Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells
Corresponding Author: Wei Huang
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 119
Abstract
Organic cation and halide anion defects are omnipresent in the perovskite films, which will destroy perovskite electronic structure and downgrade the properties of devices. Defect passivation in halide perovskites is crucial to the application of solar cells. Herein, tiny amounts of trivalent rhodium ion incorporation can help the nucleation of perovskite grain and passivate the defects in the grain boundaries, which can improve efficiency and stability of perovskite solar cells. Through first-principle calculations, rhodium ion incorporation into the perovskite structure can induce ordered arrangement and tune bandgap. In experiment, rhodium ion incorporation with perovskite can contribute to preparing larger crystalline and uniform film, reducing trap-state density and enlarging charge carrier lifetime. After optimizing the content of 1% rhodium, the devices achieved an efficiency up to 20.71% without obvious hysteresis, from 19.09% of that pristine perovskite. In addition, the unencapsulated solar cells maintain 92% of its initial efficiency after 500 h in dry air. This work highlights the advantages of trivalent rhodium ion incorporation in the characteristics of perovskite solar cells, which will promote the future industrial application.
Highlights:
1 Rhodium ion incorporation helps the nucleation of perovskite grain, passivates the defects in the grain boundaries and enhances the film quality, charge carrier lifetime and mobility.
2 After optimizing 1% rhodium into perovskite film, the solar cells achieve an efficiency of 20.71% without obvious hysteresis.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Shi, L. Duan, Y. Zhao, J. Luo, X. Zhang, Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32(3), 1806474 (2019). https://doi.org/10.1002/adma.201806474
- K.T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu et al., Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11(4), 952–959 (2018). https://doi.org/10.1039/C7EE03513F
- Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun et al., Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27(35), 5176–5183 (2015). https://doi.org/10.1002/adma.201502597
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- W. Liu, L. Chu, R. Hu, R. Zhang, Y. Ma et al., Diameter engineering on TiO2 nanorod arrays for improved hole-conductor-free perovskite solar cells. Sol. Energy 166, 42–49 (2018). https://doi.org/10.1016/j.solener.2018.03.037
- S. Ghosh, T. Singh, Role of ionic liquids in organic–inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy 63, 103828 (2019). https://doi.org/10.1016/j.nanoen.2019.06.024
- C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
- L. Chu, J. Zhang, W. Liu, R. Zhang, J. Yang et al., A facile and green approach to synthesize mesoporous anatase TiO2 nanomaterials for efficient dye-sensitized and hole-conductor-free perovskite solar cells. ACS Sustain. Chem. Eng. 6(4), 5588–5597 (2018). https://doi.org/10.1021/acssuschemeng.8b00607
- L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11(1), 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
- E. Mosconi, B. Merabet, D. Meggiolaro, A. Zaoui, F. De Angelis, First-principles modeling of bismuth doping in the MAPbI3 perovskite. J. Phys. Chem. C 122(25), 14107–14112 (2018). https://doi.org/10.1021/acs.jpcc.8b01307
- L.Q. Xie, L. Chen, Z.A. Nan, H.X. Lin, T. Wang et al., Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals. J. Am. Chem. Soc. 139(9), 3320–3323 (2017). https://doi.org/10.1021/jacs.6b12432
- W. Liu, L. Chu, N. Liu, Y. Cheng, F. Wu et al., Simultaneously enhanced efficiency and stability of perovskite solar cells with TiO2@CdS core–shell nanorods electron transport layer. Adv. Mater. Interfaces 6(5), 1801976 (2019). https://doi.org/10.1002/admi.201801976
- Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He et al., The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals. J. Mater. Chem. A 5(18), 8537–8544 (2017). https://doi.org/10.1039/C7TA01441D
- J.S. Manser, P.V. Kamat, Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8(9), 737–743 (2014). https://doi.org/10.1038/nphoton.2014.171
- National renewable energy laboratory, Best research-cell efficiencies. www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
