with long lifespan and high energy density. J. Mater. Chem. A 3(16), 8280–8283 (2015). https://doi.org/10.1039/c5ta01947h
- Y. Zhang, W.Y. Bai, X.L. Cheng, J. Ren, W. Weng et al., Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53(52), 14564–14568 (2014). https://doi.org/10.1002/anie.201409366
References
Y. Huang, W.S. Ip, Y.Y. Lau, J.F. Sun, J. Zeng et al., Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability. ACS Nano 11(9), 8953–8961 (2017). https://doi.org/10.1021/acsnano.7b03322
W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29(1), 1603436 (2017). https://doi.org/10.1002/adma.201603436
B. He, Q. Zhang, L. Li, J. Sun, P. Man et al., High-performance flexible all-solid-state aqueous rechargeable Zn–MnO2 microbatteries integrated with wearable pressure sensors. J. Mater. Chem. A 6(30), 14594–14601 (2018). https://doi.org/10.1039/c8ta05862h
Y. Zhao, Y. Zhu, X. Zhang, Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat (2019). https://doi.org/10.1002/inf2.12042
Q. Zhang, C. Li, Q. Li, Z. Pan, J. Sun et al., Flexible and high-voltage coaxial-fiber aqueous rechargeable zinc-ion battery. Nano Lett. 19(6), 4035–4042 (2019). https://doi.org/10.1021/acs.nanolett.9b01403
H.J. Liao, Y.M. Chen, Y.T. Kao, J.Y. An, Y.H. Lai, D.Y. Wang, Freestanding cathode electrode design for high-performance sodium dual-ion battery. J. Phys. Chem. C 121(44), 24463–24469 (2017). https://doi.org/10.1021/acs.jpcc.7b08429
M.S. Park, J.G. Kim, Y.J. Kim, N.S. Choi, J.S. Kim, Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr. J. Chem. 55(5), 570–585 (2015). https://doi.org/10.1002/ijch.201400174
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
Y. Yu, Y.B. Yin, J.L. Ma, Z.W. Chang, T. Sun et al., Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 18, 382–388 (2019). https://doi.org/10.1016/j.ensm.2019.01.009
T. Sun, Z.J. Li, X.B. Zhang, Achieving of high density/utilization of active groups via synergic integration of C=N and C=O bonds for ultra-stable and high-rate lithium-ion batteries. Research 2018, 1936735 (2018). https://doi.org/10.1155/2018/1936735
J.L. Ma, F.L. Meng, Y. Yu, D.P. Liu, J.M. Yan, Y. Zhang, X.B. Zhang, Q. Jiang, Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nat. Chem. 11(1), 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
B.H. Zhang, Y. Liu, X.W. Wu, Y.Q. Yang, Z. Chang, Z.B. Wen, Y.P. Wu, An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem. Commun. 50(10), 1209–1211 (2014). https://doi.org/10.1039/c3cc48382g
H.P. Zhang, X. Wu, T. Yang, S.S. Liang, X.J. Yang, Cooperation behavior between heterogeneous cations in hybrid batteries. Chem. Commun. 49(85), 9977–9979 (2013). https://doi.org/10.1039/c3cc45895d
H.F. Li, C.P. Han, Y. Huang, Y. Huang, M.S. Zhu et al., An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 11(4), 941–951 (2018). https://doi.org/10.1039/c7ee03232c
R.S. Kuhnel, D. Reber, C. Battaglia, A high-voltage aqueous electrolyte for sodium-ion batteries. ACS Energy Lett. 2(9), 2005–2006 (2017). https://doi.org/10.1021/acsenergylett.7b00623
H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19(3), 291–312 (2009). https://doi.org/10.1016/j.pnsc.2008.07.014
Y.H. Zhu, Q. Zhang, X. Yang, E.Y. Zhao, T. Sun et al., Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries. Chem 5(1), 168–179 (2019). https://doi.org/10.1016/j.chempr.2018.10.004
S. Wang, X.B. Zhang, N-doped C@ Zn3B2O6 as a low cost and environmentally friendly anode material for Na-ion batteries: high performance and new reaction mechanism. Adv. Mater. 31(5), 1805432 (2019). https://doi.org/10.1002/adma.201805432
S. Wang, Y.H. Zhu, J.M. Yan, X.B. Zhang, P3-type K0.32Fe0.35 Mn0.65O2·0.39H2O: a promising cathode for Na-ion full batteries. J. Mater. Chem. A 6(27), 13075–13081 (2018). https://doi.org/10.1039/C8TA03270J
M. Yan, P. He, Y. Chen, S. Wang, Q. Wei et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. (2018). https://doi.org/10.1002/adma.201703725
V. Soundharrajan, B. Sambandam, S. Kim, M.H. Alfaruqi, D.Y. Putro et al., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18(4), 2402–2410 (2018). https://doi.org/10.1021/acs.nanolett.7b05403
C.W. Li, Q.C. Zhang, J. Sun, T.T. Li, E. Songfeng et al., High-performance quasi-solid-state flexible aqueous rechargeable Ag–Zn battery based on metal–organic framework-derived ag nanowires. ACS Energy Lett. 3(11), 2761–2768 (2018). https://doi.org/10.1021/acsenergylett.8b01675
H.F. Li, Z.X. Liu, G.J. Liang, Y. Huang, Y. Huan et al., Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte. ACS Nano 12(4), 3140–3148 (2018). https://doi.org/10.1021/acsnano.7b09003
L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu, Towards high-voltage aqueous metal-ion batteries beyond 15.V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5(2), 1400930 (2015). https://doi.org/10.1002/aenm.201400930
M. Pasta, C.D. Wessells, N. Liu, J. Nelson, M.T. McDowell, R.A. Huggins, M.F. Toney, Y. Cui, Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014). https://doi.org/10.1038/ncomms4007
Y. Zhang, L. Wang, Z.Y. Guo, Y.F. Xu, Y.G. Wang, H.S. Peng, High-performance lithium–air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55(14), 4487–4491 (2016). https://doi.org/10.1002/anie.201511832
C.D. Wessells, R.A. Huggins, Y. Cui, Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011). https://doi.org/10.1038/ncomms1563
C.D. Wessells, S.V. Peddada, R.A. Huggins, Y. Cui, Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 11(12), 5421–5425 (2011). https://doi.org/10.1021/nl203193q
R.Y. Wang, C.D. Wessells, R.A. Huggins, Y. Cui, Highly reversible open framework nanoscale electrodes for divalent ion batteries. Nano Lett. 13(11), 5748–5752 (2013). https://doi.org/10.1021/nl403669a
L.P. Wang, P.F. Wang, T.S. Wang, Y.X. Yin, Y.G. Guo, C.R. Wang, Prussian blue nanocubes as cathode materials for aqueous Na–Zn hybrid batteries. J. Power Sources 355, 18–22 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.049
J.Y. Lai, Y.T. Li, Influence of cross-linker concentration on the functionality of carbodiimide cross-linked gelatin membranes for retinal sheet carriers. J. Biomat. Sci-Polym. E 22(1–3), 277–295 (2011). https://doi.org/10.1163/092050609x12603600753204
B. He, P. Man, Q.C. Zhang, C. Wang, Z.Y. Zhou, C.W. Li, L. Wei, Y.G. Yao, Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries. Small 15(52), 8 (2019). https://doi.org/10.1002/smll.201905115
L. Niu, L. Chen, J. Zhang, P. Jiang, Z.P. Liu, Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Sources 380, 135–141 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.083
M.A. Oliver-Tolentino, J. Vazquez-Samperio, R. Cabrera-Sierra, E. Reguer, Materials for aqueous sodium-ion batteries: cation mobility in a zinc hexacyanoferrate electrode. RSC Adv. 6(110), 108627–108634 (2016). https://doi.org/10.1039/c6ra23261b
S.D. Han, S. Kim, D. Li, V. Petkov, H.D. Yoo et al., Mechanism of Zn insertion into nanostructured δ-MnO2: a nonaqueous rechargeable Zn metal battery. Chem. Mater. 29(11), 4874–4884 (2017). https://doi.org/10.1021/acs.chemmater.7b00852
W. Li, K. Wang, S. Cheng, K. Jiang, A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 15, 14–21 (2018). https://doi.org/10.1016/j.ensm.2018.03.003
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. Chen, Rechargeable aqueous zinc–manganese dioxide batteries with high energy and power densities. Nat. Commun. 8(1), 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
J. Hao, J. Mou, J. Zhang, L. Dong, W. Liu, C. Xu, F. Kang, Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim. Acta 259, 170–178 (2018). https://doi.org/10.1016/j.electacta.2017.10.166
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
W. Sun, F. Wang, S. Hou, C. Yang, X. Fan et al., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139(29), 9775–9778 (2017). https://doi.org/10.1021/jacs.7b04471
B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Graphene scroll-coated alpha-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 14(13), e1703850 (2018). https://doi.org/10.1002/smll.201703850
S. Zhao, B. Han, D. Zhang, Q. Huang, L. Xiao et al., Unravelling the reaction chemistry and degradation mechanism in aqueous Zn/MnO2 rechargeable batteries. J. Mater. Chem. A 6(14), 5733–5739 (2018). https://doi.org/10.1039/c8ta01031e
Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 13, 168–174 (2018). https://doi.org/10.1016/j.ensm.2018.01.009
P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv. Energy Mater. 8(10), 1702463 (2018). https://doi.org/10.1002/aenm.201702463
P. Hu, M.Y. Yan, T. Zhu, X.P. Wang, X.J. Wei et al., Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces 9(49), 42717–42722 (2017). https://doi.org/10.1021/acsami.7b13110