- J. Zhang, Q. Wang, L. Wang, X.A. Li, W. Huang, Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 7(23), 10391–10397 (2015). https://doi.org/10.1039/C5NR01896J
- Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo et al., Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6(4), 1502104 (2016). https://doi.org/10.1002/aenm.201502104
- W. Zhao, Z. Yao, F. Yu, D. Yang, S.F. Liu, Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Adv. Sci. 5(2), 1700131 (2018). https://doi.org/10.1002/advs.201700131
- Y. Zhang, C.C. Zhang, C.H. Gao, M. Li, X.J. Ma et al., N-type doping of organic–inorganic hybrid perovskites toward high-performance photovoltaic devices. Sol. RRL 3(2), 1800269 (2019). https://doi.org/10.1002/solr.201800269
- J. Zhang, R. Chen, Y. Wu, M. Shang, Z. Zeng, Y. Zhang, Y. Zhu, L. Han, Extrinsic movable ions in MAPbI3 modulate energy band alignment in perovskite solar cells. Adv. Energy Mater. 8(5), 1701981 (2018). https://doi.org/10.1002/aenm.201701981
- W. Liu, L. Chu, N. Liu, Y. Ma, R. Hu et al., Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites. J. Mater. Chem. C 7(38), 11943–11952 (2019). https://doi.org/10.1039/C9TC03375K
- Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005 (2017). https://doi.org/10.1002/adma.201605005
- W. Xu, L. Zheng, X. Zhang, Y. Cao, T. Meng et al., Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 8(14), 1703178 (2018). https://doi.org/10.1002/aenm.201703178
- X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao et al., Highly efficient perovskite solar cells via nickel passivation. Adv. Funct. Mater. 28(50), 1804286 (2018). https://doi.org/10.1002/adfm.201804286
- M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown et al., Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236–246 (2017). https://doi.org/10.1039/C6EE03201J
- Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31(47), e1803792 (2019). https://doi.org/10.1002/adma.201803792
- J. Lu, S. Chen, Q. Zheng, Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells. Sci. China Chem. 62, 1044–1050 (2019). https://doi.org/10.1007/s11426-019-9486-0
- K. Wang, L. Zheng, T. Zhu, X. Yao, C. Yi et al., Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy 61, 352–360 (2019). https://doi.org/10.1016/j.nanoen.2019.04.073
- Z.K. Wang, M. Li, Y.G. Yang, Y. Hu, H. Ma et al., High efficiency Pb–In binary metal perovskite solar cells. Adv. Mater. 28(31), 6695–6703 (2016). https://doi.org/10.1002/adma.201600626
- J.W. Wang, Z. Wang, S. Pathak, W. Zhang, D.W. de Quilettes et al., Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 9(9), 2892–2901 (2016). https://doi.org/10.1039/C6EE01969B
- L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb–I perovskite solar cells. Science 363(6424), 265–270 (2019). https://doi.org/10.1126/science.aau5701
- K. Maeda, Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6(3), 2167–2173 (2014). https://doi.org/10.1021/am405293e
- K. Iwashina, A. Kudo, Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J. Am. Chem. Soc. 133(34), 13272–13275 (2011). https://doi.org/10.1021/ja2050315
- N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4(5), 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
- L. Wei, W. Ma, C. Lian, S. Meng, Benign interfacial iodine vacancies in perovskite solar cells. J. Phys. Chem. C 121(11), 5905–5913 (2017). https://doi.org/10.1021/acs.jpcc.6b12583
- X. Niu, Y. Li, Y. Zhang, Z. Zhou, J. Wang, Greatly enhanced photoabsorption and photothermal conversion of antimonene quantum dots through spontaneously partial oxidation. ACS Appl. Mater. Interfaces 11(19), 17987–17993 (2019). https://doi.org/10.1021/acsami.9b02771
- X. Niu, X. Bai, Z. Zhou, J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catal. 10, 1976–1983 (2020). https://doi.org/10.1021/acscatal.9b04753
- L. Zhou, J. Su, Z. Lin, D. Chen, W. Zhu et al., Theoretical and experimental investigation of mixed Pb–In halide perovskites. J. Phys. Chem. C 122(28), 15945–15953 (2018). https://doi.org/10.1021/acs.jpcc.8b05267
- D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang et al., Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3(4), 970–978 (2018). https://doi.org/10.1021/acsenergylett.8b00270
- Y. Zhao, P. Zhu, M. Wang, S. Huang, Z. Zhao et al., A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907769