P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan et al., Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc-ion battery. Nano Lett. 18(3), 1758–1763 (2018). https://doi.org/10.1021/acs.nanolett.7b04889
D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, L.F. Nazar, Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11(4), 881–892 (2018). https://doi.org/10.1039/c8ee00378e
Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang et al., H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv. Energy Mater. 8(19), 1800144 (2018). https://doi.org/10.1002/aenm.201800144
C. Xia, J. Guo, P. Li, X. Zhang, H.N. Alshareef, Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew. Chem. Int. Ed. 57(15), 3943–3948 (2018). https://doi.org/10.1002/anie.201713291
C. Xia, J. Guo, Y.J. Lei, H.F. Liang, C. Zhao, H.N. Alshareef, Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 30(5), 1705580 (2018). https://doi.org/10.1002/adma.201705580
X.W. Wang, F.X. Wang, L.Y. Wang, M.X. Li, Y.F. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28(24), 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
M. Gong, Y.G. Li, H.B. Zhang, B. Zhang, W. Zhou et al., Ultrafast high-capacity nizn battery with NiAlCo-layered double hydroxide. Energy Environ. Sci. 7(6), 2025–2032 (2014). https://doi.org/10.1039/c4ee00317a
C.X. Guo, C.M. Li, Molecule-confined FeOx nanocrystals mounted on carbon as stable anode material for high energy density nickel-iron batteries. Nano Energy 42, 166–172 (2017). https://doi.org/10.1016/j.nanoen.2017.10.052
P. He, M.Y. Yan, G.B. Zhang, R.M. Sun, L.N. Chen, Q.Y. An, L.Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7(11), 1601920 (2017). https://doi.org/10.1002/aenm.201601920
Y.Q. Kuai, M.T. Liu, T.L. Wang, Y. Fu, H.W. Ma, Q. Jiang, C. Guan, K.R. Hu, Sea anemone-like zinc–cobalt oxysulfides grown on Ni foam as a battery-type electrode with admirable performance. Ionics 23(6), 1391–1398 (2017). https://doi.org/10.1007/s11581-017-1981-5
J.L. Liu, J. Wang, Z.L. Ku, H.H. Wang, S. Chen et al., Aqueous rechargeable alkaline CoxNi2−xS2/TiO2 battery. ACS Nano 10(1), 1007–1016 (2016). https://doi.org/10.1021/acsnano.5b06275
J.P. Liu, C. Guan, C. Zhou, Z. Fan, Q.Q. Ke, G.Z. Zhang, C. Liu, J. Wang, A flexible quasi-solid-state nickel–zinc battery with high energy and power densities based on 3D electrode design. Adv. Mater. 28(39), 8732–8739 (2016). https://doi.org/10.1002/adma.201603038
Z.L. Liu, S.W. Tay, X. Li, Rechargeable battery using a novel iron oxide nanorods anode and a nickel hydroxide cathode in an aqueous electrolyte. Chem. Commun. 47(46), 12473–12475 (2011). https://doi.org/10.1039/c1cc15022g
T.L. Gu, Z.Y. Cao, B.Q. Wei, All-manganese-based binder-free stretchable lithium-ion batteries. Adv. Energy Mater. 7(18), 1700369 (2017). https://doi.org/10.1002/aenm.201700369
P. Hu, T.S. Wang, J.W. Zhao, C.J. Zhang, J. Ma et al., Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Appl. Mater. Interfaces 7(48), 26396–26399 (2015). https://doi.org/10.1021/acsami.5b09728
G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on nasicon structured Na3V2(PO4)3. Nano Energy 25, 211–217 (2016). https://doi.org/10.1016/j.nanoen.2016.04.051
H.S. Li, Y. Ding, H. Ha, Y. Shi, L.L. Peng, X.G. Zhang, C.J. Ellison, G.H. Yu, An all-stretchable-component sodium-ion full battery. Adv. Mater. 29(23), 1700898 (2017). https://doi.org/10.1002/adma.201700898
C. Shen, X. Li, N. Li, K.Y. Xie, J.G. Wang, X.R. Liu, B.Q. Wei, Graphene-boosted, high-performance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10(30), 25446–25453 (2018). https://doi.org/10.1021/acsami.8b07781
W.J. Song, J. Park, D.H. Kim, S. Bae, M.J. Kwak et al., Jabuticaba-inspired hybrid carbon filler/polymer electrode for use in highly stretchable aqueous Li-ion batteries. Adv. Energy Mater. 8(10), 1702478 (2018). https://doi.org/10.1002/aenm.201702478
R. Trocoli, F. La Mantia, An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8(3), 481–485 (2015). https://doi.org/10.1002/cssc.201403143
X.W. Wang, M.X. Li, Y.F. Wang, B.W. Chen, Y.S. Zhu, Y.P. Wu, A Zn–NiO rechargeable battery with long lifespan and high energy density. J. Mater. Chem. A 3(16), 8280–8283 (2015). https://doi.org/10.1039/c5ta01947h
Y. Zhang, W.Y. Bai, X.L. Cheng, J. Ren, W. Weng et al., Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53(52), 14564–14568 (2014). https://doi.org/10.1002/anie.201409366