- H. Sun, J. Zhang, X. Gan, L. Yu, H. Yuan et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 9(25), 1900896 (2019). https://doi.org/10.1002/aenm.201900896
- Y. Ma, H. Zhang, Y. Zhang, R. Hu, M. Jiang et al., Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Interfaces 11(3), 3044–3052 (2018). https://doi.org/10.1021/acsami.8b18867
- Z. Ni, C. Bao, Y. Liu, W. Wu, S. Chen, Q. Jiang et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
References
B. Shi, L. Duan, Y. Zhao, J. Luo, X. Zhang, Semitransparent perovskite solar cells: from materials and devices to applications. Adv. Mater. 32(3), 1806474 (2019). https://doi.org/10.1002/adma.201806474
K.T. Cho, G. Grancini, Y. Lee, E. Oveisi, J. Ryu et al., Selective growth of layered perovskites for stable and efficient photovoltaics. Energy Environ. Sci. 11(4), 952–959 (2018). https://doi.org/10.1039/C7EE03513F
Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun et al., Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27(35), 5176–5183 (2015). https://doi.org/10.1002/adma.201502597
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
W. Liu, L. Chu, R. Hu, R. Zhang, Y. Ma et al., Diameter engineering on TiO2 nanorod arrays for improved hole-conductor-free perovskite solar cells. Sol. Energy 166, 42–49 (2018). https://doi.org/10.1016/j.solener.2018.03.037
S. Ghosh, T. Singh, Role of ionic liquids in organic–inorganic metal halide perovskite solar cells efficiency and stability. Nano Energy 63, 103828 (2019). https://doi.org/10.1016/j.nanoen.2019.06.024
C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha et al., Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction. Nano Energy 61, 141–147 (2019). https://doi.org/10.1016/j.nanoen.2019.04.069
L. Chu, J. Zhang, W. Liu, R. Zhang, J. Yang et al., A facile and green approach to synthesize mesoporous anatase TiO2 nanomaterials for efficient dye-sensitized and hole-conductor-free perovskite solar cells. ACS Sustain. Chem. Eng. 6(4), 5588–5597 (2018). https://doi.org/10.1021/acssuschemeng.8b00607
L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang et al., Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11(1), 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
E. Mosconi, B. Merabet, D. Meggiolaro, A. Zaoui, F. De Angelis, First-principles modeling of bismuth doping in the MAPbI3 perovskite. J. Phys. Chem. C 122(25), 14107–14112 (2018). https://doi.org/10.1021/acs.jpcc.8b01307
L.Q. Xie, L. Chen, Z.A. Nan, H.X. Lin, T. Wang et al., Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals. J. Am. Chem. Soc. 139(9), 3320–3323 (2017). https://doi.org/10.1021/jacs.6b12432
W. Liu, L. Chu, N. Liu, Y. Cheng, F. Wu et al., Simultaneously enhanced efficiency and stability of perovskite solar cells with TiO2@CdS core–shell nanorods electron transport layer. Adv. Mater. Interfaces 6(5), 1801976 (2019). https://doi.org/10.1002/admi.201801976
Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He et al., The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals. J. Mater. Chem. A 5(18), 8537–8544 (2017). https://doi.org/10.1039/C7TA01441D
J.S. Manser, P.V. Kamat, Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics 8(9), 737–743 (2014). https://doi.org/10.1038/nphoton.2014.171
National renewable energy laboratory, Best research-cell efficiencies. www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf
J. Zhang, Q. Wang, L. Wang, X.A. Li, W. Huang, Layer-controllable WS2-reduced graphene oxide hybrid nanosheets with high electrocatalytic activity for hydrogen evolution. Nanoscale 7(23), 10391–10397 (2015). https://doi.org/10.1039/C5NR01896J
Y.C. Kim, N.J. Jeon, J.H. Noh, W.S. Yang, J. Seo et al., Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv. Energy Mater. 6(4), 1502104 (2016). https://doi.org/10.1002/aenm.201502104
W. Zhao, Z. Yao, F. Yu, D. Yang, S.F. Liu, Alkali metal doping for improved CH3NH3PbI3 perovskite solar cells. Adv. Sci. 5(2), 1700131 (2018). https://doi.org/10.1002/advs.201700131
Y. Zhang, C.C. Zhang, C.H. Gao, M. Li, X.J. Ma et al., N-type doping of organic–inorganic hybrid perovskites toward high-performance photovoltaic devices. Sol. RRL 3(2), 1800269 (2019). https://doi.org/10.1002/solr.201800269
J. Zhang, R. Chen, Y. Wu, M. Shang, Z. Zeng, Y. Zhang, Y. Zhu, L. Han, Extrinsic movable ions in MAPbI3 modulate energy band alignment in perovskite solar cells. Adv. Energy Mater. 8(5), 1701981 (2018). https://doi.org/10.1002/aenm.201701981
W. Liu, L. Chu, N. Liu, Y. Ma, R. Hu et al., Efficient perovskite solar cells fabricated by manganese cations incorporated in hybrid perovskites. J. Mater. Chem. C 7(38), 11943–11952 (2019). https://doi.org/10.1039/C9TC03375K
Z. Shi, J. Guo, Y. Chen, Q. Li, Y. Pan, H. Zhang, Y. Xia, W. Huang, Lead-free organic–inorganic hybrid perovskites for photovoltaic applications: recent advances and perspectives. Adv. Mater. 29(16), 1605005 (2017). https://doi.org/10.1002/adma.201605005
W. Xu, L. Zheng, X. Zhang, Y. Cao, T. Meng et al., Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 8(14), 1703178 (2018). https://doi.org/10.1002/aenm.201703178
X. Gong, L. Guan, H. Pan, Q. Sun, X. Zhao et al., Highly efficient perovskite solar cells via nickel passivation. Adv. Funct. Mater. 28(50), 1804286 (2018). https://doi.org/10.1002/adfm.201804286
M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown et al., Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236–246 (2017). https://doi.org/10.1039/C6EE03201J
Z. Xiao, Z. Song, Y. Yan, From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives. Adv. Mater. 31(47), e1803792 (2019). https://doi.org/10.1002/adma.201803792
J. Lu, S. Chen, Q. Zheng, Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells. Sci. China Chem. 62, 1044–1050 (2019). https://doi.org/10.1007/s11426-019-9486-0
K. Wang, L. Zheng, T. Zhu, X. Yao, C. Yi et al., Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy 61, 352–360 (2019). https://doi.org/10.1016/j.nanoen.2019.04.073
Z.K. Wang, M. Li, Y.G. Yang, Y. Hu, H. Ma et al., High efficiency Pb–In binary metal perovskite solar cells. Adv. Mater. 28(31), 6695–6703 (2016). https://doi.org/10.1002/adma.201600626
J.W. Wang, Z. Wang, S. Pathak, W. Zhang, D.W. de Quilettes et al., Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 9(9), 2892–2901 (2016). https://doi.org/10.1039/C6EE01969B
L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun et al., A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb–I perovskite solar cells. Science 363(6424), 265–270 (2019). https://doi.org/10.1126/science.aau5701
K. Maeda, Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 6(3), 2167–2173 (2014). https://doi.org/10.1021/am405293e
K. Iwashina, A. Kudo, Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J. Am. Chem. Soc. 133(34), 13272–13275 (2011). https://doi.org/10.1021/ja2050315
N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4(5), 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6
L. Wei, W. Ma, C. Lian, S. Meng, Benign interfacial iodine vacancies in perovskite solar cells. J. Phys. Chem. C 121(11), 5905–5913 (2017). https://doi.org/10.1021/acs.jpcc.6b12583
X. Niu, Y. Li, Y. Zhang, Z. Zhou, J. Wang, Greatly enhanced photoabsorption and photothermal conversion of antimonene quantum dots through spontaneously partial oxidation. ACS Appl. Mater. Interfaces 11(19), 17987–17993 (2019). https://doi.org/10.1021/acsami.9b02771
X. Niu, X. Bai, Z. Zhou, J. Wang, Rational design and characterization of direct Z-scheme photocatalyst for overall water splitting from excited state dynamics simulations. ACS Catal. 10, 1976–1983 (2020). https://doi.org/10.1021/acscatal.9b04753
L. Zhou, J. Su, Z. Lin, D. Chen, W. Zhu et al., Theoretical and experimental investigation of mixed Pb–In halide perovskites. J. Phys. Chem. C 122(28), 15945–15953 (2018). https://doi.org/10.1021/acs.jpcc.8b05267
D. Bai, J. Zhang, Z. Jin, H. Bian, K. Wang et al., Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Lett. 3(4), 970–978 (2018). https://doi.org/10.1021/acsenergylett.8b00270
Y. Zhao, P. Zhu, M. Wang, S. Huang, Z. Zhao et al., A polymerization-assisted grain growth strategy for efficient and stable perovskite solar cells. Adv. Mater. (2020). https://doi.org/10.1002/adma.201907769
H. Sun, J. Zhang, X. Gan, L. Yu, H. Yuan et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 9(25), 1900896 (2019). https://doi.org/10.1002/aenm.201900896
Y. Ma, H. Zhang, Y. Zhang, R. Hu, M. Jiang et al., Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Interfaces 11(3), 3044–3052 (2018). https://doi.org/10.1021/acsami.8b18867
Z. Ni, C. Bao, Y. Liu, W. Wu, S. Chen, Q. Jiang et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893